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Abstract— The concept of energy community is currently under 

investigation as it is considered central into the energy transition 

process. One of the main aspects of the successful implementation 

of community lays in the energy management system that 

coordinates exchanges among prosumers. This paper deals with 

the optimal energy management of a local energy community of dc 

microgrids with electric vehicle charging stations, considering 

local reserve provided by storage units and vehicle batteries. A 

two-stage optimal procedure is proposed to assess the optimal 

scheduling of resources for each community participant. 

Additionally, the optimal up and down reserve levels able to cover 

random fluctuations in photovoltaic generation within each EV-

based microgrid are determined by a set of specific chance 

constraints. 

 
Index Terms— energy community, DC microgrid, electric 

vehicles, vehicle-to-grid, operation cost, grid power exchange, 

reserve provision 

NOMENCLATURE 

A. First stage energy community scheduling 

1) Objective function terms 

( )b_G iC t  cost for purchased energy by i-th prosumer from 

the utility grid at t-th time-step 

( )b ,i jC t  cost for purchased energy by i-th prosumer from 

other j-th prosumers of the community at t-th time-

step 

( )s_G iS t  revenue for selling energy by i-th prosumer to the 

utility grid at t-th time-step 

( )s ,i jS t  revenue for selling energy by i-th prosumer to 

other j-th prosumers of the community at t-th time-

step 

( )i t  penalty function of the square imbalances of the 

power exchanges of i-th prosumer at t-th time-step 

( )SC t  costs for the use of charging stations i-th prosumer 

at t-th time-step 

( )BESW t  costs for the use of battery energy storage (BES) 

units at t-th time-step 

 
This document has been created in the context of the PROGRESSUS 

project. The PROGRESSUS project has received funding from the Electronic 

Components and Systems for European Leadership Joint Undertaking under 

grant agreement No 876868. This Joint Undertaking receives support from the 
European Union’s Horizon 2020 research and innovation programme and 

Germany, Slovakia, Netherlands, Spain, Italy. 

2) Parameters 

( )buy t  tariff applied to i-th prosumer buying energy from 

the utility grid at t-th time-step 

( )sell t  tariff applied to i-th prosumer selling energy to the 

utility grid at t-th time-step 

t  duration of each time-step 

t index for time-step 

i , j index for prosumer 

tn  total number of time-steps in the time horizon 

BESw  average wearing cost associated with charging and 

discharging of BES units 

EVw  average wearing cost associated with charging and 

discharging of the EV batteries 

3) Variables 

( )b_G iP t  power bought by i-th prosumer from with the 

utility grid at t-th time-step 

( )s_G iP t  power sold by i-th prosumer to with the utility grid 

at t-th time-step 

( )b ,i jP t  power bought by i-th prosumer from the j-th 

prosumer at t-th time-step 

( )s ,i jP t  power sold by i-th prosumer to the j-th prosumer 

at t-th time-step 

( )i t  Lagrangian multiplier associated to the 

equilibrium of power exchange of the i-th 

prosumer at t-th time-step 

( )BESch iP t  charging power of the BES unit of the i-th 

prosumer at t-th time-step 

( )BESdis iP t  discharging power of the BES unit of the i-th 

prosumer at t-th time-step 

( )Clust EV,iP t  power output of EV station cluster of the i-th 

prosumer at t-th time-step 

B. Second stage DC microgrid programming 

1) Objective function terms 

( )2

inD t  quadratic deviation of bought power by the 

microgrid in t-th time-step w.r.t. first level yields 

( )2

outD t  quadratic deviation of sold power by the microgrid 

in t-th time-step w.r.t. first level yields 
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( )MGOC t  operating cost of the microgrid in t-th time-step 

  weighting factor 

2) Parameters 

bw  wearing cost associated to b-th BES 

kw  wearing cost associated to k-th EV 

( )evc t  charging costs for EV at t-th time-step 

( )evr t  revenue for EV discharge at t-th time-step 

k index for electric vehicles (EV) 

b index for BESs 

evn  total number of EVs in the microgrid 

( )PVP t  forecast power generation by photovoltaic (PV) 

