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S U M M A R Y 

The study of deformation sources in volcanic and geothermal fields is a topic of great impor-
tance that generates a large debate in the scientific literature. A correct interpretation of the
deformation sources acting in a volcanic context is crucial to distinguish between the mechan-
ical effects due to the tectonic of the area, the intrusion of new magma and/or the mechanical
response of rocks to temperature or pore pressure changes. In the recent literature, thermo-
poro-elastic (TPE) inclusions were proposed as possible deformation sources that can explain
seismicity and displacements even in absence of the emplacement of new magma. In fact, TPE
inclusions allow us to compute the mechanical effects due to temperature and pore-pressure
changes brought by the arrival of hot and pressurized fluids permeating a closed volume. In the
present work, we improve the modellization of such deformation sources to include the effects
of viscoelasticity, which should be expected in high temperature and fluid saturated rocks due
to thermall y acti v ated and pressure-solution creep. The analytical thermo-poro-viscoelastic
(TPVE) solutions for a disc-shaped inclusion embedded in a uniform viscoelastic medium are
obtained through the correspondence principle. Our results can be useful to represent transient
effects of both deformation and stress fields that can occur in both volcanic and geothermal
areas, which would be difficult to explain otherwise. In fact, TPE inclusion models predict
that an increase of uplift occurs simultaneously with an increase of stress, and vice versa.
Instead, we shall see that a TPVE inclusion can provide an increase of uplift even in presence
of a strongly decreasing deviatoric stress. For this reason, a TPVE inclusion can be suitable
to represent a decrease in seismicity rate accompanied by an increase in surface uplift, as
observed, for example, during the ’82–’84 unrest phase of Campi Flegrei in Italy. 

Key words: Elasticity and anelasticity; Hydrothermal systems; Transient deformation; In-
duced seismicity; Calderas. 

 I N T RO D U C T I O N  

he inclusion method (Eshelby 1957 ) can be used to model the mechanical effects of a volume (i.e. an inclusion) that undergoes temperature
nd pore-pressure changes, enclosed by an elastic medium. Such a method is well known in the literature as it is suitable to model the
eformation induced by geothermal reservoirs and to study their potential to induce seismicity (Geertsma 1973 ; Segall 1992 ; Rudnicki 1999 ;
uido et al. 2015 ). In particular, since the pioneering works of Segall ( 1989 ) and Segall & Fitzgerald ( 1998 ), it has been well known that

hermo-poro-elastic (TPE) inclusions can be useful to explain the different fault mechanisms induced by oil and gas production inside and
round the reservoirs. 

More recently, the inclusion method was applied to study the mechanical effects of TPE inclusions in volcanic environments, where
ore-pressure and temperature changes derive from the exsolution of fluids of magmatic origin (e.g. Belardinelli et al. 2019 ; Mantiloni et al.
020 ; Nespoli et al. 2021 ). To date, the most intriguing results of the application of TPE inclusions in geothermal and volcanological contexts
an be summarized as follows: ( i ) they easily allow to estimate deformation and stress fields due to the injection or withdrawal of hydrothermal
uids; ( ii ) dif ferentl y from pressurized cavities (e.g. fluid filled magma chambers), they create a strong de viatoric stress field e ven within the
ource re gion; ( iii ) the y may e xplain significant deformations ev en in environments in which there are no evidences of shallow large magmatic
odies; and ( iv ) they can explain the heterogeneity of fault mechanisms of induced earthquakes located at close distance. 

Belardinelli et al. ( 2019 ) proposed analytical solutions to model TPE inclusions with spherical and spherical shell geometries, embedded
n a full space. The latter geometry can be used, for example, to represent a TPE shell volume that separates a spherical magma chamber from
he external embedding elastic medium. The fully analytical solutions for disc-shaped TPE inclusions embedded in an elastic space were then
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. 135 
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Figure 1. (a) Caldera of Campi Flegrei (Italy). The yellow circle represents the projection of the TPE inclusion as inferred from the inversion of geodetic data 
measured during the period June 1980–1983 (Nespoli et al. 2021 ). (b) Vertical displacement (orange curve) as a function of time, measured in the location of 
maximum measured uplift (Pozzuoli harbour) from 1980 to 1990. Histograms represent the number of events in time windows of 20 d. The red curve shows 
the number of events computed with a moving average. (c) Vertical displacement (orange curve) as a function of time plotted together with the uplift rate (light 
blue curve, cm d −1 ). The blue dashed line represents the end of the uplift phase. The orange area indicates the time interval before the end of the uplift phase 
that was characterized by a decrease of both uplift rate and seismicity rate. Data from Belardinelli et al. ( 2011 ). (d) Long time-series of vertical displacement 
measured at Pozzuoli between 1983 and 2022 (De Martino et al. 2021 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

computed by Belardinelli et al. ( 2022 ). Such a geometry is better suited to describe horizontally extended permeable rock layers stressed and
strained by hot and pressurized volatiles released into a flat, nearly circular region, as usually occurs inside a volcano caldera. Mantiloni et al.
( 2020 ) presented semi-analytical solutions to model a disc-shaped TPE inclusion embedded in an elastic half-space. The solutions computed
in a half-space offer, in particular, the possibility of modelling the displacement at the surface. Therefore, they can be useful to compare model
results with more geophysical observables and they allow us to perform geodetic data inversions to infer deformation source parameters.
More recently, Nespoli et al. ( 2021 ) showed how the solutions of Mantiloni et al. ( 2020 ) can be extended to thick, cylindrical TPE inclusions,
embedded in a layered elastic half-space. Their solutions rely on the fact that the mechanical effects of TPE inclusions can be physically
described through a distribution of single forces acting normally on the surface of the inclusion, as generally, inelastic deformations can be
represented by an appropriate distribution of equivalent body forces (e.g. Landry & Barbot 2019 ). Based on the distribution of equi v alent
forces, the mechanical effects of a TPE inclusion with an arbitrary shape, located in a layered elastic half-space, can be modelled with the
propagator method using the EFGRN / EFCMP code (Nespoli et al. 2022 ). 

