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A human–AI collaboration 
workflow for archaeological sites 
detection
Luca Casini 1, Nicolò Marchetti 2, Andrea Montanucci 1, Valentina Orrù 2 & Marco Roccetti 1*

This paper illustrates the results obtained by using pre-trained semantic segmentation deep learning 
models for the detection of archaeological sites within the Mesopotamian floodplains environment. 
The models were fine-tuned using openly available satellite imagery and vector shapes coming from 
a large corpus of annotations (i.e., surveyed sites). A randomized test showed that the best model 
reaches a detection accuracy in the neighborhood of 80%. Integrating domain expertise was crucial to 
define how to build the dataset and how to evaluate the predictions, since defining if a proposed mask 
counts as a prediction is very subjective. Furthermore, even an inaccurate prediction can be useful 
when put into context and interpreted by a trained archaeologist. Coming from these considerations 
we close the paper with a vision for a Human–AI collaboration workflow. Starting with an annotated 
dataset that is refined by the human expert we obtain a model whose predictions can either be 
combined to create a heatmap, to be overlaid on satellite and/or aerial imagery, or alternatively can be 
vectorized to make further analysis in a GIS software easier and automatic. In turn, the archaeologists 
can analyze the predictions, organize their onsite surveys, and refine the dataset with new, corrected, 
annotations.

This paper documents the outcomes of a collaboration between data scientists and archaeologists with the goal of 
creating an artificial intelligence (AI) system capable of assisting in the task of detecting potential archaeological 
sites from aerial or, in our case, satellite imagery. Using semantic segmentation models allowed us to draw precise 
outlines and human-in-the-loop evaluation showed that detection accuracy is in the neighborhood of 80%.

This procedure falls into the domain of Remote Sensing (RS) which indicates the act of detecting and/or 
monitoring a point of interest from a distance. In the world of archaeology this operation has become invalu-
able with the availability of more and better imagery from satellites that can be combined with older sources 
of information (e.g., the CORONA satellite imagery) to spot a larger number of archaeological sites as well as 
tracking their successive degradation due to anthropic factors1. Depending on the area of investigation and the 
size of the archaeological features being surveyed, the effort necessary, especially in terms of time, can be huge 
for the researcher.

This collaboration aimed at solving exactly this issue by using deep learning models to streamline, but not 
completely automate, the process. Thus, starting from a dataset of vector shapes for all archaeologically recorded 
sites in the southern Mesopotamian floodplain (which represents a sufficiently coherent geo-morphological 
region), we trained a model to detect and segment sites in a given input image. As the project went on, a number 
of issues emerged that make this problem particularly hard to tackle and lead to an important reflection on the 
use of deep learning in general and its relationship to human experts. The dataset, while may be considered a 
very large one for near eastern archaeology with its almost 5000 sites, is hardly sufficient for training a model 
as large as the state-of-the-art ones we see in use today and, perhaps more significantly, contains many cases 
that are visible only on certain old imagery. The first issue is commonly solved through transfer learning2. This 
technique consists in starting from a model, pre-trained on a large and general dataset (e.g. imagenet3), and then 
in fine-tuning it on a smaller but more specific dataset, leveraging the skills it has previously learned to make 
the new task more manageable. The second one, however, puts both training and evaluation in jeopardy, as the 
model is pushed to make wrong classifications during training and even if it learned robust representations that 
ignore bad examples, we would then have a hard time detecting if is a mistake is by the model or in the labels.

We believe that the only way out of this conundrum is through a human-in-the-loop approach1. For this 
reason, throughout the paper we highlight the importance of integrating domain expertise during the training 
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and evaluation phase of our experiments, since that was crucial in improving the dataset used and, in turn, the 
model. The final outcome of this iterative process is a model capable of a detection accuracy of around 80%.

Based on these promising results, we envision a tool for human-AI collaboration to support the archaeologists 
in the remote sensing operations (rather than replace them) and propose a new kind of workflow, enhancing both 
their task and the model by providing improved data after every use4,5. All the results were achieved using open-
source software and models, as well as openly available data (imagery, annotations) and computational resources 
(Google Colab), making this kind of work highly accessible and replicable even in resource-constrained research 
environments. All code, data and resources mentioned are available on GitHub (https://​bit.​ly/​NSR_​flood​plains).