system at t-th time step 

g  coefficient for converter efficiency and cable 

losses on connection grid-DC busbar 

b  coefficient for converter efficiency and cable 

losses on connection BES-DC busbar 

,ev k  coefficient for converter efficiency and cable 

losses on connection EV-DC busbar 

PV  coefficient for converter efficiency and cable 

losses on connection PV system-DC busbar 
c

b  charge efficiency of b-th BES 

d

b  discharge efficiency of b-th BES 

bsd  self-discharge rate of b-th BES 

,

c

ev k  charge efficiency of k-th EV 

,

d

ev k  discharge efficiency of k-th EV 

,ev ksd  self-discharge rate of k-th EV 

( ),

trip

ev kE t  energy amount necessary for envisaged trips of the 

k-th EV in the t-th time-step 

,

in

g MAXP  maximum level of power withdrawal by the 

microgrid from the grid 

,

out

g MAXP  maximum level of power delivery by the microgrid 

to the grid 
min

bSOC  minimum state-of-charge (SOC) of the b-th BES 

max

bSOC  maximum SOC level of the b-th BES 

,d nom

bP  maximum discharge power of the b-th BES 

,c nom

bP  maximum charge power of the b-th BES 

min

,ev kSOC  minimum SOC level of the k-th EV 

max

,ev kSOC  maximum SOC level of the k-th EV 

,

,

d nom

ev kP  maximum discharge power of the k-th EV 

,

,

c nom

ev kP  maximum charge power of the k-th EV 

3) Variables 

( )in

gP t  power withdrawal by the microgrid from the grid 

at t-th time-step 

( )in

gP t  power delivery by the microgrid from the grid at 

t-th time-step 

( )b

cP t  charge power of the b-th BES at t-th time step 

( )b

dP t  discharge power of the b-th BES at t-th time step 

( ),

c

ev kP t  charge power of the k-th EV at t-th time step 

( ),

d

ev kP t  discharge power of the k-th EV at t-th time step 

( )bSOC t  SOC level of the b-th BES at t-th time step 

( ),ev kSOC t  SOC level of the k-th EV at t-th time step 

( )g t  binary variable for power exchange direction at 

grid connection at t-th time step 

( )b t  binary variable for power exchange direction by 

b-th BES at t-th time step 

( ),ev k t  binary variable for power exchange direction by 

k-th EV at t-th time step 

C. Stochastic approach 

1) Additional Parameters 

( )act

PVP t  actual power production by PV system at t-th time 

step 

( )PV t  forecasting error of power production by PV 

system at t-th time step 

( )t   net forecasting error at t-th time-step 

( )t +  accepted probability of positive reserve constraint 

violation at t-th time-step 

( )t −  accepted probability of negative reserve constraint 

violation at t-th time-step 

( )
1

q t
 +

+

−
 (1 ) +− -th quantile of net forecasting error 

distribution at t-th time-step 

( )
1

q t
 −

−

−
 (1 ) −− -th quantile of net forecasting error 

distribution at t-th time-step 

( )t  mean value of net forecasting error at t-th time-step 

( )t  standard deviation of net forecasting error at t-th 

time-step 

2) Additional Variables 

( )bR t+  positive reserve by b-th BES at t-th time-step 

( )bR t−  negative reserve by b-th BES at t-th time-step 

( ),ev kR t+  positive reserve by k-th EV at t-th time-step 

( ),ev kR t−  negative reserve by k-th EV at t-th time-step 

II. INTRODUCTION 

HE energy community concept is now implemented in 

the regulatory framework of many countries [1]. An energy 

community enables end users, as prosumers, to share their 

resources and exchange energy with each other. In this context, 

the optimal scheduling of the community energy resources by a 

specifically developed energy management system (EMS) is 

important. Distributed approaches may be preferred with 

respect to centralized ones, as they have less communication 

requirements and better guarantee prosumers’ independence [2] 

[3]. 

The microgrid structure allows prosumers to coordinate their 

internal resources, as photovoltaic (PV) and battery energy 

storage (BES) units, to match local load demand and to reach 

reliability and economic goals. Moreover, grid-connected 

microgrids can support the external grid by providing ancillary 

services, such as frequency control, voltage control and load 

curtailment operation [4] [5]. In the procedures presented in the 

literature, multi-microgrid energy management strategies are 

T 
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often based on hierarchical and distributed approaches [6][7], 

which usually consists of multiple optimization stages. Bi-level 

optimal procedures are proposed in e.g. [8] for systems of 

microgrids integrated in the distribution network (DN): in one 

level, daily costs [9] or profits of DN company [10] are 

optimized, while the second level optimizes the microgrid 

costs. A data-driven multi-agent deep reinforcement learning 

approach is investigated in [11] to calculate the Stackelberg 

equilibrium for the bi-level optimization problem. 

