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A B S T R A C T   

Nowadays, in many fields and applications, such as mining engineering, environmental monitoring, soil science, 
natural resources and environmental topics, the potential of Remote Sensing have been exploited. Large amount 
of data, easy and fast accessibility, and time–space availability are the reasons of attractiveness of satellite data in 
many fields of geosciences. However, satellite images face the problems due to presence of shadows and clouds, 
which is a general and real challenge since the surface features are masked. In many cases, a dense cloud cover 
simply prevents any detailed study of the target area through Earth Observation techniques. Geostatistics is a 
science field properly developed to estimate the unknown values in two-dimensional or three-dimensional space; 
therefore, it can be a potential approach to solve cloud-cover issues in Remote Sensing investigations. This work 
applies the geostatistical tools over a sentinel-2 satellite image targeting land cover in Emilia Romagna (Italy). 
The three main spectrum bands (RGB-values) with 10-m spatial resolution have been selected as target variables. 
The objective is to estimate pixel values within an area which is covered by clouds. The spatial variability of 
pixels with available land cover information have been studied through the use of variogram tools. Different 
estimation neighborhoods have been tested for application of the Kriging interpolation method, in order to es-
timate the RGB values below the cloud-covered area. The estimation has been performed, by controlling the 
properties of the estimator, the varying sizes and shapes of the neighborhood, the available number of RGB data 
used for estimation and the spatial distribution of pixels in the image. An image with close time period, without 
clouds, has been used to validate the results. Moreover, the estimation variance of RGB values for each pixel has 
been mapped. Results have shown the advantages and limitations of the proposed geostatistical method for the 
specific application of cloud-covered areas.   

1. Introduction 

Many applications exploit the support of data from Earth Observa-
tion for monitoring, mapping and land cover studies. As an example, a 
typical use of optical remote sensing data is related to maps creation and 
to evaluation of plant and vegetation growth (Rohden Prudente et al., 
2020). Another widely used application belongs to the mining sector and 
is specific to identifying and mapping many environmental parameters 
(water, dust, vegetation health, acid mine drainage, etc.), which can be 
monitored using optical remote sensing data (Kayet et al., 2022; Pas-
cucci et al., 2012; Swayze et al., 2000). 

However, the monitoring of any selected feature (agricultural areas, 
mining fields, water resources, coastal studies, etc.) is strongly impacted 
by cloud cover. In many images, clouds cover small/large surface fea-
tures and ground information. In all mentioned applications, the 

presence of the clouds reduces the availability of spatial–temporal data, 
and creates a gap or noise while analyzing the earth surface features 
(Wang, 2022). Hence, efforts to recover the missing information under 
clouds are desirable. Simulated and cloudy images are used and 
compared to validate the methodologies. According to literature, 
removing clouds processing methods are classified into three groups: 
multispectral complementation, multitemporal complementation, and 
spatial-complementation approaches (Meng et al., 2017). However, the 
spatial-complementation approaches are the main methods to recon-
struct the missing areas covered by clouds. These approaches are based 
on image inpainting techniques that use the known ground information 
to fill the missing areas under the clouds. The best results of inpainting 
methods are obtained in small missing areas without textures. 

Various algorithms can be used for inpainting of large areas and 
retaining the feature textures, such as patch-sparsity based inpainting as 
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a method which can create sharp textures (Xu and Sun, 2010), Bandelet 
transform (Maalouf et al., 2009), or patch filling (Lorenzi et al., 2011) as 
other algorithms to implant the images. 

A method proposed by Zhu is recovering the under clouds informa-
tion by the neighborhood similar pixel interpolator (NSPI) approach 
(Zhu et al., 2012). Similarly, to produce imagery without clouds, Helmer 
and Ruefenacht have used regression trees and histogram matching 
(Helmer and Ruefenacht, 2005). 

To reconstruct the spectral values of pixels for cloud covered areas, 
the closest spectral fit method (CSF) is adapted as a consistence 
approach (Meng et al., 2009) or the process of contextual multiple linear 
prediction (CMLP), which can be used to reconstruct the spectral values 
within an area which is covered by clouds (Melgani, 2006). In 
mentioned approaches, the image is reconstructed by the close data with 
the similar spectral characteristics, however, without considering the 
spatial and spectral correlations and continuities (Zhu et al., 2012). 