Research background
The Mesopotamian floodplain.  The southern Mesopotamian floodplain is a crucial region for under-
standing the complex interplay between the spatial clustering of human communities and the development of 
irrigated farmland in an otherwise semi-arid environment6. Robert McCormick Adams’ surveys in the area7–9 
were carried out according to standards that were unparalleled for the time: he used a set of aerial photographs 
from 1961 to locate potential sites and map canals whose traces were visible on the surface; he was systematic 
in recording sites ranging in time from the later 7th millennium BCE to the Ottoman period; above all, he was 
acutely aware of the historiographical potential of his survey work, which resulted in a powerful interpretation 
of settlement patterns and hydraulic activities8.

After a long halt to fieldwork resulting from political instability, archaeological research resumed in southern 
Iraq in recent years, see10 for an overview. In this area sites are usually referred with the Arabic word for mound, 
“Tell”. The color and shape of these hills makes them especially visible from aerial and satellite imagery, which 
led to the use of remote sensing as a viable strategy to discover their location.

As Tony Wilkinson puts it “Tells comprise multiple layers of building levels and accumulated wastes built 
up through time, in part because the locus of occupation has remained stationary. Tell settlements frequently 
are defined by an outer wall that both contained and constrained the accumulated materials, thereby restrict-
ing their spread […]. The tell is by no means the sale locus of occupation […]. Outer or lower towns […] often 
appear as low humps or simply artifact scatters around tells, and they can extend the total occupied area of a 
site several fold”11.

In Mesopotamia, Tells are often only slightly more elevated than the surrounding countryside, often being 
prone in such cases to artificial leveling in order to gain irrigable agricultural areas. Thus, the automatic detec-
tion of sites in such a dynamic environment is a highly complex operation, although contrasts are sufficiently 
marked to justify the attempt.

Remote sensing.  By remote sensing one may refer to the use of any sensor (i.e., temperature, humidity, 
hyper-spectral, satellite images etc.) for detecting or monitoring a point of interest without the need for direct 
observation. This approach is relevant to a variety of fields, but solutions that work in one domain may not 
translate to others.

Locating archaeological sites remotely was certainly possible even before the advent of modern computer 
technology by using aerial photographs and topographical maps of the area to be investigated, but today it is 
easier to combine multiple sources, using sensors of different nature or from different points in time, to get 
a more complete picture of the environment, especially since it can be changing due to natural or anthropic 
factors12–14. Depending on the characteristics of the sites, certain representations can be helpful like elevation 
models obtained from stereoscopic images or the use of parts of the electromagnetic spectrum other than vis-
ible light like infrared or radio waves15,16. Light Detection and Ranging (LiDAR) is also becoming popular as 
it gives satisfactory high-resolution images, but it can be difficult to employ as it often requires to be mounted 
on some kind of airborne craft like drones17. The problem with these types of sources is that they might not be 
available for every location or not have a high enough resolution for the task at hand. On the other hand, good 
quality, open-source RGB images of virtually any location on the planet are readily available, especially through 
the popularity of online services such as Google Maps or Bing Maps. Specifically, in this project, we use satel-
lite imagery from the Bing Maps service, which, for the area under analysis, provides excellent visibility of the 
anthropogenic traces we focus on: Tells.

Deep learning for remote sensing and archaeology.  Deep learning has found multiple uses in every 
field of application and archaeology is no exception. It can help in classifying objects and text, finding similari-
ties, building 3D models and, as this paper illustrates too, the detection of sites18–22. A difficulty in dealing with 
such a model is that it requires domain experts in both archaeology and deep learning to come together, but it 
may also depend on the amount of data available. Neural networks are notoriously data hungry, and archaeol-
ogy is a “slow data” field as Bickler put it23. Nonetheless, there are a few recent examples of deep learning being 
successfully applied to site detection in a variety of different scenarios24–27. Most applications either use neural 
network to perform a classification, detection or segmentation task. The first uses tiles sampled from maps that 
are marked as containing the site of interest or not; the second instead consists in predicting a bounding box 
around an object and classifying it if needed; in the third the individual pixels are classified, and the result is the 
prediction of a shape corresponding to the site. In this paper we use the second approach, as described below.