The integration of electric vehicle (EV) charging stations in 

dc microgrids [12] can be addressed by, e.g., hierarchical 

distributed procedures, where they are modeled as independent 

players [13], or by multi-agent deep reinforcement learning 

methods [14] with the aim of minimizing total costs. The 

presence of BES and PV units in the microgrids leads to a better 

performance in terms of cost reduction [15], particularly when 

vehicle-to-grid services (V2G) are exploited [16] [17]. 

This paper focuses on the optimal energy management of a 

local energy community (LEC) of dc microgrids with EV 

charging stations, in addition to PV and BES units, which 

represents a promising solution for EV integration [18].  

The integration of intermittent energy resources in 

microgrids [19], as wind and PV generation, as well as the 

integration of EVs [20], implies to address the management of 

the associated uncertainties. Therefore, in optimal scheduling 

procedures, deterministic programming approaches, based on 

the assumption of perfect forecasts, are replaced by stochastic 

programming techniques [21]. Monte Carlo and stochastic 

scenario models are used in [22] to simulate RES generation, 

load and prices variations, and in [23] to account for driving 

behavior of EVs. Chance-constrained programming techniques, 

that imply a mathematical program model containing chance 

constraints to be satisfied with a suitable probability level, are 

used to account for uncertainties in renewable generation in a 

community integrated system, as in [24], and levels of energy 

outputs of a hybrid ac-dc microgrid [25]. Recurse optimization 

is adopted in [26] for a day-ahead multistage stochastic 

scheduling of a LEC that provides a multi-stage decision tree to 

a receding horizon intra-day optimization procedure. In [27] a 

scenario tree generation and fast forward scenario reduction is 

adopted to account for RES generation uncertainties in a 15-bus 

microgrid test system. Moreover, robust optimization is 

proposed in [28] for the optimal charging and frequency reserve 

scheduling of EVs and in [29] for the microgrid reserve 

scheduling considering uncertainties associated to load, price, 

and renewable production. Information gap decision theory 

(IGDT) is used for the representation of reserve probabilities in 

[30] and [31] in the presence of fluctuations in RES generation 

and electricity prices. For large-scale systems, distributionally 

robust optimization procedures are adopted to represent 

fluctuations of load demand and renewable generation, as in 

[32] and [33]. Regarding the type of systems under study, 

chance-constrained programming is implemented in small and 

medium systems, as microgrids or communities of microgrids, 

while robust and distributionally robust optimal programming 

is implemented in larger networks, such as multiple-area grids. 

Most of procedures included in this comparative analysis do not 

significantly consider the role of EVs (as in [27], [30], and [31]) 

or only their charging processes are involved. Further 

exploitation of V2G functionalities is not investigated, with the 

exception of [29]. 

By extending the deterministic two-stage optimal procedure 

proposed in [34] for the day-ahead energy management of a 

LEC of dc microgrids with bidirectional EV charging stations, 

this paper presents a procedure that calculates the optimal 

scheduling of the community considering the possibility for 

BES and EV batteries to provide the reserve needed to cope 

with the uncertainties due to the fluctuations in solar generation.  

The main contributions of the procedure are listed and 

discussed below: 

• Chance-constrained programming technique is 

implemented to EV-based dc microgrids in a LEC to 

model storage reserves by means of a set of probabilistic 

constraints in order to counterbalance the uncertainty 

associated with PV production within the microgrid. 

Various papers have adopted this technique, thanks to the 

linearization of stochastic processes, and in particular [25] 

highlights the advantages with respect to other methods, 

dealing with uncertainties of the power exchanges with the 

external grid. In this paper the application of the chance 

constrained approach is focused on the internal source of 

uncertainty. Its integration in the alternating direction 

method of multipliers (ADMM)-based distributed 

optimization approach used for the day-ahead scheduling 

of the community resources ensures, at a given confidence 

level, the respect of the planned power exchanges among 

the LEC participants during the intraday operation. The 

effectiveness of chance-constrained method is assessed 

through a comparison with Monte-Carlo simulation 

results. 

• The flexibility of EV charging stations and BES to provide 

both up and down reserve is used to compensate the PV 

forecast uncertainties. Differently from other papers 

where the reserve is intended to provide grid auxiliary 

services with the participation in bulk or local markets, as 

e.g., [35][36][37], in this paper the reserve improves the 

feasibility of the day-ahead scheduling of the dc 

microgrids that participates in the energy community.  