Another method for pixel replacement is filling the missing ones by a 
similar value, obtained from adjacent parts of the image. To find the 
most appropriate pixel value, a global function based on pixel-offset and 
space–time Markov random fields (MRF) was tested. As a result of this, 
as an example, the land surface temperature was created from multi-
temporal images (Cheng et al., 2014). 

Recently, more advanced methods are used to fill the missing values 
covered by clouds. The machine learning algorithms (e.g. random forest 
algorithm) and deep learning (e.g. Datawig) (Wang, 2022) are those 
which are tested to fill the data covered by clouds in both multispectral 
and hyperspectral images (Wang and Wang, 2022). In another example, 
Deep learning is used to remove the cloud-cover using three temporal 
images (Jiang et al., 2022). In this work, authors have summarized 
methods used for cloud-removing since 2016, and classified them into: 
Multispectral-based methods, Inpainting-based methods and 
Multitemporal-based methods, which can be used in various applica-
tions (Jiang et al., 2022). 

Based on the field of study and the features and textures of the target 
images, the most coherent methodology can be selected. As an example, 
in water bodies mapping, there is the need of an approach able to predict 
and model the abrupt changes (between land and water features). To 
tackle this challenge, some works have been done using a category- 
based method (Li et al., 2021). Here, authors suggested an approach 
to construct pixels under clouds for water bodies using “spatiotemporal 
dependence model”. They proposed to use the same positions of the 
cloud-cover pixels from other images on other dates using the data 

distribution statistics and correlations (Li et al., 2021). 
Another example has been focused on tropical areas. Hence, to map 

and classify the land cover under cloud-cover areas, authors presented 
the use of SAR data, because of their potential to penetrate clouds 
(Shrestha et al., 2019). Since authors focus on tropical areas, the surface 
roughness could be highly important and SAR intensity image could be a 
coherent solution. Specifically, authors have used the surface roughness 
with the terrain slope and elevation to solve the challenge of cloud cover 
(Shrestha et al., 2019). 

Mining can be considered a field, with increasing application of 
remote sensing data (Van der Meer et al., 2014; Ibrahim et al., 2020; 
Ngom et al., 2022). However, with respect to previous examples, the 
target is usually a homogeneous zone with the same pattern (for 
example only naked soil, or only rocky land cover). On the other hand, 
the target is normally characterized by different mineral contents; for 
example, Al-bearing minerals (bauxite) present in fact multielement 
concentrations (Al, Fe, Ti, V…) (Kasmaeeyazdi et al., 2021). In such 
cases, in presence of cloud cover, smoother predicting methods should 
be tested instead of abrupt changes approaches, as for the previous ex-
amples. Therefore, in such cases a possible non-tested approach, to 
tackle the issue of cloud-removal, is using geostatistics (Matheron, 
1971). This method is proposed since, similarly to an unknown area with 
few samples available, it is possible to predict (estimating or simulating) 
unknown points or blocks by using spatial variability models and geo-
statistical tools. In fact, the geostatistical estimation methods are 
particularly favorable to provide smooth prediction of unknown areas 
using available samples (Chilès and Delfiner, 1999). The reason lies in 
the original purpose of the geostatistical methodology, specifically 
developed to reduce at minimum the mining risk in the exploration 
phase. 

In this work, as a novelty, the geostatistical prediction models are 
used to evaluate the possibility of filling pixels using spatial variability 
of image bands. The main objective of this study is testing the possibility 
of using Kriging approaches to estimate the missing pixels in remote 
sensing data, focusing on mining and adjacent areas. On such cases, 
there are less distinctive features (such as buildings, streets, etc.) but 
images are characterized by more homogenous areas (soil, rocks, naked 
lands with unique texture but various contents). Hence, sentinel-2 image 
on an area covered by grass and soil nearby a gypsum deposit in Italy is 
selected and preliminary spatial analysis is performed (see Section 2). 
Various parameters are tested to perform Kriging and to predict the 
missing values of the image. Final maps are created with the same 
spatial resolution of original image and comparisons among different 
results are shown (see Section 3). Results demonstrate the advantages 
and disadvantages of Kriging methods for filling the missing parts of an 
image (see Section 4). Finally, the methodology is tested for a larger area 
with more complex cloud cover (including one shadow and four clouds) 
in the discussion (see Section 4). 