Semantic segmentation.  Semantic segmentation is the task of dividing an image into parts that corre-
spond to units with a specific meaning. These can correspond to a specific subject (e.g., the outline of persons, 
vehicles, etc.) or to a generic category that encompasses multiple entities (e.g., buildings, backgrounds, etc.). In 
the context of this paper, we only have two categories: one for mounded (tell) sites and another one for every-
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thing else. Segmentation can be performed with various techniques that perform pixel-level classification. A 
very common approach uses pre-computed features, extracted by some algorithm, or manually engineered, 
which are then classified by a Random Forest algorithm28. The current state of the art is represented by end-to-
end systems based on deep learning with convolutional neural networks. For this approach, the introduction of 
U-Net by Ronnenberger in the context of medical imaging represented a milestone29. This work leverages a more 
recent architecture, called MA-Net30, which can be thought of as an upgrade of the U-Net architecture with the 
inclusion of a self-attention mechanism as proposed in the popular Transformer architectures31. This allows the 
model to weigh different latent features depending on contents, figuratively specifying where to “pay attention” 
in this latent space in order to learn better. While it was developed in the context of medical imaging, it has found 
use also in remote sensing tasks32,33. In the “Materials and methods” section below we provide more details.

Previous work and limitations.  In a previous paper we tried to tackle this same problem using an image 
classification approach where the map was divided into tiles34. In that experiment, however, the dataset was an 
order of magnitude smaller, and we had to resort to aggressive data augmentation in order to boost performance. 
The best model obtained an AUC score of around 70% but when tested on an unseen portion of map it showed 
its limits in that it predicted many False Positives while also missing some sites. The biggest trade-off of this tile-
based classification approach is between the size of the tiles and the granularity of the predictions with bigger 
squares that are more practical but result in a loss of detail. There is also the problem of dealing with sites that 
land on the edge of a tile. A solution we tried was creating a shingled dataset with in-between tiles to fill the gaps. 
This however greatly increased the amount of prediction to be created. Finally, most models for image classifica-
tion are bound by the use of a fixed size of input which can be a huge limit when dealing with maps. In this new 
experiment, given the increased size of the dataset, we decided to leverage image segmentation models with fully 
convolutional layers which address both the limits in input size and the granularity trade-off.

Materials and methods
In this section we first describe the dataset used, which was built starting from openly available resources and 
then the open-source models we fine-tuned on that dataset.

Vector shapes for archaeological sites.  We started with a dataset of geo-referenced vector shapes cor-
responding to contours of known mound sites in the survey area of the Floodplains Project that spans 66,000 
km2, as shown in Fig. 1. The dataset—developed at the University of Bologna by filing all published archaeo-
logical surveys in the area and geo-referencing anew the sites cataloged therein (https://​flood​plains.​orien​tlab.​
net)—contains 4934 shapes, thus all referring to sites which had been confirmed by ground truthing and by the 
associated study of the surface scatter of artifacts.

Since the dataset was compiled as a comprehensive source of information for archaeologists rather than 
specifically to train a deep learning model, we needed to filter out some examples that provided no information 
and could actually impair the learning process. We started by removing the top 200 sites by area as these were 
considerably bigger than the rest of the dataset and visual inspection confirmed that they follow the shape of 
areas that are not just simply mounds. The number 200 emerges from noticing that these sites have an area bigger 
than the square region we use as an input and could thus result in a completely full segmentation mask which 
would not be very helpful. After a discussion between data scientists and archaeologists we convened that this 
was a good heuristic solution.

Additionally, we filtered out 684 sites that either presented an area too small to be a Tell or were earmarked 
by the archaeologists as having been destroyed. In particular, the size threshold was set at around 1000 m2 which 
corresponds to a circle with a diameter of 30 m. These very small sites actually correspond to a generic annotation 
for known sites with unknown size or precise location.

Setting the input images.  To generate a set of images to fine-tune our pre-trained model, we imported 
the abovementioned shapes into QGIS, an open-source GIS software35 and using a Python script saved a square 
of length L centered on the centroid of the site that contains only satellite imagery from Bing Maps (displayed 
directly in the GIS environment via the QuickMapService plugin that allows access to images provided by vari-
ous online services, including Bing Maps). We then saved the same image without a base map but with the con-
tours of the site represented as a shape filled with a solid color, to serve as ground truth masks.

Thus, during training, our neural network learns to reproduce the shape of the site from the ground truthed 
one by only looking at the RGB satellite image; during inference, we can detect and outline new sites in a given 
input image if there are any.

In the first experiments we set L to be 1000 m, but we imagined that increasing the size of the prediction area 
could be beneficial due to the inclusion of a larger context. Consequently, we also tried using L = 2000 m and 
obtained improved performance overall.