• The procedure is conceived to be applied for the operation 

management of a real installation, where the compliance 

with the LEC planning stage of each microgrid is deemed 

to have remarkable impact on the other community 

participants.  

The structure of the paper is the following. Section II 

describes the methodology, the stochastic model for the 

representation of the reserve provision, and the specific models 

adopted for BES units and EV charging stations. Section III 

describes the case study and Section IV the test results. Section 

V concludes the paper. 

III. METHODOLOGY 

A. General overview 

The developed two-stage approach provides the optimal day-
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ahead scheduling of the resources of a LEC. In the first stage, 

an ADMM-based optimization approach, described in detail in 

[38], defines the scheduling of the resources for the next day. 

As in [35], the community dealt with in this paper includes also 

microgrids equipped by clusters of bidirectional EV charging 

stations, other than prosumers equipped with PV systems, 

storage units, and local loads. 

Each prosumer i iteratively solves a local optimization 

problem coordinated with those of the other prosumers to reach 

the resource scheduling for the entire community, considering 

the direct transactions among prosumers other than the 

transactions of each prosumer with the external energy provider 

(here identified with the utility grid for simplicity). The 

objective function of each local optimization (1) represents the 

daily cost of the prosumer,  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

b_G s_G b ,

1

s , BES

min
t

i i i jn
j i

t

i j S i

j i

C t S t C t

S t C t W t t



=



 
− + 

 
 
− + + + 

 





 (1) 

being ( ) ( ) ( )b_G b b_Gi iC t t P t t=  , ( ) ( ) ( )s_G s s_Gi iS t t P t t=  , 

( ) ( ) ( )b , b ,i j j i jC t t P t t=  , ( ) ( ) ( )s , s ,i j i i jS t t P t t=  , 

( )EV Clust EVSC w P t t   and ( ) ( )EV Clust EVSC t w P t t −  , 

( ) ( ) ( )( )BES BES BESch BESdisi iW t w P t P t t= +  . The penalty 

function ( )i t  and Lagrangian multipliers ( )i t  and ( )j t  

are updated at each ADMM iteration. A forecast of the EV trips 

provides the time of departure and arrival for each EV together 

with the corresponding decrease in the energy stored in the 

EV’s battery during each trip. Based on this information and the 

setting of the desired SoC at the departure of each EV, the 

proposed procedure calculates the total energy entering the 

microgrid due to arrivals of EVs and the total energy leaving 

due to EV departures at time t, which are inputs of the 

optimization model. Local constraints, i.e., the ones described 

in [38] and in [17] for prosumers and for microgrids with EV 

charging stations, respectively, complete the model. 

The iterative ADMM procedure reaches the convergence 

when all ( )i t  become smaller than a predefined tolerance for 

each decoupled optimization i relevant to a community 

participant. At the convergence, the first stage calculates the 

optimal scheduling of energy transactions with the external 

energy provider, energy transactions with other participants 

inside the community, the operation of the own BES unit, and, 

in the case of microgrids equipped with cluster of EVs’ 

charging stations, the total power outputs of the EV cluster. The 

price for each energy transaction inside the community is also 

obtained. The optimal energy transactions among the 

prosumers within the community and with the external utility 

grid evaluated by the first stage are provided to the second stage 

optimization. 

For each EV-based microgrid, the second stage optimization 

defines the individual scheduling of each charging station, 

keeping the feasibility of the global solution of the energy 

community. The second stage optimization fully exploits the 

availability of V2G services provided by the EVs connected to 

bidirectional charging stations.  The state variables to be 

optimized include the withdrawn and injected powers at the 

common coupling point (PCC), BES and EV 

charging/discharging powers and the battery state of charge 

(SOC) levels. The objective function of the second stage (2) 

aims at minimizing the sum of quadratic deviations of bought 

and sold power in each time-step and the operating costs of the 

microgrid (3), multiplied by a weighted factor   (which is set 

in the study to 10 kWh2/€. The operating cost function includes 

EV charging costs, revenues for EV discharging and wearing 

costs associated to BES and EV exploitations as in [34]. 