Several recent applications of TPE inclusion models in a volcanological context are focused on the caldera of Campi Flegrei (Italy).
There, the volcanic activity started about 39 000 years ago (De Vivo et al. 2001 ) and was characterized by several episodes of bradyseism
(Di Vito et al. 1999 ). During the unrest phase occurred in 1982–1984, a maximum uplift of 1.8 m was measured close to the centre of the
caldera (Del Gaudio et al. 2010 ), located near the city of Pozzuoli. This bradiseismic episode (Fig. 1 ) was characterized by thousands of
earthquakes (D’Auria et al. 2014 ). Few months before the end of the uplift phase, seismicity declined (Barberi et al. 1984 ; Belardinelli et al.
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011 ), as shown in Fig. 1 . After that period, there were 20 yr of pre v ailing subsidence. A ne w uplift phase started in 2005 (Fig. 1 d), and it is
till continuing today; it was accompanied by an increase of both fumarole activity and seismicity rate (Tramelli et al. 2021 ). 

In the literature, the debate about the nature of the sources inducing the deformation of Campi Flegrei is still open. In fact, the soil
eformation can be ef fecti vel y described b y both pressurized, magma filled cavities and TPE inclusion models. From high-resolution seismic
omography, Judenherc & Zollo ( 2004 ) and Carlino et al. ( 2012 ) exclude the presence of large magmatic bodies in the shallowest 2 km of depth.
rasatti et al. ( 2011 ) succeeded in reproducing the observed uplift employing a complex magma filled dislocation source at 4.5 km depth,
nd similarly, D’Auria et al. ( 2015 ) interpreted the deformation as due to a sill intrusion at about 3 km of depth. Ho wever , a non magmatic
eformation source can be also considered. For this reason, a significant part of the literature focuses on the importance of considering the
ydrothermal circulation (e.g. Chiodini et al. 2021 ; Nespoli et al. 2021 ; Todesco 2021 ) as a rele v ant mechanism to justify, at least partially,
he deformation and the seismicity observed at Campi Flegrei. According to these authors, hydrothermal fluids were supplied by a deep

agmatic chamber to a shallower volume, located above 3 km of depth, where most of the seismicity occurred during 1982–1984 unrest
hase (Tramelli et al. 2022 ). According to Lima et al. ( 2021 ), Cal ò & Tramelli ( 2018 ), Nespoli et al. ( 2022 ) and ref. therein, such a volume
yclically allows or prevents the rising of the magmatic fluids from depth, acting as a valve. The location and geometry of such a volume was
btained by geodetic data inversion by Nespoli et al. ( 2021 ). They found that both the seismicity and the deformation of the ’82–’84 unrest
an be well reproduced employing a cylindrical TPE inclusion located at a depth of about 2 km, with a radius of about 2.5 km and a thickness
f 500 m. 

Solid–fluid interaction is a highly complex process. A realistic description of hydrothermal circulation requires to account for the
omplex properties of both solid and fluid phases and their mutual coupling. Some hints were provided by Belardinelli et al. ( 2022 ) on the
asis of some simplifying assumptions. Even numerical approaches must be based on more or less strong assumptions and simplifications.
ollowing Belardinelli et al. ( 2022 ), we believe that the analytical approaches allow us to better understand the physical phenomena at the
ase of the problem. Fur ther more, they allow us to create a starting point for more complicated numerical models. One of the possible
omplications of TPE models consists in considering a viscoelastic behaviour of the medium containing the inclusion (e.g. Kazemi-Lari et al.
021 ). The viscoelastic rheological properties of the medium can be extremely important to model the deformation, especially in volcanic
nd geothermal regions (Bonafede & Ferrari 2009 ), which are characterized by high temperatures, promoting thermally activated creep (e.g.
ang 2021 ; Goetze & Evans 1979 ), high fluid pressures, promoting pressure-solution creep (e.g. Gratier et al. 2013 ) and high deviatoric

tress, overcoming the plastic threshold. Fur ther more, we will see that dif ferentl y from a TPE inclusion, a thermo-poro-viscoelastic (TPVE)
nclusion could explain the time-lag, which can occur between the decreases of uplift and seismicity rate, as was observed at Campi Flegrei
Fig. 1 ). 