From the starting square image, we randomly crop a square of length L/2 to be used as the input. This ensures 
that the model does not learn a biased representation for which sites always appear at the center of the input and 
additionally serves as data augmentation. Beside this crop, we also augment the dataset by applying a random 
rotation and mirroring, as well as a slight shift in brightness and contrast, all these operations being applied in 
a different manner at each training iteration. When extracting from QGIS, we saved images with a resolution of 
around 1 pixel per meter (1024 pixels for 1000 m, double that for the model with increased input size) but the 
inputs were then scaled down to half of that to ease computational requirements while having low impact on 
the overall performance36.

https://floodplains.orientlab.net
https://floodplains.orientlab.net
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Finally, we introduced 1155 images with empty masks (no sites to predict) sampled from locations suggested 
by the archaeologists. These include highly urbanized areas, intensive agricultural areas, locations subject to 
flooding (i.e., artificial lakes and basins) and rocky hills and mountains.

The number was chosen arbitrarily, taking into consideration the size of each suggested area and of the tiles. 
The final number of images is thus 5025. We split the dataset into a 90% training set and a 10% holdout test 
set, stratifying the “empty” images we added. 10% of the training set was also randomly selected to be used as 
a validation set.

We tried integrating CORONA imagery as an additional input37, as in the usual archaeological workflow 
that historical imagery is very useful (since it refers to a situation so much less affected by development) and 
often combines with the satellite basemaps and the topographical maps (but since CORONA were used here as a 
complement, we did not pursue automatic detection on them alone and thus sites destroyed after the 1970s have 
been excluded from the analysis). After importing the imagery into QGIS, we followed the same procedure to 
create the inputs, ensuring the crop operation was equal for both Bing and CORONA imagery.

Semantic segmentation models.  This project started as an experiment to investigate the viability of 
pretrained semantic segmentation models as tools for detecting sites. For this reason, we decided to compare 
pretrained open-source models made available as part of a library written in PyTorch. The library allows one to 
choose an encoder convolutional neural network for feature extraction and a segmentation architecture inde-
pendently, as well as providing a number of different loss functions38.

In a previous preliminary paper, we experimented with different choices of architecture, encoders and loss 
functions36. We compared U-Net versus MA-net, Resnet18 versus Efficientnet-B3 and Dice Loss versus Focal 
Loss. The performance differences were small, within a few percentage points at best, which could be very well 
explained by fluctuations due to the random data augmentation.

Nonetheless, we took the best model which uses MA-net, Efficientnet-B3 and Focal Loss, trained for 20 
epochs. We further tested for the effects of our filtering procedure (slightly improved from the previous work), 
and additionally experimented with the introduction of CORONA imagery and increased the input size.

Figure 1.   Investigation area. Orange dots represent surveyed sites in the Mesopotamian floodplain. The 
solid red rectangle is a selected test area in Maysan. All the displayed data fall under the condition of fair use 
utilization of geographical data for academic purposes. The list of all relevant data/software provider(s) is as 
follows: (i) original maps creation under the Section 5 of Microsoft Bing Maps Platform APIs’ terms of use 
(https://​www.​micro​soft.​com/​en-​us/​maps/​produ​ct/​print-​rights); (ii) maps display achieved with an open source 
software, under the GNU licenses of QGIS (https://​qgis.​org/​en/​site/) and QuickMapsServices (https://​github.​
com/​nextg​is/​quick​mapse​rvices); (iii) final maps elaboration achieved with a software developed by the authors 
and available at (https://​bit.​ly/​NSR_​flood​plains).

https://www.microsoft.com/en-us/maps/product/print-rights
https://qgis.org/en/site/
https://github.com/nextgis/quickmapservices
https://github.com/nextgis/quickmapservices
https://bit.ly/NSR_floodplains
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Tepa sites in Uzbekistan.  We also performed an additional test on another large dataset (https://​www.​orien​tlab.​
net/​samark-​land/) elaborated by the Uzbek-Italian Archaeological Project at Samarkand39. Given the similarity 
between the Mesopotamian Tell and the Uzbek Tepa, we wanted to see if the model was able to detect those sites 
without the need of additional retraining.

The dataset features 2318 point-like annotations categorized in different ways which also come with attributes 
related to their preservation states. We selected only sites classified as either Tepa or Low Mound, with the Well-
preserved label. The final number of sites ends being 215: 148 Tepa and 67 Mounds. The actual test set images 
were created following the same procedure described above.