2. Materials and methods 

In this work, to evaluate the possibility of predicting pixel values 
under clouds, for the first time, the Kriging interpolation is used (Arm-
strong, 1998). The main focus is the estimation of the RGB pixel values. 
To perform the estimation, various possibilities of selecting the input 
data are tested (as the neighborhoods), including various numbers of 
input data from different positions. In addition to the geostatistical 
estimation, the common simulation approach (used by other researchers 
mentioned in the introduction) is used for predicting the pixel values 
under clouds. In this approach, the similarity of pixel values in a “clean” 
image is considered. To fill the pixels under clouds, an additional image 
of the same location is selected (without cloud), with the same time 
period as the secondary image. Within the secondary image, a simple 
search is done to find the most similar values between the cloud-covered 
pixels (identified by the first image) and those pixels outside the cloud- 
covered area. So, those pixels outside the cloud-covered area with the 

Fig. 1. Sentinel-2 image with thick cloud in the middle (44.177966, 
11.732884), sensing 2019/06/23. 
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most similar values are selected as the reference pixels. Coming back to 
the first image (with missing values), the reference pixels outside the 
cloud-covered area are used to select and fill each missing pixel value. 
Therefore, the results obtained by filling the pixels (simulated from the 
secondary image) are obtained and compared with the original image 
(covered by clouds). All approaches in this work are performed for three 
variables (three bands, RGB values) to get the possibility of making 
comparison between the images obtained from different approaches. 

2.1. Case study 

Based on the objective of this research, a sentinel-2 image is selected 
and a subset including cloud area is obtained for estimation. The main 
challenge is using the surrounded data to predict the under-cloud area 
within the image. The selected area is nearby a gypsum mine, including 
grassland, some sparse farms and soil covered area. The image is quite 
simple with small cloud, since the main objective is to test the possibility 
of using geostatistical estimation approaches to fill the cloud-covered 
pixels. The selected image is sensed on 2019/06/23 in the province of 

Ravenna, Italy (see Fig. 1), with the following coordinates: 
Longitude: 11◦43′57′′ E. 
Latitude: 44◦10′40′′ N. 
Remotely sensed images are widely known and frequently used in 

many different scientific and engineering fields since they provide many 
information concerning the land surface (Patino and Duque, 2013). 
Sentinel-2 is a European mission, providing global acquisitions of high 
resolution and 13 spectral bands (The European Space Agency, 2022). In 
Table 1, the sentinel-2 bands are indicated. 

The main focus is on the main three bands (RGB) to create a real 
colored image under the cloud. As it is shown in Fig. 1, there is a thick 
cloud in the middle of the image, covering more than 50,000 m2 of the 
Earth’s surface. For the three selected bands (RGB), the spatial resolu-
tion is 10 m (see Table 1). 

2.2. Basic statistics 

As the first step, statistical parameters for the selected variables, 
Band 2 (B2), Band 3 (B3) and Band 4 (B4) are studied. There are 8000 
pixels, in total, including the cloud in the middle and the shadow of the 
cloud located on the top left of the image (see Fig. 1). In the following, 
the histogram and statistical parameters of B2 values are shown (Fig. 2). 

As it is shown in the histogram of data, there are two extraordinary 
set of data with very high and very low values at both ends of the ab-
scissa axis. These two classes of data are related to the shadow, with very 
low values close to 0, and to the cloud with high values within the 
distributions of three bands. Therefore, it is possible to highlight those 
pixels with cloud and shadow values in the image. 

For estimation and statistical analysis of data, the pixels which have 
extraordinary values (cloud and shadow) are excluded. The following 
figures show the histogram of the three selected bands (RGB), excluding 
the shadow and the cloud (Figs. 3-5). 

2.3. Spatial modelling 

Geostatistical modeling, as proposed by Matheron, is an optimum 
method to predict the non-sample points, considering the spatial vari-
ability and randomness of the target variable (Matheron, 1971). For 
example, the geostatistical method of Kriging is an unbiased linear 

Table 1 
Sentinel-2 band list (The European Space Agency, 2022).  