A TPVE medium can be envisaged as a rock matrix with viscoelastic behaviour containing fluid-filled and interconnected cavities. The
uid migration allows transmission of heat and pore pressure by means of advection, which is a very efficient process in high permeability
edia. The implementation of the viscoelastic behaviour can be attained using the correspondence principle (Fung 1965 ). In this study,
e will assume a Maxwell rheology that is the simplest choice. In this case, dif ferentl y from what was expected according to other linear

heologies [e.g. Standard Linear Solid (SLS)], the complete relaxation of additional deviatoric stress takes place. In the following, we will
ho w ho w the viscoelastic beha viour ma y be simpl y introduced, starting from the anal ytic solutions of a TPE disc (Mantiloni et al. 2020 ;
elardinelli et al. 2022 ). 

 T P E  S O LU T I O N S  

or a TPE medium, we have the following constitutive equation expressing the strain e ij as function of stress σ ij and changes of pore pressure
 and temperature T : 

e i j = 

1 
2 μ

(
σi j − ν

1 + ν σkk δi j 

)+ e 0 δi j (1) 

ith 

 0 = 

1 

3 H 

p + 

1 

3 
αs T (2) 

here ν is the drained isothermal Poisson’s ratio, μ the rigidity, 1/ H is the poroelastic expansion and αs the thermal expansion coefficient of
he solid matrix. The parameter e 0 is the ”inclusion potency” (Nespoli et al. 2021 , 2022 ). In the case of a TPE inclusion, the displacement
Eshelby 1957 ) can be expressed as 

u i ( x ) =
∮ 
S

3 K e 0 G ik ( x , x 
′ ) n k ( x 

′ )dS ′ , (3) 

here the integral is computed over the surface S surrounding the inclusion (e.g. Aki & Richards 2002 ; Belardinelli et al. 2019 ). In equation ( 3 ),
K = 

2 μ(1 + ν) 
3(1 −2 ν) is the drained isothermal bulk modulus of the medium, G ik ( x , x ′ ) is the Green’s tensor representing the i − th component of

isplacement at x due to a single (and unitary) point force, acting in the k − th direction, located in x 
′ 
. In a homogeneous half-space, G ik ( x ,

 

′ 
) is given by the sum of singular terms (when x = x 

′ 
) representing the Green function in a full space, and non-singular terms representing

he free surface contributions. Notice that, according to equation ( 3 ), the displacement of a TPE inclusion linearly scales with the inclusion
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Figure 2. Reference systems used to represent the TPE disc (yellow volume) embedded in elastic matrix (grey). 

 

 

 

 

 

 

 

potency e 0 . The strain field e ij can be computed according to the infinitesimal strain theory as 

e i j = 

1 

2 

(
∂ u i 

∂ x j 
+ ∂ u j

∂ x i

)
(4) 

The stress field, can be computed from ( 3 ) as 

σi j ( x ) = 

{ 

λe kk δi j + 2 μe i j − 3 K e 0 δi j , x ∈ V S 

λe kk δi j + 2 μe i j , x / ∈ V S 
(5) 

where V S is the volume of the inclusion enclosed by the surface S . Notice the additional term −3 Ke 0 δij , appearing inside the inclusion (e.g.
Barbot 2018 ; Belardinelli et al. 2019 , 2022 ). 

According to Mantiloni et al. ( 2020 ), for a disc-shaped TPE inclusion with radius a (Fig. 2 ), embedded in a half-space with free surface
in z = 0, the solutions can be obtained considering two different contributions: a singular component (superscript s ) that can be computed
anal yticall y and a non-singular component (superscript ns ) that can be computed semi-anal yticall y from the full space solution of Belardinelli
et al. ( 2022 ). So that the displacement and the strain can be computed as: 

u i ( x ) = u 

s 
i ( x ) + u 

ns 
i ( x ) (6a) 

e i j ( x ) = e s i j ( x ) + e ns 
i j ( x ) (6b) 

and the stress 

σi j ( x ) = 

{ 

σ s 
i j ( x ) + σ ns 

i j ( x ) − 3 K e 0 δi j , x ∈ V S 

σ s 
i j ( x ) + σ ns 

i j ( x ) , x / ∈ V S 
. (7) 

In Section 3, we will apply the correspondence principle to both singular and non-singular components, separately, in order to obtain
the quasi-static time-dependent solutions in a homogeneous Maxwell half-space. 

2.1 Singular components of displacement and strain 

The singular components of displacement and strain were computed in spherical coordinates (Fig. 2 ) by Belardinelli et al. ( 2022 ). First, we
rewrite them in order to factor out the quantities that depend on the elastic parameters of the medium. Accordingly, the radial and polar
components can be written as: 

u 

s 
r ( r ) = 

{ 

AaS 1 ( r ) if r < a 
AaS 2 ( r ) if r > a 

, u 

s 
θ ( r ) = 

{ 

AaS 3 ( r ) if r < a 
AaS 4 ( r ) if r > a 

(8) 

where S 1 − 4 do not depend on elastic parameters and are expressed by series expansions (Appendix A) and the coefficient A is 

A = e 0 
d 

2 a 

1 + ν

1 − ν
(9) 

The non-vanishing components of strain can be written as following in terms of series expansions S 5 − 12 (Appendix A): 

e s rr =
{ 

AS 5 ( r ) if r < a 
AS 6 ( r ) if r > a 

, e s θθ =
{ 

AS 7 ( r ) if r < a 
AS 8 ( r ) if r > a 

, (10a) 
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s 
ϕϕ =

{ 

AS 9 ( r ) if r < a 
AS 10 ( r ) if r > a 

, e s rθ =
{ 

AS 11 ( r ) if r < a 
AS 12 ( r ) if r > a 

. (10b) 