 ( ) ( ) ( )2 2min in out MG

t

D t D t OC t+ +   (2) 

 

( ) b b b

k ,

1

k ,

{ [ ( ) ( )]

[( ( )) ( )

( ( )) ( )]}

EV

c d

MG

n

c

ev ev k

k

d

ev ev k

OC t t w P t P t

w c t P t

w r t P t

=

=    + +

+ +  +

+ − 

  (3) 

The optimization model is completed with the constraints 

related to the active power balance at dc busbar at each time-

step t, as in (4) 

 

( ) ( ) ( ) ( )

( ) ( ) ( ), , ,

1 ,

1 1

1
0

EV

in out d c

g g g b b b

g b

n

d c

ev k ev k ev k PV PV

k ev k

P t P t P t P t

P t P t P t

 
 

 
=

 −  +  −  +

 
 −  +  = 

  


 (4) 

Coefficients x  represent converter efficiencies and cable 

losses, according to [39]. Injected powers to the dc busbar are 

considered as positive, while withdrawn powers are negative. 

In (5) and (6) the evaluation of SOC for BES and EV batteries 

is evaluated at each time-step. 

 
( ) ( ) ( ) ( )

1
1 c c d

b b b b bd

b

b

SOC t SOC t t P t P t

sd




 
= − +    −  + 

 

−

(5) 

 

( ) ( ) ( )

( ) ( )

, , , ,

, , ,

,

1 [

1
]

c c

ev k ev k ev k ev k

d trip

ev k ev k ev kd

ev k

SOC t SOC t t P t

P t sd E t





= − +    +

−  − − 
 (6) 

where ( ),

trip

ev kE t  is different from zero only in traveling 

timesteps and estimated according to unit consumption 

depending on average speed. 

In order to avoid contemporaneous bidirectional power 

exchange at grid connection, the following relations hold: 

 ( ) ( ) ,

in in

g g g MAXP t t P   (7) 

 ( ) ( ) ,(1 )out out

g g g MAXP t t P −   (8) 

where ( )g t  takes value 1 if power is withdrawn and 0 if it is 

delivered. Analogous relations can be written for BES 

charge/discharge (limits 
,c nom

bP  and 
,d nom

bP  and variable ( )b t ) 
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and EVs (limits ,

,

c nom

ev kP  and ,

,

d nom

ev kP  and variable ( ),ev k t ) 

considering also SOC limits.  

The two-stage procedure is illustrated in Fig. 1. 

 
Fig. 1.  Scheme of the two-stage optimal scheduling procedure. 

B. Stochastic approach for reserve provision by BES units 

The stochastic approach deals with the uncertainty related to 

the PV forecast, with the aim of guaranteeing the balance of 

generation and demand, and therefore the respect of the power 

exchange plan within the community calculated in the first 

stage, even in the presence of forecasting errors. The actual PV 

production ( )act

PVP t  is assumed to be dependent on the forecast 

value and a forecasting error: 

 ( ) ( ) ( )  1,act

PV PV PV tP t P t t t n= +    (9) 

The net forecasting error ( )t  is defined: 

 ( ) ( )  1,PV tt t t n = −    (10) 

A positive value of ( )t  means that the system requires 

additional generation. On the contrary, negative values of the 

net forecasting error represent the case of the net requiring a 

decrease in generation. As ( )t  could be positive or negative, 

it can be split into a positive and negative part: 

 ( ) ( ) ( )  1, tt t t t n  + −= −    (11) 

where ( ) ( )( )max ,0t t + =  and ( ) ( )( )max ,0t t − = − . This 

distinction is useful for the definition of the reserve to be 

provided by storage units.  

A chance-constrained approach is adopted to define the level 

of positive and negative reserves - added to the vector of state 

variables - needed to compensate the forecasting error with high 

probability, in each time step:  

 ( ) ( )( ) ( )  1 1,b tProb t R t t t n + + +  −    (12.a) 

 ( ) ( )( ) ( )  1 1,b tProb t R t t t n − − −  −    (12.b) 

Assuming that the network forecasting error is normally 

distributed, constraints (12) can be linearized and added in the 

second-stage problem such that positive and negative reserve 

levels should be at least equal to the (1 ) +− -th and (1 ) −− -

th quantile of ( )t  probability distribution:  

 ( ) ( ) ( )( )2,t N t t   →  (13) 

 ( ) ( )
1bR t q t

 +

+ +

−
  (14.a) 

 ( ) ( )
1bR t q t

 −

− −

−
  (14.b) 

Quantiles depend on the distribution parameters, as follows: 

 ( ) ( ) ( )( ) ( )1 2

1
1q t t N t t 

  +

+ − +

−
= − + −   (15.a) 