Bands from 
Sentinel-2 

Band 
description 

Central Wavelength 
(µm) 

Resolution 
(m) 

Band 1 Coastal aerosol 0.443 60 
Band 2 Blue 0.490 10 
Band 3 Green 0.560 10 
Band 4 Red 0.665 10 
Band-5 Vegetation Red 

Edge 
0.705 20 

Band 6 Vegetation Red 
Edge 

0.740 20 

Band 7 Vegetation Red 
Edge 

0.783 20 

Band 8 NIR 0.842 10 
Band 8A Vegetation Red 

Edge 
0.865 20 

Band 9 Water vapour 0.945 60 
Band 10 SWIR - Cirrus 1.375 60 
Band 11 SWIR 1.610 20 
Band 12 SWIR 2.190 20  

Fig. 2. Histogram and statistical parameters of Band 2 values.  
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estimation able to predict the target variable at point or block scale 
(Robinson et al., 2013). For both cases, the estimation result is theo-
retically affected by the minimum error possible, due to the minimiza-
tion of the estimation variance in the Kriging algorithm (Baume et al., 
2011). The variogram is the main tool for the spatial variability analysis 
and to optimize the Kriging estimation. The variogram indicates the 
influence of the samples based on the distances. Hence, the variogram of 
an intrinsic random function is defined as follow: 

γ(h) = 0.5⋅Var[Z(xi + h) − Z(xi) ] (1) 

where xi and xi +h refer to points in an n-dimensional space (Arm-
strong, 1998). 

The experimental variogram shows the spatial relationship between 

samples in space. In this application, to estimate the unknown pixels 
(under the cloud), it is important to analyze the spatial correlations 
between known pixels within the selected area. Then, the allowed 
mathematical variogram models can be fitted based on the spatial 
behavior of data (Armstrong, 1998). The experimental variograms have 
been calculated based on Equation (1) and are shown in the following 
pictures (Fig. 6). For each band value, several models were tested and 
the best one fitting the variogram is chosen. Furthermore, cross- 
validation analyses were performed to check the quality of the model 
for estimation (see Section 3). The best fitting model, adapted to 
experimental variograms of the three bands, is shown in Fig. 6 in black 
lines, while blue points are the calculated variogram results for various 
lags (Table 2). 

Fig. 3. Histogram and statistical parameters of Band 2 values after removing the cloud and the shadow.  

Fig. 4. Histogram and statistical parameters of Band 3 values after removing the cloud and the shadow.  
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The selected variogram models are presented with the chosen pa-
rameters in Table 2: 

2.4. Kriging predictor 

Kriging is an optimized estimation method which uses the spatial 
relation of data with the potential of giving the estimation variance at all 

Fig. 5. Histogram and statistical parameters of Band 4 values after removing the cloud and the shadow.  

Fig. 6. Variograms of Bands 2, 3 and 4 (experimental, model and relation with the spatial variance).  
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prediction points. The accuracy of the estimation depends on various 
parameters, including the number of samples, the position of the sam-
ples, the distance between the samples, and the spatial continuity of the 
variable (Armstrong, 1998). 

Ordinary Kriging (OK: the simplest Kriging predictor) is a linear 
interpolator, giving the best linear estimate by minimizing the estima-
tion variance. It also gives an unbiased estimate, since the sum of the 
weights equal to 1. 

To estimate the target variable (Z*
x0

) at location X0 in the space, there 
is the need of samples (Zxi ) at Xi locations with optimized weights: 

Z*
x0
=
∑n

i=1

(
λi • Zxi

)
(2)  

σ2*
Z = Var

(
Z*

x0
− Zx0

)
(3) 

Where, 
⎧
⎪⎪⎨

⎪⎪⎩

∂σ2*
Z

∂λi
= 0 ∀i = 1, n

∑n

1
λi = 1

(4) 