.2 Non-singular components of displacement and strain 

he non-singular components were computed by Mantiloni et al. ( 2020 ) and can be rewritten as: 

 

ns 
1 ( x ) = 3 K Be 0 

[ 
(3 − 4 ν) I (1) 

a ( x ) + I (1) 
b ( x ) 

] 
= C I (1) 

a ( x ) + DI (1) 
b ( x ) (11a) 

ns 
2 ( x ) = 3 K Be 0 

[ 
(3 − 4 ν) I (2) 

a ( x ) + I (2) 
b ( x ) 

] 
= C I (2) 

a ( x ) + DI (2) 
b ( x ) (11b) 

 

ns 
3 ( x ) = −3 K Be 0 

[ 
(3 − 4 ν) I (3) 

a ( x ) + I (3) 
b ( x ) 

] 
= −C I (3) 

a ( x ) − DI (3) 
b ( x ) (11c) 

here 

B = 

1 −2 ν
8 πμ(1 −ν) (12a) 

 = 3 K Be 0 (3 − 4 ν) (12b) 

D = 3 K Be 0 (12c) 

he e xplicit e xpression of I (1 −3) 
a and I (1 −3) 

b are reported in Appendix A. The non-singular components of strain can be computed from
isplacement as: 

 

ns 
11 ( x ) = 3 K Be 0 

[
(3 − 4 ν) ∂ I 

(1)
a

∂x 1
+ ∂ I 

(1)
b 

∂x 1

]
= C 

∂ I 
(1)
a

∂x 1
+ D 

∂ I 
(1)
b

∂x 1
(13a) 

 

ns 
22 ( x ) = 3 K Be 0 

[
(3 − 4 ν) ∂ I 

(2)
a

∂x 2
+ ∂ I 

(2)
b 

∂x 2

]
= C 

∂ I 
(2)
a

∂x 2
+ D 

∂ I 
(2)
b

∂x 2
(13b) 

 

ns 
33 ( x ) = −3 K Be 0 

[
(3 − 4 ν) ∂ I 

(3)
a

∂x 3
+ ∂ I 

(3)
b 

∂x 3

]
= −C 

∂ I 
(3)
a

∂x 3
− D 

∂ I 
(3)
b

∂x 3
(13c) 

 

ns 
13 ( x ) = 

3 K Be 0 
2 

[ 
(3 − 4 ν) 

(
∂ I (1) 

a 

∂x 3 
+ ∂ I (3) 

a 

∂x 1 

)
+ ∂ I (1)

b 

∂x 3 
+ ∂ I (3)

b 

∂x 1 

] 

= 

C 

2 

(
∂ I (1) 

a 

∂x 3 
+ ∂ I (3) 

a 

∂x 1 

)
+ D

2 

( 

∂ I (1) 
b 

∂x 3 
+ ∂ I (3)

b 

∂x 1 

) 

(13d) 

he explicit expression of the deri v ati ves are reported in Appendix A. 

 T P V E  S O LU T I O N S  

he deformation provided by Maxwell rheology, for large times, can be considered as an upper bound of the one provided by other rheological
odels (Bonafede & Ferrari 2009 ). Explicit solutions for linear viscoelastic rheologies can be computed using the correspondence principle.

n order to consider the Maxwell rheology, we must employ the elastic parameters in the Laplace domain (e.g. Fung 1965 ): 

˜ K ( s) = K , ̃  λ( s) =
sλ + K 

μ

η

s + 

μ

η

, ̃  μ( s) = 

μs 

s + 

μ

η

, ̃  ν( s) = 

˜ λ( s) 

2 
[̃

 λ( s) + ̃  μ( s)
] (14) 

here s is the Laplace variable and η the viscosity. Here and in the following, a superposed tilde denotes a quantity in the Laplace transform
omain (a function of s , generall y). The constituti ve law for a viscoelastic material in the Laplace domain is formally equivalent to the one
f an elastic material, accordingly: 

 i j ( x ) = 

{ ˜ σ s 
i j ( x ) + ̃  σ ns 

i j ( x ) − 3 ̃  K e 0 δi j , x ∈ V S ˜ σ s 
i j ( x ) + ̃  σ ns 

i j ( x ) , x / ∈ V S 
. (15) 

e consider the case in which the potency occurs suddenly inside the TPE inclusion, so that 

0 ( t) = e 0  ( t) , (16) 

here  ( t ) is the Heaviside step function and ˜ ε0 = e 0 /s. 
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3.1 TPVE solutions of the singular components 

According to the correspondence principle, the singular components of displacement can be expressed in the Laplace domain substituting 
the constant A ( 9 ) with: 

˜ A ( s) = e 0 
s 

3 ̃  λ + 2 ̃  μ˜ λ + 2 ̃  μ

d 

2 a 
(17) 

The inverse Laplace transform of ( 17 ) can be then computed as: 