 ( ) ( ) ( )( ) ( )1 2

1
q t t N t t 

  −

− − −

−
= −   (15.b) 

The reserves that can be provided by each BES unit b at time 

t are limited by the actual available energy stored and the 

maximum charging/discharging powers: 

 ( )
( ) min

b b

b

SOC t SOC
R t

t

+
−




 (16) 

 ( ) ( ),d nom d

b b bR t P P t+  −  (17) 

 ( )
( )max

b b

b

SOC SOC t
R t

t

−
−




 (18) 

 ( ) ( ),c nom c

b b bR t P P t−  −  (19) 

C. Inclusion of the reserve provision by a cluster of EV 

batteries  

The representation of the reserve provision of evn  batteries 

of EVs connected to the charging stations requires the inclusion 

of positive and negative reserves, in the state vector. ( ),ev kR t+  

and ( ),ev kR t−  are added in constraints (14.a) and (14.b): 

 ( ) ( ) ( ), 1
1

evn

ev k b

k

R t R t q t
 +

+ + +

−
=

+   (20.a) 

 ( ) ( ) ( ), 1
1

evn

ev k b

k

R t R t q t
 −

− − −

−
=

+   (20.b) 

For each EV k and time t, the constraints that limit EV power 

reserve considering actual SOCev levels and the rated values of 

the charging and discharging powers are: 

 ( )
( ) min

, ,

,

ev k ev k

ev k

SOC t SOC
R t

t

+
−




 (21.a) 

 ( ) ( ),

, , ,

d nom d

ev k ev k ev kR t P P t+  −  (21.b) 

 ( )
( )max

, ,

,

ev k ev k

ev k

SOC SOC t
R t

t

−
−




 (22.a) 

 ( ) ( ),

, , ,

c nom c

ev k ev k ev kR t P P t−  −  (22.b) 

IV. CASE STUDY 

The considered LEC involves five participants organized in 

one feeder and connected to the same low voltage network. 
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Three of them correspond to prosumers equipped with a PV 

unit, a BES unit and local loads. The rest of participants 

correspond to two microgrids, each equipped with a cluster of 

5 EV bidirectional charging stations, a PV unit and a BES 

system. The optimization horizon corresponds to one day 

divided into 96 periods of 15 minutes. Fig. 2 shows the 

considered price profile of buying (
buy

t ) and selling ( sell

t ) 

energy from and to the external utility grid, respectively. Fig. 2 

also shows the assumed profile of the PV power generation per 

installed panel area. For simplicity, the times when the EV are 

connected to the bidirectional charging stations is considered 

known. At the beginning and at the end of the day, all EV are 

connected to the charging stations with 90% of the battery 

capacity. Vehicles of microgrid 1 are disconnected due to 

travelling in the intervals 8:45-9:00, and 13:00-13:15, 17:15-

17:30 for EV1, 10:00-10:30 and 13:30-14:30 for EV2, 10:30-

10:45 and 12:45 am-13:30 for EV3, 9:00:15-10:15 for EV5, 

EV4 is always connected. Vehicles of microgrid 2 are 

disconnected due to single daily travel between 9:00-9:30 

(EV1), 9:30-10:00 (EV3), 10:30-12:30 (EV4), 9:30-10:45 

(EV5), EV2 is always connected. The energy reduction in the 

EV battery during each trip is, on average, equal to 1.5 kWh for 

each 15 min period. 

 
Fig. 2.  Price profile of the grid (buying and selling) and profile PV power 

generation per m2 of panel surface. 

Other details on features of components for each LEC 

participant are reported in [34]. 

Positive and negative forecast errors of PV generation are 

modeled as Normal distributions. Mean με and standard 

deviation σε values in each time-step are considered 

proportional to the forecast PV production, by means of PV  

and PV  factors, respectively: 

 ( ) ( )  1,PV PV tt P t t n =     (23.a) 

 ( ) ( )  1,PV PV tt P t t n =     (23.b) 

where PV  is set at 0 and PV is equal to 0.1. Constraint 

violation probabilities ( )t +  and ( )t −  are both set equal to 

5% for each time-step. Fig. 3 shows the probability distribution 

functions of the error at specific times (namely, 9:00, 12:00 and 

16:00) and the related positive quantile values. As expected, 

probability distribution at 12:00 is less steep than others at 9:00 

and 16:00 characterized by lower σε values. Similar 

observations hold for negative error probability distribution 

functions. 