In this case study, 596 pixels within the cloud covered area are the 
target points to be estimated. For each of these pixels, the RGB values 
(three variables) need to be predicted. OK is the first method to be tested 
at each pixel location. To create the final image, the estimated grid size 
and resolution (10 m × 10 m) is considered equal to the original image. 
To obtain the most coherent results and pattern of features under the 
clouds, different spatial neighborhoods can be tested, varying in number 
and position of the samples. The standard tests are about to check the 
Kriging estimation variance σ2*

Z in all points and overall the mean and 
the variance of the standardized error,mε, σ2

ε , according to the next 
equations: 

ε =
(
Z*

i − Zi
)/

σ*
Z (5)  

mε = E[ε] =
(
∑n

1
εi

)/

n→0 (6)  

σ2
ε = Var(ε) =

(
∑n

1
ε2

i

)/

n − m2
ε→1 (7) 

where: 
Z*

i is the estimated value (for each band), while Zi is the value of the 

Table 2 
Variogram model structures for Bands 2, 3 and 4.  

Band 2 Variogram model 

Model Spherical 1 Spherical 2 

Range 23.98 2.78 
Sill 0.000051 0.0000073  

Band 3 Variogram model 
Model Spherical 1 Spherical 2 
Range 25 5 
Sill 0.00029 0.00002  

Band 4 Variogram model 
Model Spherical 1 Spherical 2 
Range 25 5 
Sill 0.00011 0.00004  

Fig. 7. Repetitive neighborhood and the pattern of selecting samples to estimate empty pixels.  
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correspondent pixel in the original image. Finally, σ*
Z is the estimation 

standard deviation in all points. 
The nine neighborhoods considered in this work are as follows: 

1. Unique neighborhood including all available samples (2006 sam-
ples) around the cloud-covered area;  

2. The closest 4 samples (4 surrounded pixels) to estimate one pixel 
under the clouds; 

Fig. 8. Output of the MATLAB® program for unique (Right) and 4 closest pixels neighborhood (Left). The size of the circles indicates the difference in estimation 
value and comparison image for the three bands (blue, green and red). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.) 
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3. The closest 8 samples (8 surrounded pixels) to estimate one pixel 
under the clouds;  

4. The closest 12 samples (12 surrounded pixels) to estimate one pixel 
under the clouds;  

5. The closest 4 directional samples (4 closest pixels from 4 directions: 
0, 90, 180 and 270) to estimate one pixel under the clouds;  

6. The closest 8 directional samples (8 closest pixels from 4 directions: 
0, 90, 180 and 270) to estimate one pixel under the clouds;  

7. The closest 12 directional samples (8 closest pixels from 4 directions: 
0, 90, 180 and 270) to estimate one pixel under the clouds;  

8. Repetitive neighborhood: in this method, first, the pixels near the 
edge are estimated (the green pixels, starting from numbering 10). 
Consequently, as it is shown in Fig. 7, the estimated values on the 
edge (for example all pixels with number 10) of the image have been 
used to estimate the pixels (for example for all pixels with number 9) 
in the central part of the cloudy area (from green towards the red 
color scale, so from pixels with number 10 to those with number 1, 
respectively). The sequence of numbers (with specific color) shows 

the sequence of samples selected for estimating the following target 
areas.  

9. Corresponding neighborhood: The simulation method has been used 
to fill the under-cloud area thanks to the secondary image (an image 
without cloud at the same location). In this method, within a sec-
ondary image (without cloud), the similar pixel values (the most 
similar pixels from outside of the cloud-cover area to the cloud- 
covered pixels) are selected as reference pixels. The same reference 
pixels in the image with missing values (covered by cloud) are 
selected and inserted to replace the cloud-covered pixels. 

In order to evaluate the Kriging estimation, and to find the best 
variogram model, cross validation has been applied. Cross validation is a 
method in which known pixels (with real value) are excluded partly, or 
one by one, from the input, and, by using the variogram model, the 
removed points are estimated by the remaining data. Finally, the esti-
mated and the real values are compared and the estimation error (simple 
and standardized) can be obtained (Chilès and Delfiner, 1999). 

Fig. 9. Cross validation over Band 2 data: mapping the errors, where the size of each pixel indicates the estimation error points (Left); scatter plot of the estimated 
and real values (Right). Results obtained from a (non-selected) variogram model. 