A ( t) = 

3 de 0 
2 a 

[
1 − 4 μ

3 λ + 6 μ
exp 

(
−2 μ + 3 λ

3 λ + 6 μ

t 

τ

)]
(18) 

where τ = η/ μ is the Maxwell relaxation time. 
Substituting the constant A in eq. ( 9 ) with the function A ( t ) given by eq. ( 18 ) into eq. ( 8 ) we can obtain the viscoelastic solutions for the

singular components of displacement: 

u 

s 
r ( r , t) = 

{ 

A ( t) aS 1 ( r ) if r < a 
A ( t) aS 2 ( r ) if r > a 

, u 

s 
θ ( r , t) = 

{ 

A ( t) aS 3 ( r ) if r < a 
A ( t) aS 4 ( r ) if r > a 

(19a) 

The singular component of the viscoelastic strain tensor, e s ( r , θ , ϕ, t ), can be also computed replacing in eq. (10) the expression of A ( 9 )
with the one of A ( t ) ( 18 ):

e s rr ( r , t) =
{ 

A ( t) S 5 ( r ) if r < a 
A ( t) S 6 ( r ) if r > a 

, e s θθ ( r , t =
{ 

A ( t) S 7 ( r ) if r < a 
A ( t) S 8 ( r ) if r > a 

, (20a) 

e s ϕϕ ( r , t) =
{ 

A ( t) S 9 ( r ) if r < a 
A ( t) S 10 ( r ) if r > a 

, e s rθ ( r , t) =
{ 

A ( t) S 11 ( r ) if r < a 
A ( t) S 12 ( r ) if r > a 

. (20b) 

According to eq ( 15 ), the computation of the singular viscoelastic stress components can be performed by computing the Laplace
transform of the terms ˜ L 1 ( s) = ̃  μ Ã (21a) 

˜ L 2 ( s) = ̃

 λ Ã (21b) 

which give: 

L 1 ( t) = 

μ(3 λ+ 2 μ) de 0
2 a( λ+ 2 μ) 

[ 
exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
(22a) 

L 2 ( t) = 

(3 λ+ 2 μ) de 0
2 a 

[ 
1 − 2 μ

λ+ 2 μ exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
. (22b) 

Accordingly, introducing for convenience S r < a = S 5 + S 7 + S 9 and S r > a = S 6 + S 8 + S 10 : 

σ s 
rr ( r , t) = 

{ 

2 L 1 ( t) S 5 ( r ) + L 2 ( t) S r<a if r < a 
2 L 1 ( t) S 6 ( r ) + L 2 ( t) S r>a if r > a 

, σ s 
θθ ( r , t) = 

{ 

2 L 1 ( t) S 7 ( r ) + L 2 ( t) S r<a if r < a 
2 L 1 ( t) S 8 ( r ) + L 2 ( t) S r>a if r > a 

, (23a) 

σ s 
ϕϕ ( r , t) = 

{ 

2 L 1 ( t) S 9 ( r ) + L 2 ( t) S r<a if r < a 
2 L 1 ( t) S 10 ( r ) + L 2 ( t) S r>a if r > a 

, σ s 
rθ ( r , t) =

{ 

2 L 1 ( t) S 11 ( r ) if r < a 
2 L 1 ( t) S 12 ( r ) if r > a 

. (23b) 

3.1.1 From spherical to cartesian coordinates 

Given the two rotation matrices, Q and R 

Q = 

⎡ ⎢ ⎣ 

sin θ cos ϕ cos θ cos ϕ − sin ϕ 

sin θ sin ϕ cos θ sin ϕ cos ϕ 

cos θ − sin θ 0 

⎤ ⎥ ⎦ 

(24) 

R = 

⎡ ⎢ ⎣ 

1 0 0 
0 1 0 
0 0 −1 

⎤ ⎥ ⎦ 

(25) 

at a given time, t , the displacement in the Cartesian reference system with the z axis pointing downwards, in which non-singular solutions are
expressed, can be then computed as 

u 

s ( x , y , z, t) = RQu 

s ( r, θ, ϕ , t) (26) 

and the strain and the stress tensor, respecti vel y as 

e s ( x , y , z, t) = RQe s ( r, θ, ϕ , t) Q 

T R 

T (27)
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σ

b

3

F

C̃

a

C

T

u

u

u

 

(

e

e

e

e

T  

L

w

A

σ

σ

s ( x , y , z, t) = RQ σ s ( r, θ, ϕ , t) Q 

T R 

T (28) 

y considering that r = 

√ 

x 2 + y 2 + ( z − c) 2 , sin θ = 

√ 

x 2 + y 2 /r , cos θ = ( z − c )/ r , sin ϕ = y / 
√ 

x 2 + y 2 and cos ϕ = x / 
√ 

x 2 + y 2 . 

.2 TPVE solutions of the non-singular components 

or the non-singular components of displacement, we must express both C and D coefficients in the Laplace domain as: 

 

 ( s) = 

e 0 
s 

3 K (1 −2 ̃ ν) 
8 π˜ μ(1 −˜ ν) (3 − 4 ̃  ν) (29a) 

˜ D ( s) = 

e 0
s

3 K (1 −2 ̃ ν)
8 π˜ μ(1 −˜ ν) (29b) 

nd their inverse Laplace transforms are 

( t) = 

3 e 0 
4 π

[ 
1 − 2 μ

(3 λ+ 3 μ) exp 
(
− 2 μ+ 3 λ

3 λ+ 3 μ
t
τ

)
+ 4 μ

3 λ+ 6 μ exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
(30a) 