Results
Mesopotamia.  First, we present the results in terms of average Intersection-over-Union (IoU) score on 
the test dataset. We define the metrics as follows: IoU = P∩G

P∪G with P indicating the predicted shape and G the 
ground truth shape. IoU represents the degree of correspondence between the predicted shape and annotation 
in the dataset. While it gives us an idea of how the model behaves and helps us to select the best one, we must 
recognize that it does not indicate how many sites are identified or not, which is our primary goal.

Table 1 summarizes the results for all models on the holdout dataset, as described in the Methods section. 
Note that, for each model, we report a mean score and the associated standard deviation. This is due to the fact 
that we are performing a random crop on the images, even on the test set, and thus we run ten tests with differ-
ent crops to average out this effect.

The first thing that can be noted is the marked improvement given by the increase in the input size. We 
imagine that the larger area provides more context to the predictions and makes the model more accurate. As 
important is the filtering procedure described above, that tries to remove small and undetectable sites, resulting 
in a bump in performance regardless of the input size.

Finally, the use of CORONA imagery is a bit controversial. For the smaller input size, it seems to provide 
no benefits (the lower error score is within the margin of error) and we can hypothesize this is due to the low 
resolution of this imagery. With larger areas they instead seem to provide an increase in performance, maybe 
again due to the larger context. Inspecting the prediction, however, revealed the absence of a marked difference, 
perhaps meaning the IoU is increasing just as the result of slightly more precise contours.

Detection accuracy.  To further assess the results, we moved on to detection accuracy. First, we trans-
formed the raster predictions from the model into vector shapes using the well-known library GDAL40 and then 
we looked for the intersection between the site annotations and the predictions. To obtain smoother shapes, 
before the conversion we first applied a Gaussian blur to the prediction rasters and then clipped values above a 
certain threshold (0.5, but the number can be changed for a more or less sensitive model) to 1.0, while everything 
else would be set to 0.0.

This automatic evaluation gives good but not too exciting results, with an accuracy score of 62.57% for Model 
5 and 60.08% for Model 6. A model able to find two out of three sites would already provide a good starting point 
for human analysis. However, archaeologists must provide a verification of the predictions and differentiate the 
cases in which the model commits proper mistakes from those in which it makes justifiable errors that a human 
would do too41–43.

First of all, there are a considerable number of sites that are no longer visible from present day satellite imagery 
and were not filtered from the dataset. This was expected as only half of the annotations had additional informa-
tion and even less contained indication of their visibility. Any input image containing only sites that are no longer 
visible should be considered as True Negative rather than False Negatives if the model produces no contour.

When it comes to predictions marked as False Positive, sometimes the model predicts another site close 
by, instead of not the one being tested. This can be considered a mistake or not depending on the nature of the 
“missed” site. In the case the missed site is one of those no longer visible, but we detect a near visible one, the 
prediction is actually a True Positive. On the other hand, the missed site can be one that is still visible but maybe 
less so than another one in the picture. In this situation we could either consider both a False Negative and a 
true positive, or just as a true positive given that, in a real-world scenario, the closeness to other sites would 
result in a useful suggestion as the human expert, who would then be able to retrieve them all. Alternatively, 
we could avoid considering non-visible sites altogether, but the difference would be minimal (accuracy 78.37% 
and recall 82.01%).

Table 1.   IoU scores for the different experimental setup we tested. The standard deviation comes from the 
repeated testing used to average out random cropping.

Model Input Filter IoU (%) St.dev

Model 1 Bing 1k 74.17 0.38

Model 2 Bing 1k ✓ 78.10 0.54

Model 3 Bing + CORONA 1k 74.06 0.39

Model 4 Bing 2k 79.77 0.34

Model 5 Bing 2k ✓ 81.54 0.35

Model 6 Bing + CORONA 2k ✓ 83.45 0.18

https://www.orientlab.net/samark-land/
https://www.orientlab.net/samark-land/
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Lastly, some predictions were actually present in the outputs but too faint for the cutoff threshold we imposed. 
We did not adjust for those errors, but they indicate a possible approach for interaction: using predictions as 
overlays and manually looking at the map. Alternatively setting a lower threshold could solve the problem.

The adjustment raises accuracy and recall to around 80, giving a more objective idea of the actual model 
performance.

Table 2 summarizes the results for the automatic evaluation and the adjusted values after the human evalua-
tion highlighted non-visible sites. The following equations define the metrics used in terms of True/False Positive/
Negatives. We chose Accuracy, Precision, Recall and the Matthews Correlation Coefficient.