 
Fig. 3.  Error probability distributions and positive quantile values relevant to 

the PV generation forecast at 9:00 (top), 12:00 (middle) and 16:00 (bottom). 

V. RESULTS 

This section presents and discusses the final scheduling 

results, i.e., at the end of the second stage optimization. For both 

microgrids with clusters of EV charging stations involved in the 

community, the results obtained considering the reserve 

provision by BES units only are first presented in Section IV.A, 

then the results with reserve provision by both BES units and 

EV batteries are presented in Section IV.B. 

A. Optimal BES units reserve provision 

In Fig. 4 optimal power exchanges in microgrid 1 are shown, 

considering the reserve provided by the BES unit. Comparing 

to the results in [34] without reserve provision, all units in the 

microgrid follow a similar behavior. Reserve guaranteed with a 

probability of 90% by the BES unit (being ( )t +  and ( )t −  

equal to 5%, as mentioned) is shown in Fig. 5. The maximum 

value of reserve (both positive and negative) to be provided is 

1.7 kW at 12:30. The value of reserve increases considering 

lower values of ( )t +  and ( )t − . On the contrary, higher 

values of admitted violation probability implies lower values of 

reserve to be guaranteed. EV-based microgrid 2 power 

exchanges shown in Fig. 6 are slightly different from [34] in 

terms of EV exchange powers. Reserve provided is the same to 

microgrid 1 since the same error probability distribution is 

assumed. 
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Fig. 4.  Power exchanges in microgrid 1, considering the reserve provided by 

the BES unit. 

 
Fig. 5.  Positive and negative reserve in microgrid 1 provided by the BES unit. 

 

Fig. 6.  Power exchanges in microgrid 2, considering the reserve provided by 

the BES unit. 

 

B. Optimal BES and EV reserve provision 

The inclusion of EV batteries in the reserve provision 

procedure affects the power exchanges within microgrids. In 

Fig. 7 the power exchanges in microgrid 1 are shown. From 00 

to 06:00 BES discharging occurs to provide energy externally, 

then EVs and BES exchange energy among each other.  

Fig. 8 shows the total positive and negative reserve 

dispatched among storage devices. Most reserve energy is 

provided by BES, since EV batteries cannot be available when 

EVs are not connected to the charging stations. Positive reserve 

corresponds to a discharging event, i.e., additional generation, 

while negative reserve represents a charging event of the 

storage, i.e., additional load.  

 

 
Fig. 7.  Power exchanges in microgrid 1, considering the reserve provided by 

both the BES unit and the EV batteries. 

 
Fig. 8.  Positive and negative reserve in microgrid 1 provided by both the BES 

unit and the EV batteries. 

Fig. 9 compares the SOC level profiles of the BES unit and 

EV batteries of microgrid 1 for three cases: without reserve 

provision, when the reserve is provided only by the BES unit, 

and when the reserve is provided by both the BES unit and the 

EV batteries. No significant differences from the first case (no 

reserve provision operation) are shown in the profiles when the 

reserve is provided by the BES unit only. Different profiles are 

in general obtained, even for the SOC levels of the BES unit, 

when the reserve is provided also by the EVs connected to the 

charging stations. In the considered scenario, the BES unit 

experience significant discharges during the first hours of the 

day and between 13:00 and 14:00, EV1 discharges at 20:00, 

EV3 discharges at 08:00.  
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Fig. 9.  SOC levels of BES unit and EV batteries in microgrid 1 considering no reserve provision (left), only reserve provided by BES (middle) and reserve provided 

by BES unit and EV batteries (right). 

 

The different power exchanges in microgrid 2 are shown in 

Fig. 10, and the corresponding reserve provisions are shown in 

Fig. 11. Negative reserve is mostly provided by EV batteries. 

Like microgrid 1, the BES unit guarantees most of the positive 

reserve, especially in the first half of the daily PV production. 
 

 
Fig. 10.  Power exchanges in microgrid 2, considering the reserve provided by 

both the BES unit and the EV batteries. 

 
Fig. 11.  Positive and negative reserve in microgrid 2 provided by both the BES 

unit and the EV batteries. 