D( t) = 

3 e 0 
4 π

[ 
1 − 4 μ

(3 λ+ 6 μ) exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
. (30b) 

he viscoelastic solutions for the non-singular components can be computed as: 

 

ns 
1 ( x , t) = C( t) I (1) 

a ( x ) + D( t) I (1) 
b ( x ) (31a) 

ns 
2 ( x , t) = C( t) I (2) 

a ( x ) + D( t) I (2) 
b ( x ) (31b) 

ns 
3 ( x , t) = −C( t) I (3) 

a ( x ) − D( t) I (3) 
b ( x ) (31c) 

The viscoelastic strain tensor can be computed replacing in eqs (13) by the expressions of C ( 12b ) and D ( 12c ) with C ( t ) ( 30a ) and D ( t )
 30b ), respecti vel y: 

 

ns 
11 ( x , t) = C( t ) ∂ I 

(1)
a

∂x 1
+ D( t ) 

∂ I 
(1)
b

∂x 1
(32a) 

 

ns 
22 ( x , t) = C( t ) ∂ I 

(2)
a

∂x 2
+ D( t ) 

∂ I 
(2)
b

∂x 2
(32b) 

 

ns 
33 ( x , t) = −C( t ) 

∂ I (3) 
a 

∂x 3 
− D( t ) 

∂ I (3) 
b 

∂x 3 
(32c) 

 

ns 
13 ( x , t) = 

C( t) 

2 

(
∂ I (1) 

a 

∂x 3 
+ ∂ I (3) 

a 

∂x 1 

)
+ D( t)

2

( 

∂ I (1) 
b 

∂x 3 
+ ∂ I (3)

b 

∂x 1 

) 

(32d) 

he non-singular viscoelastic stress components can be computed considering the viscoelastic relation ( 15 ) and ( 5 ), and computing the
aplace transform of the following terms ˜ M 1 ( s) = ̃  μC̃ (33a) 

˜ M 2 ( s) = ̃

 λC̃ (33b) 

˜ M 3 ( s) = ̃  μD̃ (33c) 

˜ M 4 ( s) = ̃

 λD̃ (33d) 
hich give in the time domain: 

M 1 ( t) = 

μ(2 μ+ 3 λ) e 0
2 π

[ 
1

λ+ μ exp 
(
− 2 μ+ 3 λ

3 λ+ 3 μ
t
τ

)
− 1

2( λ+ 2 μ) exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
(34a) 

M 2 ( t) = 

(2 μ+ 3 λ) e 0
4 π

[ 
1 − 2 μ

λ+ μ exp 
(
− 2 μ+ 3 λ

3 λ+ 3 μ
t
τ

)
+ 2 μ

λ+ 2 μ exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
(34b) 

M 3 ( t) = 

μ(2 μ+ 3 λ) e 0
4 π ( λ+ 2 μ) 

[ 
exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
(34c) 

M 4 ( t) = 

(2 μ+ 3 λ) e 0
4 π

[ 
1 − 2 μ

λ+ 2 μ exp 
(
− 2 μ+ 3 λ

3 λ+ 6 μ
t
τ

)] 
. (34d) 

ccordingly, 

ns 
11 ( x , t) = 2 M 1 ( t) 

∂ I 
(1)
a

∂x 1
+ 2 M 3 ( t) 

∂ I 
(1)
b

∂x 1
+ M 2 ( t)

(
∂ I 

(1) 
a 

∂x 1
+ ∂ I 

(2)
a 

∂x 2
− ∂ I 

(3) 
a 

∂x 3

)
+ M 4 ( t)

(
∂ I 

(1) 
b 

∂x 1
+ ∂ I 

(2)
b 

∂x 2
− ∂ I 

(3)
b 

∂x 3

)
(35a) 

ns 
22 ( x , t) = 2 M 1 ( t) 

∂ I 
(2)
a

∂x 2
+ 2 M 3 ( t) 

∂ I 
(2)
b

∂x 2
+ M 2 ( t)

(
∂ I 

(1) 
a 

∂x 1
+ ∂ I 

(2)
a 

∂x 2
− ∂ I 

(3) 
a 

∂x 3

)
+ M 4 ( t)

(
∂ I 

(1) 
b 

∂x 1
+ ∂ I 

(2)
b 

∂x 2
− ∂ I 

(3)
b 

∂x 3

)
(35b) 
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σ ns 
33 ( x , t) = −2 M 1 ( t) 

∂ I (3) 
a 

∂x 3 
− 2 M 3 ( t) 

∂ I (3) 
b 

∂x 3 
+ M 2 ( t)

(
∂ I (1) 

a 

∂x 1 
+ ∂ I (2)

a 

∂x 2 
− ∂ I (3) 

a 

∂x 3 

)
+ M 4 ( t)

( 

∂ I (1) 
b 

∂x 1 
+ ∂ I (2)

b 

∂x 2 
− ∂ I (3)

b 

∂x 3 

) 

(35c) 

σ ns 
13 ( x , t) = M 1 ( t) 

(
∂ I (1) 

a 

∂x 3 
+ ∂ I (3) 

a 

∂x 1 

)
+ M 3 ( t)

( 

∂ I (1) 
b 

∂x 3 
+ ∂ I (3)

b 

∂x 1 

) 

. (35d) 