It is interesting to see how Model 6, which got a higher IoU score, seems to actually be performing worse 
now. Looking at the images, it appears that this model is a little bit more restrained and cautious, resulting in less 
positive predictions and thus less False Positives. In turn, this can result in a higher IoU because it reduces the 
Union term, and, if areas are a little bit more precise, it even raises the Intersection term. However, for detection’s 
sake, we need the presence of an intersection rather than a perfect match and in this situation the lower number 
of positives is punishing. Overall, the difference in accuracy is not excessive, so both models are useful and could 
be used in parallel, but we must also consider the additional complexity and cost of using two sets of input images 
which make Model 6 a bit cumbersome. For this reason, we moved on using just Model 5.

We concluded this subsection with Fig. 2, which contains a few examples from the test dataset to display the 
quality of the model’s outputs. Note how the colors correspond to probability values, and that faint areas would 
be cut off by the 0.5 threshold we use in creating the vector shapes. The model is very accurate at tracing the site 
outlines and in some cases (i.e., the first column in Fig. 2) these are even more accurate than the ground truth 
with respect to current satellite imagery.

A test in the Maysan province.  After assessing detection performance, we wanted to try the model on a 
rectangular area within the unsurveyed Maysan province for which we carried out remote sensing. This test had 
the goal of evaluating how many False Positives the model would predict and to give an example of the mistakes 
the model makes in an operational scenario.

The area we selected contains 20 alleged sites and spans 104 km2. Figure 3 shows the area with the annotation 
from the archaeologist and the prediction from the model. As it can be seen the model is able to recover 17 of the 
20 sites while also suggesting around 20 more shapes (or less, depending on what is considered a single instance). 
Most of those suggestions are not useful but are also easily and quickly sifted out by an expert eye, especially in 
context, given their size or their location.

Figure 4 instead shows an overlay produced by stitching together the various predictions and using the prob-
abilities values as a sort of heatmap. “Hotter” colors correspond to higher probabilities while black indicates the 
absence of a site. Note that the palette is the same as the one seen in Fig. 2, with dark purple colors indicating 
a relatively low probability (less than 0.5). The transparency is obtained through the use of the Overlay filter in 
QGIS.

Uzbekistan.  Unfortunately, human evaluation of the outputs showed that the model is able to correctly 
identify only around 25% to 30% of the sites in this region, depending on how thresholds are chosen. The 
remaining part contains either sites that are missed completely or sites that are somehow hinted either too faintly 
or inside a huge area that appears meaningless.

The reason for this severe drop in performance is most probably due to the different nature of the landscape 
in the region which in some locations appear to be way more urbanized and in general features more vegeta-
tion: thus, not all floodplain environments are similar enough for a direct cross-comparison. Furthermore, 

Accuracy =
TP + TN

TP + TN + FP + FN
,

Recall =
TP

TP + FN
; Precision =

TP

TP + FP
,

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

.

Table 2.   Site detection performance for the best models. Automatic evaluation considers the labels as they 
come, adjusted evaluation compensates for incorrect labels with a human in the loop.

Model Evaluation TP TN FP FN Accuracy (%) Precision (%) Recall (%) MCC (%)

Model 5
Automatic 228 98 70 125 62.57 76.51 64.59 21.65

Adjusted 258 185 40 68 80.40 86.58 79.14 60.53

Model 6
Automatic 209 104 57 151 60.08 78.57 58.06 20.94

Adjusted 239 197 27 88 79.13 89.85 73.09 59.99
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the conventions which lie behind the annotations in the Uzbek dataset might not be perfectly aligned with the 
Mesopotamian one further complicating the situation.

This partial failure must be set into a context, since we do believe that our method can be applied to a wide 
array of similar environments in Asia and beyond having multi-period settlement histories: the only way of 
dealing with this problem here is that of creating a small dataset of selected Tepa sites and perform an additional 
round of transfer learning so that the model may grasp the new context and characteristics of the given region.

Discussion
The results obtained can be considered satisfactory even if the IoU metric, when compared to other semantic 
segmentation applications, is not extremely high. When testing for detection performance, however, we found 
that the model is still able to detect most sites in the dataset, leaving us with good expectations for its use in other 
parts of the survey area. As the Uzbek test shows however, when it comes to new areas with similar sites but in 
a different context, performance may drop severely. This issue of transferability, as it is referred to in archaeol-
ogy, is an active research topic. A retraining phase, even with a smaller dataset, could hopefully fix the issue and 
future work may explore this research direction.