In Table I a comparison of the operating costs of each 

microgrid with EV charging stations in the two cases is carried 

out: when the reserve is provided only by the BES unit and 

when the reserve is provided by both the BES units and the EV 

batteries. The costs are evaluated considering the forecasted PV 

profile and the economic part t

MGOC of objective function (3), 

without additional costs or revenues related to reserve 

provision. The daily costs of both EV-based microgrid are 

lower in the case the reserve is provided by both BES units and 

EV batteries. The benefit is expected to be lower when there is 

a significant uncertainty associated with the presence and state 

of charge of the EVs connected to the charging stations during 

the day. It should be remarked that for both the microgrids the 

daily operating cost of BES reserve case is very close to the 

values obtained in the deterministic procedure provided in [34]. 

TABLE I 

DAILY OPERATING COSTS OF EV-BASED MICROGRIDS OF THE LEC 

 BES reserve BES and EV batteries reserve 

microgrid 1 10.70 € 7.05 € 

microgrid 2 7.92 € 5.17 € 

C. Validation of the chance constrained procedure 

In order to assess the advantages of the proposed chance 

constrained programming procedure, a comparison with the 

results of Monte-Carlo simulations is presented. 

For microgrid 1, a set of 30 scenarios are considered, in 

which the PV production level at each timestep is varied by a 

stochastic quantity deriving from the error probability 

distribution functions defined in Section III.b, supposed 

independent from each other. The variations of PV production 

are depicted in Fig. 12. The results of the Monte-Carlo 

simulations are compared with the reserve levels, defined by 

(14.a) and (14.b) and illustrated in Fig. 5 and Fig. 8. Roughly 

10% of samples lay beyond the reserve amount, in agreement 

with the considered ( )t +  and ( )t −  values. 

Each scenario is analyzed by means of the deterministic 

technique described in [34], with the same objective function 

involving operation costs and variations from community-level 

power exchanges at grid connection point. In this way, for each 

scenario, different a scheduling of the microgrid devices (EVs, 
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BESS, grid connection) is obtained, representing the effective 

exploitation of the chance-constrained reserve amounts in each 

particular situation. 

 
Fig. 12.  Distribution of samples for PV production Monte-Carlo scenarios and 

comparison with reserve levels according to quantiles for microgrid 1. 

The obtained results are summarized in Fig. 13 that shows 

the variation of grid exchanges and costs with respect to chance-

constrained procedure outcomes. Monte-Carlo stochastic 

scenarios never reach solutions characterized by lower values 

of the objective function components than the corresponding 

ones in the chance-constrained formulation. In the majority of 

Monte-Carlo scenarios, grid power exchange levels are slightly 

varied – by less than 1.1 kWh at most – increasing the total 

bought energy.  

The comparison with the Monte-Carlo simulation results 

shows that the chance-constrained procedure is able to find 

feasible and efficient solutions able to cope with PV forecasting 

error within the defined quantile levels.  

 
Fig. 13.  Cumulative distribution of variation of grid energy bought in the 

Monte-Carlo scenarios (blue) and of daily operation costs (green) with respect 

to chance-constrained solution of microgrid 1. 

VI. CONCLUSIONS 

This paper focuses on the optimal planning of a local energy 

community involving dc microgrids with EV charging stations, 

considering the possibility for BES and EV batteries to provide 

a proper amount of reserve to counterbalance fluctuations in 

solar generation, modeled through a stochastic approach. In the 

framework of a two-stage scheduling procedure, in which the 

first stage defines the transaction among the community 

participants and with the external energy provider whilst the 

second stage defines the scheduling of each EV connected to 

the charging stations, a set of probabilistic chance constraints 

has been introduced in the second-stage optimization problem 

with the aim of modelling up and down reserves.  

For a specific case study, calculations have been carried out 

considering reserve provision by BES units only or by both 

BES units and EV batteries. Positive and negative reserve 

amounts have been guaranteed during the day in both cases. 

However, the scheduling and the costs are different in the two 

cases. When the provision of reserve is only provided by the 

BES units there is no significant modification of the scheduled 

power exchanges within the microgrid with respect to the case 

when the reserve service is not considered. Whereas, when both 

BES units and EV batteries provides reserve, the scheduling 

differs and the daily costs of EV-based microgrids decrease, 

although neither specific revenues nor additional costs for 

reserve provision are considered.  

The proposed chance-constrained approach enables the 

compliance with the community-level plan in the intraday 

operation and guarantees the achievement of low operational 

costs with reasonable computational effort.  

The procedure could be improved by handling uncertainties 

concerning EV usage other than PV production. Moreover, the 

procedure will be integrated in the energy management system 

of a real installation. 
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