Fig. 10. Cross-validation over Band 2 data: mapping the errors, where the size of each pixel indicates the estimation error points (Left); scatter plot of the estimated 
and real values (Right). Results obtained from the selected variogram model. 
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For the selected case study and all the three variables (RGB bands), 
several variogram models were tested and the best result has been 
considered for the estimation. 

For the project, the OK method has been implemented using MAT-
LAB® programming. The Kriging calculations (inversion of the vario-
gram matrix and other matrix operations) have been implemented. The 
created program also allows to import the samples, with their locations, 
and the coordinates of the unknown pixels from the various datasets and 
images, too, by the aid of a second program, called “Import”. The OK 
function has been applied to each target pixel, using the given neigh-
borhood among the nine possibilities presented above. Finally, the 
developed program allows to visualize the estimation results in form of a 
2D scatterplot, with circles, proportional to the difference of estimated 
values with respect to the ones of a comparative image. For the specific 
challenge of under-cloud RGB estimation, the size of each point in-
dicates the deviation of the band value between the original image (with 
the cloud) and a second image (without the cloud). 

3. Results 

The three main band values (RGB) have been estimated, using the 
nine neighborhoods described in Section 2. To prepare the RGB images 
from results, the estimated bands were imported into QGIS and trans-
formed into raster outputs (all outputs with 10 m × 10 m pixel size), 
through “rasterize” command. The coordinate system of results is 
WGS84-UTM Zone 32 N. Then, the RGB images have been obtained 
through QGIS algorithm of nearest neighborhood interpolation. The 
obtained raster images from OK estimation have been compared with an 
image with closest sensing date (sensing: 2019/06/18) to the original 
one (sensing: 2019/06/23). The estimation results for two different 
neighborhoods, the unique neighborhood and the 4 closest pixels, are 
presented in the scatter plots of Fig. 8. In order to evaluate the results, 
estimated values are compared to the band values of the image with 
closest sensing date. 

The difference between the estimated band values and the ones of the 
comparison image has been calculated for each pixel. On the upper left 
corner, where there is a shadow, the differences are dramatically high, 
so the circles have very large size. However, in the center of the image, 
with the target under-cloud zone, the differences reduce. Before esti-
mation, the consistency of the variogram models were checked. The 
following figures, specific for the B2 values, display the map of error and 
the scatter plot of the cross validation, obtained using two different 
variogram models and considering a unique neighborhood for all esti-

mations. Spearman correlation coefficient ρ has been calculated for es-
timates and true values, in order to compare the different models 
quantitatively. 

For all bands, the same procedures have been performed and the 
most coherent variogram model has been chosen for the estimation. The 
original image (Fig. 11) including the cloud and the shadow is shown 
with the image (with closest time) without cloud. These two images are 
considered as the reference images, the first one for estimation of the 
under-cloud pixels and the second one for validation of the final results. 
Several neighborhoods have been considered to check the best consis-
tency of results. 

The obtained results using the various neighborhoods are presented 
in Fig. 12. 

In Table 3, the statistical indicators, mean and standard deviation 
over the standardized error calculated in all pixels, are presented for the 
three bands 2, 3 and 4, for all the estimation techniques used. Note that 
the range of pixel values are 0 to 255. It is worth saying that for the 
corresponding neighborhood method, not using geostatistical estima-
tion, it is not possible to calculate the estimation variance and then the 
standardized error (See Equation (5)). For this reason, Table 3 does not 
comprehend the statistical indicators of the corresponding neighbor-
hood method, since this method has no possibility to calculate the 
estimation variance and then the standardized error. 

In order to include the corresponding neighborhood method in the 
comparison of results, the mean and estimation variance of the simple 
absolute error εabs =

⃒
⃒Z*

i − Zi
⃒
⃒ have been calculated. The results are re-

ported in Table 4. 