It is important to note how evaluation metrics in this task seem to hit a wall when confronted with the fact 
that they are computed against annotations that oftentimes are not homogeneous and contain various spurious 
labels44. In our case we coped with the fact that there are many sites that are only visible on some historical pho-
tographs or maps that are part of the dataset even if they do not provide useful examples. Fortunately, the model 
seems to be robust enough to learn useful concepts and ignore these confounding data points. Still a smaller, 
cleaner dataset could drastically improve performance while also reducing computational load. Obviously, such 
cleaning operations would be a massive investment in terms of time and archaeologists would rather spend it 
actively searching for sites themselves, instead.

Our model, however, opens up the possibility of going through already surveyed areas automatically and then 
producing a list of predictions that contrast the annotations to be manually reviewed. Subsequently a new, cleaner 
dataset could be assembled by the archaeologists and a new improved model could be trained. See Lambers et al. 

Figure 2.   A few sample predictions from the test set. On the left is the target mask overlaid on the input 
image. On the right the model output. The color bar corresponds to classification probability. Note how the 
model is capable of matching accurately the site outline. All the displayed data fall under the condition of fair 
use utilization of geographical data for academic purposes. The list of all relevant data/software provider(s) is 
as follows: (i) original maps creation under the Section 5 of Microsoft Bing Maps Platform APIs’ terms of use 
(https://​www.​micro​soft.​com/​en-​us/​maps/​produ​ct/​print-​rights); (ii) maps display achieved with an open source 
software, under the GNU licenses of QGIS (https://​qgis.​org/​en/​site/) and QuickMapsServices (https://​github.​
com/​nextg​is/​quick​mapse​rvices); (iii) final maps elaboration achieved with a software developed by the authors 
and available at (https://​bit.​ly/​NSR_​flood​plains).

https://www.microsoft.com/en-us/maps/product/print-rights
https://qgis.org/en/site/
https://github.com/nextgis/quickmapservices
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for an example using citizen science45. This same procedure also works in applications to new areas, where novel 
predictions can be manually checked and added to a new dataset overtime.

In addition to the automatic procedure, the model could also be used to produce an overlay to guide the eye 
of the archaeologist inside a GIS software. This graphical approach allows the users to also compare the overlay 
with other maps they might be using and use their expertise to infer the existence of a site based on all contextual 
information they have46,47. We only tried this approach on a small area as shown in Fig. 4, but the computation 
could be easily scaled up to cover huge areas, as it takes less than a second to produce an output and there is no 
need to complete the operation in one go anyway. The only shortcoming of this method is the evident mismatch 
at the border between different input images, which give the overlay its mosaic-like appearance. In theory, 
semantic segmentation could work with inputs of arbitrary size, but doing so requires a huge amount of memory 
which might not be available. A solution might be the creation of overlapping prediction maps that would then 
be averaged, trading off computational time for increased precision.

Figure 5 summarizes the use we envision for the model we described, in the vein of similar solutions48,49. 
Starting from the dataset the model produces prediction masks that we can manipulate through post-processing 
to obtain either a vector shapefile that can be used for automatic evaluation and detection of sites. At this stage 
the user has the possibility of choosing a threshold to cut prediction off and the use of techniques to smooth the 
output shapes, like blurring or buffering the vectors. Similarly, the map overlay can be adjusted by selecting dif-
ferent graphical representations directly into the GIS software. The goal in this case is that of spotting sites that 
might go undetected by the automatic comparison because their probability is lower than the threshold, while 
still being distinguishable for a human. Each time the model is used, in either way, after reviewing the outputs 
the users would be able to obtain either a new set of annotations or a list of sites to be removed or relabeled. If 
such a workflow is used by more than one team it could also greatly speed up the search efforts: the use of open 
technologies in this case makes the results easier to share between research groups, which could greatly help 
archaeology as a field50.

The experiments with CORONA imagery also hint at the possibility of combining more models, perhaps 
trained with different basemaps or a combination of them, and compare the prediction given by all of these. 
Especially if historical images are present, we could end up with a dataset that also contains temporal information 
about when a site is visible and when it becomes undetectable. This latter aspect is quite novel and represents a 
potential breakthrough in automated remote sensing. Use of stereoscopic images for the creation of elevation 
models could also benefit the task, if the resolution is sufficient to highlight the low mounds we are looking for.