3.3 Complete solutions 

The the total viscoelastic displacement can be then computed as: 

u i ( x , t) = u i 
s ( x , t) + u i 

ns ( x , t) (36) 

As for the displacement, the total strain is obtained by summing the singular and the non-singular strain tensor: 

e i j ( x , t) = e i j 
s ( x , t) + e i j 

ns ( x , t) . (37) 

For the stress tensor, we must consider that an additional term appears inside the TPE inclusion, so that: 

σi j ( x , t) = 

{ 

σ s 
i j ( x , t) + σ ns 

i j ( x , t) − 3 K e 0 δi j  ( t) , x ∈ V S 

σ s 
i j ( x , t) + σ ns 

i j ( x , t) , x / ∈ V S 
. (38) 

Notice that the term 3 Ke 0 δij is the same appearing in the elastic solution. The complete viscoelastic displacement, stress and strain components
are shown in Fig. 3 for a test case TPE inclusion with radius a = 2500 m, width d = 500 m located at a depth c = 2000 m (e.g. Nespoli et al.
2021 ). Results are shown at the surface ( z = 0, Figs 3 a, c and e) and on the median plane of the inclusion ( z = c , Figs 3 b, d and f) for three
different instants ( t / τ = 0, 0.5 and 2). In Fig. 4 the verticals sections of maximum shear stress and displacement are plotted for t / τ = 0, 2 and
4, showing a drastic reduction of the shear stress in the whole half-space. In Fig. 4 d, the vertical component of the surface displacement,
u z ( x , y = z = 0, t ), is plotted as function of the normalized time t / τ , together with the maximum shear stress computed in the centre ( x = 0, y
= 0, z = c ) of the TPE inclusion. According to the used Maxwell’s viscoelastic rheology, the uplift increases over time pro gressi vel y reducing
its growth rate. The shear stress, instead, has an opposite behaviour as it reduces over time. This result is different with respect to the response
expected in an elastic scenario, where an increase of uplift would be accompanied by an increase of shear stress (hence seismicity), and vice
versa (e.g. Belardinelli et al. 2011 ).

4  D I S C U S S I O N  

The surface displacement gives strong constraints on processes occurring at depth. Moreover, the rapid advancement of technology has
allowed us to measure its temporal evolution with an accuracy of a few millimetres (e.g. with Global Navigation Satellite System) and to
capture detailed images of its spatial pattern (e.g. with the Interferometric Synthetic Aperture Radar). Another important geophysical evidence 
is the presence of seismicity. According to the theory of faulting, the occurrence of earthquakes is strongly coupled with variations in the stress
field. The stress is linked to the strain, which is related in turn to the soil uplift, through an appropriate constitutive relationship (e.g. elastic,
poro-elastic and viscoelastic). A scientific challenge of a large part of both past and recent geophysical literature aims to disclose which
source of deformation can explain such evidences (see Bonafede et al. 2022 and ref. therein). Understanding the actual deformation source
does not have the sole purpose of filling a scientific curiosity but has also crucial implications for the correct estimation of the geohazard of
the study area. Clearly, the greater the detail with which the deformation source model is known, the greater the chances of being able to
discriminate between the different types of sources. Moreover, it is also very important to exploit large and multitechnique data sets mapping
the active deformation, since sophisticated models can be only constrained with reasonable reliability by high quality data. 

This work extends the applicability of the disc shaped TPE inclusions to viscoelastic media. Such an improvement is important to model
the observed transient effects on displacement and seismicity, which could not be simply explained with a purely elastic model. Drawing
inspiration from the unrest phase occurred between 1982 and 1984 at Campi Flegrei, the viscoelastic rheology is here considered as a possible
and ef fecti v e mechanism to e xplain the time-lag, which ma y occur betw een the decrease of the seismicity rate and the end of the uplift phase,
as it is was observed at Campi Flegrei (Fig. 1 ). In fact, according to the TPVE model, after an elastic phase of uplift, the viscoelastic response
leads to a further increase of the uplift phase over time, which is accompanied by a progressive and significant reduction of the maximum
shear stress (and seismicity) inside the inclusion (Fig. 4 ). Even if the maximum shear stress is greater inside the inclusion, its reduction over
time is expected in the whole domain, supporting the evidence that the seismicity decreases over time both inside and outside the inclusion
(Fig. 4 ). Assuming the same value of viscosity, η = 10 16 Pas, employed by Bonafede & Ferrari ( 2009 ) for the same study area and a rigidity
of μ = 6 GPa (e.g. Nespoli et al. 2021 ), the time-series of the uplift almost reaches its asymptote at τ = η/ μ = 4, which corresponds to a
period of about 2.5 months, compatible with what observed at the end of the ’82–’84 unrest phase (Figs 4 b and c). In the same time interval,
the uplift increases by about 15 cm, while the shear stress inside the inclusion drops by 87 per cent. While crustal viscosities in non-volcanic
regions usually have an order of magnitude of η = 10 19 –10 21 Pas (e.g. Newman et al. 2001 ; Jellinek & DePaolo 2003 ); in volcanic zones,
the viscosities are usually lo wer , reaching values up to η = 10 18 –10 19 Pas (e.g. Head et al. 2019 ). Even lo wer viscosities, do wn to η ≈ 10 13 
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Figure 3. Viscoelastic displacements (a and b), strain (c and d) and stress (e and f) components generated by a disc-shaped TPE inclusion located at depth c 
= 2000 m, with radius a = 2500 m, width d = 500 m, � p = 10 MPa and � T = 100 K. Curves in left-hand panels (a, c and e) are computed at the surface z = 