4. Discussion 

As evidenced in Fig. 9 and Fig. 10 (as example for Band 2), cross- 
validation results have shown a relevant correlation, obtained be-
tween the estimated values and real ones using the defined fitted var-
iogram models (ρ = 0.96) As it is shown in Fig. 12, for each selected 
neighborhood, through the estimation different results have been ob-
tained in terms of deviation from the comparison image. First of all, 
using neighborhoods with few closest pixels, the estimation can be 
affected by samples only from one side of the area. The reason is that in 
this case only the distance is the main factor for choosing the surrounded 
samples for estimation. However, in directional neighborhoods (e.g. 4- 
directional samples), the target area has been divided into 4 sections 
(based on 0, 90, 180 and 270◦) and from each section, one pixel has been 
taken for estimation (4 pixels in total). The same logic has been used for 

Fig. 11. The original RGB image (sensing: 2019/06/23-left) and the RGB image in closest time to the original image in real color (sensing: 2019/06/18-right).  
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Fig. 12. RGB estimation results using the various possible neighborhoods.  

Table 3 
Values of statistical indicators (mean and standard deviation) over the standardized error for the three bands and for the various estimation methods used.  

Neighborhood Statistical indicators over the standardized error for the three bands 

B2 B3 B4 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

1 Unique neighb.  − 1.76  2.71  − 0.83  1.85  − 0.85  2.21 
2 Closest 4 pixels  − 0.45  1.03  − 0.27  0.68  − 0.23  0.94 
3 Closest 8 pixels  − 0.37  1.08  − 0.24  0.70  − 0.18  0.98 
4 Closest 12 pixels  − 0.31  1.13  − 0.22  0.75  − 0.14  1.04 
5 Directional 4 pixels  − 1.12  2.55  − 0.70  1.55  − 0.47  1.69 
6 Directional 8 pixels  − 1.17  2.57  − 0.72  1.57  − 0.50  1.71 
7 Directional 12 pixels  − 1.27  2.62  − 0.76  1.58  − 0.55  1.74 
8 Repetitive neighb.  − 0.59  1.10  − 0.24  0.63  − 0.40  1.02  
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8 and 12-directional samples. Results have been improved by applying 
directional sampling, since surrounded areas from 4 sides were consid-
ered. Finally, the unique neighborhood shows the less-patterned results, 
because of using all pixel-values in the image (affected by distances and 
their weights). Although the directional neighborhood could solve the 
smoothing effect of Kriging estimated results, however, the results 
remain still less precise, since they are related to the central part of the 
under-cloud pixels. Farther the empty pixels are from the available 
samples, the less precise and more smoothed are the estimation results. 
Using a corresponding neighborhood have showed similar results to 
random selection of samples. Although samples were selected by the 
closest pixel-values, however, no spatial correlation and structure have 
been considered for filling the empty pixels. In this method, the pattern 
of results is closer to the reality, but with high outliers in the results. 

Moreover, in this method, always there is the need of finding a closely 
image without clouds. Hence, the challenge of finding subsequent im-
ages (which are usually still with cloud cover) of the target area remains. 
From a statistical point of view, Table 3 and Table 4 show the standard 
deviation and the mean of, respectively, the standardized and simple 
absolute errors, which were obtained from comparison of the two im-
ages of Fig. 11. Results evidenced how the closest 12 pixels method 
presents the best performance, approaching the optimum theoretical 
result (mean → 0, standard deviation → 1). In any case, many geo-
statistical estimation methods have good performances, however the 
corresponding neighborhood, which means using a second image as a 
benchmark to estimate the first image, has always better performance 
(as it may be expected). In absence of a second image, the geostatistical 
estimation method proved to be robust, theoretically and practically. It 

Table 4 
Values of statistical indicators (mean and standard deviation) over the simple absolute error for the three bands and for the various estimation methods used.  

Neighborhood Statistical indicators over the simple error for the three bands 

B2 B3 B4 

Mean Standard deviation Mean Standard deviation Mean Standard deviation 

1 Unique neighb.  0.00756  0.01177  0.01086  0.01315  0.01043  0.01310 
2 Closest 4 pixels  0.00791  0.00853  0.01189  0.01255  0.01088  0.01159 
3 Closest 8 pixels  0.00814  0.00811  0.01186  0.01239  0.01131  0.01124 
4 Closest 12 pixels  0.00835  0.00793  0.01661  0.01239  0.01180  0.01120 
5 Directional 4 pixels  0.00846  0.00954  0.01195  0.01273  0.01221  0.01331 
6 Directional 8 pixels  0.00831  0.00955  0.01174  0.01270  0.01195  0.01334 
7 Directional 12 pixels  0.00835  0.00988  0.01170  0.01293  0.01191  0.01350 
8 Repetitive neighb.  0.00813  0.01006  0.01073  0.01210  0.01126  0.01421 
9 Corresponding neighb.  0.00729  0.00441  0.00743  0.00562  0.00920  0.00528  