Figure 3.   Maysan province test area (pink, dashed line) with sites remotely identified by archaeologists (blue, 
dot-filled) and model predictions (yellow, line-filled). The sites identified by the trained eye and the model are 
equivalent and, most importantly, the model is able to ignore areas without significant features. All the displayed 
data fall under the condition of fair use utilization of geographical data for academic purposes. The list of all 
relevant data/software provider(s) is as follows: (i) original maps creation under the Section 5 of Microsoft Bing 
Maps Platform APIs’ terms of use (https://​www.​micro​soft.​com/​en-​us/​maps/​produ​ct/​print-​rights); (ii) maps 
display achieved with an open source software, under the GNU licenses of QGIS (https://​qgis.​org/​en/​site/) and 
QuickMapsServices (https://​github.​com/​nextg​is/​quick​mapse​rvices); (iii) final maps elaboration achieved with a 
software developed by the authors and available at (https://​bit.​ly/​NSR_​flood​plains).

https://www.microsoft.com/en-us/maps/product/print-rights
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Conclusions
We presented a deep learning model for detection of mounded archaeological sites in the Mesopotamian flood-
plain. The model was implemented using pretrained models for semantic segmentation, fine-tuned on satellite 
imagery and masks of the site shapes coming from a dataset containing almost 5000 examples.

The result of our experiments is a model which obtains an IoU score of 0.8154 on the test dataset and detects 
sites with 80% of accuracy. This statistic accuracy however is adjusted for the considerable number of sites that 
appear mislabeled as they are no longer visible on modern satellite imagery. While we cleaned up the dataset 
to the best of our ability, many undetectable sites still remained. The model seems to be quite robust, however.

Following this result, we propose a workflow for the archaeologists to adopt, in which their already established 
remote sensing practices are supported and enhanced by the use of a model like our own. The outputs can be used 
both for very fast automatic detection, being aware of the mistakes this could introduce, or combined to generate 

Figure 4.   The Maysan test area prediction probabilities layer visualized as the top one within QGIS. This 
visualization allows the user to decide where to look instead of relying on a predefined threshold value. All the 
displayed data fall under the condition of fair use utilization of geographical data for academic purposes. The list 
of all relevant data/software provider(s) is as follows: (i) original maps creation under the Section 5 of Microsoft 
Bing Maps Platform APIs’ terms of use (https://​www.​micro​soft.​com/​en-​us/​maps/​produ​ct/​print-​rights); (ii) 
maps display achieved with an open source software, under the GNU licenses of QGIS (https://​qgis.​org/​en/​site/) 
and QuickMapsServices (https://​github.​com/​nextg​is/​quick​mapse​rvices); (iii) final maps elaboration achieved 
with a software developed by the authors and available at (https://​bit.​ly/​NSR_​flood​plains).

Figure 5.   A human-in-the-loop workflow based on our model. A model is trained from annotated images and 
provides predictions masks. The masks can be used as an overlay or vectorized. Human evaluation is conducted 
on the outputs and in turn a refined dataset can be created to improve the model.
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a graphical overlay to direct the user’s attention towards certain areas. In turn, the use of the model will result 
in new shape files and annotations that can be used for retraining and improving the model, as well as enabling 
further analyses. The potential applications of this method are far reaching and do not only concern its speed: it 
should rather be seen as a necessary complement to traditional expert-based photointerpretation, adding to the 
latter in many cases site features which may go overlooked but are likely to be significant.

Data availability
In addition to the specific information provided within the paper, all code, data and various resources are avail-
able on GitHub (https://​bit.​ly/​NSR_​flood​plains). As to geographical data, all the displayed data fall under the 
condition of fair use utilization of geographical data for academic purposes. The list of all relevant data/software 
provider(s) is as follows: (i) original maps creation under Section 5 of Microsoft Bing Maps Platform APIs’ terms 
of use (https://​www.​micro​soft.​com/​en-​us/​maps/​produ​ct/​print-​rights); (ii) maps display achieved with an open 
source software, under the GNU licenses of QGIS (https://​qgis.​org/​en/​site/) and QuickMapsServices (https://​
github.​com/​nextg​is/​quick​mapse​rvices); (iii) final maps elaboration achieved with a software developed by the 
authors and available at (https://​bit.​ly/​NSR_​flood​plains).
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