0, while the ones in the right-hand panels are computed in the median plane of the inclusion ( z = 2000 m). Quantities are shown for t / τ = 0 (solid lines), 0.5 
and 2. The light blue lines indicate the location of the lateral boundary of the inclusion. For the computation we use μ = 6 GPa and ν = 0.2 ( K = 8 GPa). 
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as, can characterize the magma reservoir host rocks (e.g. Hickey et al. 2015 ). A viscosity of η ≈ 10 16 Pas is suitable to represent magmatic
mush” zones (Hickey et al. 2015 ) and was employed by Dragoni & Magnanensi ( 1989 ) and Newman et al. ( 2001 ) to model viscoelastic
hells surrounding magma chambers. Generally, low viscosities can be suitable to represent the ductile rocks surrounding a magmatic system
Jellinek & DePaolo 2003 ; Head et al. 2021 ), such as those embedding the TPVE inclusion considered in this work. 

It would be interesting to see if at the end of the current unrest phase the viscoelasticity will play a role comparable to the one of the
82–’84 unrest phase. Instead, it is much more unlikely that the current unrest phase is completely due to transient viscoelastic effects. In
act, dif ferentl y from what expected during the viscoelastic relaxation (Fig. 4 ), since 2005 both uplift and seismicity are increasing over time
ith an accelerating trend (e.g. Tramelli et al. 2021 ). Accordingly, the present state of the Campi Flegrei caldera seems to be related to the
PE ef fects induced b y the hydrothermal circulation, although e ven a contribution to the deformation induced by magmatic sources cannot
e excluded a priori . To better understand the actual phase of unrest, it would be interesting to study if and how both the uplift rate and the
urrent seismicity can be explained in terms of increasing pore-pressure and temperature of the e xsolv ed magmatic fluids inside the TPE

nclusion. 
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(a) (b)

(c) (d)

Figure 4. Vertical sections of maximum shear stress (colour) and displacement (m) exaggerated by a factor of 500 (red arrows) computed for t / τ = 0 (a), 2 (b) 
and 4(c). The green line indicates the boundaries of the considered TPE inclusion. Panel (d) shows the time-series of displacement and maximum shear stress 
computed respecti vel y in point P1( x = 0 and z = 0) and in point P2( x = 0 and z = 2000 m), respecti vel y. The locations of the two points is also shown in panel 
(a). For the computation, we use μ = 6 GPa and ν = 0.2 ( K = 8 GPa). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although we are aware that the TPVE solutions proposed in this work are based on several simplifications, they indicate that the inclusion
of the viscoelastic behaviour can be important for a complete interpretation of the data. Though we have taken as example the Campi Flegrei
region, which is an area with a very extensive literature, we believe that our results can find application in other geothermal areas in which
viscoelastic effects can occur as well (van Thienen-Visser & Fokker 2017 ). 

The analytical formulas obtained in this work allow us to model the effects of an inclusion embedded in a homogeneous viscoelastic
region. This poses a limit to represent more complex configurations in which the viscoelastic behaviour could be restricted within a particular
layer of rock or to a volume of generic shape (e.g. Dragoni & Magnanensi 1989 ; Orlic & Wassing 2013 ; Marketos et al. 2015 ) or to the TPE
inclusion volume only. In any case, it is undeniable that every numerical model with a greater complexity should be preliminarily set up and
checked by using the analytical solutions obtained for a homogeneous medium. The solutions presented in this work consist of a first step
for the representation of TPVE inclusions. Further improvements could be obtained by considering more complex temporal variations of the
inclusion potency e 0 (eq. 2 ) with respect to the step-like variation considered in ( 16 ). The correspondence principle should also be easily
applied for the case of a potency that linearly increase over time, similarly to what was done by Bonafede & Ferrari ( 2009 ) for the case of a
Mogi sphere embedded in a viscoelastic space, with linearly increasing fluid pressure, or more general rheological relationships such as the
SLS or the transient Burger’s rheology. A further interesting improvement could consist including the effects of the fluid propagation inside
the inclusion, following the approach proposed by Nespoli et al. ( 2021 ). This could lead to more complex transient effects on the deformation
field produced by the inclusion. 

5  C O N C LU S I O N S  

The study of the buried deformation sources is very important for the creation of a realistic conceptual model of a study area and for the
correct estimation of its geohazard. In this work, we integrate the viscoelastic behaviour with the mechanical solutions of a disc-shaped TPE
inclusion. The present TPVE analytical solutions were obtained by using the correspondence principle and assuming that the medium is a
homogeneous Maxwell half space. Such a generalization can be useful to represent transient effects of both deformation and stress fields that
can occur in volcanic and geothermal areas, which would be difficult to explain otherwise. The most intriguing result indicates that a TPVE
inclusion can represent a decrease in seismicity rate accompanied by an increase in surface uplift. This behaviour is in contrast with what is
expected according to the elastic response, in which the seismicity increases during the uplift and decreases during the subsidence. 
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2 Singular components of strain 
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where 
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A4 Non-singular components of strain 
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