Fig. 13. The RGB image of a gypsum quarry (Left) and the OK estimation results using 12 closest pixel-neighborhood (Right). The red polygons show the boundaries 
of the shadow and the clouds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 14. The NIR band false-colored image (Left) and the OK estimation results using 12 closest pixel-neighborhood (Right). The red polygons show the boundaries of 
the shadow and the clouds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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is important to remark that, despite the similarity, some physical- 
technical differences (because of light) between the original image 
(the image with cloud, sensing 2019/06/23) and the close-time image 
(as the reference image, sensing 2019/06/18) remain. 

The approach is used to estimate RGB bands to create the final RGB 
images (real-colored images). Additionally, the approach has been 
tested also for the Near Infrared band (NIR). Hence, it can be performed 
for all the remained bands (e.g. Short-Wave Infrared, etc.). Moreover, it 
can be used for larger images with more complex cloud cover. As an 
example, the geostatistical approach has been repeated over a highly 
disturbed image, in the same area of the gypsum quarry case study as 
shown in Fig. 13. In this image the OK with the closest 12 pixels 
neighborhood is performed to create the features where needed (under 
one shadow and four clouds in various location of the image). The 
shadow and clouds locations are defined with red-polygons in Fig. 13. 
The result of the tested approach for the NIR bands on the same case 
study is shown in Fig. 14. 

Based on the obtained results, as an advantage, the size of the image 
seems not affecting the quality of the approach. The reason is that the OK 
estimation is obtained by the pixels closest to the target clouds or 
shadows. Therefore, it is suggested to cut the image, and work on 
smaller subsets to require less computational ability. However, the main 
challenging point is the definition of the clouds’ boundaries and the 
removal of all bright (as clouds) and black (as shadows) pixels. In fact, 
any remained noisy pixel around the cloud can affect the estimation 
results, by re-creating hazy areas. Hence, the proposed method is chal-
lenging for thin or hazy clouds. Moreover, the smaller the cloud is, the 
better this method can predict. In fact, with large clouds, the error in-
creases because of the smooth effect of OK, and therefore this method 
can hardly predict alone the complex patters under large clouds. 

5. Conclusions 

The estimation of under-cloud pixels is a big challenge in remote 
sensing. In this research work, the numerical estimation approaches 
have been tested for the first time. The geostatistical estimation method 
of OK has been used with various types of neighborhoods to evaluate the 
possibility of predicting the pixel values under clouds. The spatial 
variability of three main bands (RGB) has been studied to gain the best 
possible variogram models, fitted on experimental variograms. Hence, 
the spatial behavior of data has been analyzed around the area covered 
by the cloud. Various estimation neighborhoods have been tested and 
the results have been compared. The obtained raster images from esti-
mations have demonstrated (even though with some limitations) the 
possible prediction of pixel values under the cloud area. The geo-
statistical OK tool, combined with GIS pre and post-processing of the 
images, can be successfully applied for the scope. The main advantages 
of using geostatistical tools are:  

- Considering the spatial correlation and spatial variability of pixel 
values within the variogram analysis;  

- Providing a fast and robust prediction method based on the obtained 
spatial structure of data;  

- Giving the possibility of testing various parameters while filling the 
missing pixel values and the possibility of changing the smoothing 
effects on the image; 

- Obtaining the uncertainty for each pixel prediction, which demon-
strates the estimation precision. 

The main limitation of this approach, however, resides in the diffi-
culties of predicting the distinctive features under the clouds. Since the 
approach is based on the continuous spatial variability, in the case of 
some peak values under the clouds, the results might be still smoothed. 
This point should be considered for the future research, for example 
through the application of indicators (related to the features classifica-
tions) or by adding extra parameters to improve the estimations using 

multivariate geostatistical approaches. 
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