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for this logic, we show that validity problems for counting propositional logic can be 
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of the decision problems for validity of prenex counting formulas perfectly matches the
appropriate levels of Wagner’s counting hierarchy.
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1. Introduction

Among the many intriguing relationships existing between logic and computer science, we can certainly mention those 
connecting classical propositional logic (PL, for short), on the one hand, and computational complexity, the theory of pro-
gramming languages, and several other branches of theoretical computer science, on the other. For instance, it is well-known 
that PL provides the first example of a non-trivial NP-complete problem, as shown by [14], while formal systems for classi-
cal and intuitionistic propositional logic correspond to type systems for λ-calculi and related formalisms, see [20,49]. These 
lines of research have further evolved in various directions, resulting in active sub-areas of computer science. In particular, 
variations of propositional logic have been put in relation with complexity classes other than P and NP, as well as with type 
systems other than the simply typed λ-calculus. For example, the complexity of deciding quantified propositional formulas 
is known to match the appropriate level of the polynomial hierarchy (PH, for short), see [36,37,50,57,12].

Of course, not all aspects of the theory of computation have found a precise logical counterpart, at least so far. Among 
the missing ones, several of them are somehow related to probabilistic computation. An example that we find particularly 
interesting is given by Wagner’s hierarchy of counting complexity classes (CH for short), see [53,54,56,55]. Indeed, a somehow 
logical approach to such classes, which are deeply connected to probabilistic complexity classes like PP, has been developed 
in [29], with tools from descriptive complexity and finite model theory. Yet, to the best of the authors’ knowledge, a 
counterpart of counting classes in the realm of (quantified) propositional logic, in analogy with what happens with the 
polynomial hierarchy, has not been proposed.
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In this paper we show that such a counterpart exists, in the form of a new quantified propositional logic, that we 
call counting propositional logic. The main feature of this logic is the presence of counting quantifiers, that is, quantifiers 
designed to count the number of values of the bound propositional variables satisfying the argument formula. Such formulas 
have a natural semantics arising from the observation that the set of valuations of a classical propositional formula forms a 
measurable subset of the Cantor space, 2N . Moreover, we will introduce a sound and complete proof theory, in the form of 
a single-sided sequent calculus.

With the goal of providing the reader with a gentle introduction to the subtle aspects related to this novel form of 
quantification, we first introduce a simpler logic, called CPL0, in which, intuitively, quantifiers count models of the whole
formula, and only later the full logic CPL, in which quantifiers can count models of groups of variables occurring in a 
formula. Indeed, both logics are deeply related to counting complexity classes: checking the validity of formulas of CPL0
is shown to be in the class P�SAT of problems having a polytime solution for a machine with an oracle for the counting 
problem �SAT (which asks to count the number of models of a given Boolean formula); instead, the problem of checking 
validity for formulas of CPL characterizes the whole counting hierarchy. Actually, in the spirit of the correspondence be-
tween quantified propositional logic and the polynomial hierarchy, we prove that deciding (a special kind of) prenex normal 
forms of CPL is complete for the appropriate level of CH.

Structure of the paper This article is a longer version of the eponymous paper [1]. The presentation is structured as follows. 
First, in Section 2 we introduce the syntax and semantics of CPL0. Then, in Section 3, we show that the CPL0-decision 
problem lies in the complexity class P�SAT . In Section 4 we introduce a sequent calculus for CPL0 and establish both its 
soundness and completeness. In Section 5 we introduce the more expressive logic CPL and its semantics. Section 6 is 
devoted to establishing the link between counting logic and complexity theory, by relating the decision problem for CPL
with CH. Finally, in Section 7, we define a sound and complete proof system for CPL. We conclude the paper by considering 
some related works in the literature, in Section 8, and by pointing to possible directions of our future study, in Section 9.

2. Univariate counting propositional logic: syntax and semantics

In this section we introduce the syntax and semantics of a univariate version of counting propositional logic, called CPL0. 
Although the expressive power of this fragment is limited, it provides a first glimpse of the main ingredients of its close 
relative, the system CPL, introduced in Section 5. Furthermore, validity for formulas of CPL0 is proved to be a problem in 
the class P�SAT .

In the semantics of standard propositional logic, the interpretation of a formula A is a truth-value, obtained by evaluating 
all propositional variables in A as true or false, according to some valuation. The fundamental observation behind our 
approach to counting quantification is that the set of all valuations making A true can itself be taken as a semantics of 
A, actually a quantitative semantics, since this set is measurable. Indeed, as propositional formulas may have an arbitrary 
number of propositional variables, a valuation can be taken as an element of 2N . Hence, for any formula A of propositional 
logic we may take as its interpretation the set �A� ⊆ 2N made of all maps f ∈ 2N “making A true”. Such sets belong to 
the standard Borel algebra over 2N , B(2N): atomic propositions are interpreted as cylinder sets [10] of the following form:

Cyl(i) = { f ∈ 2N | f (i) = 1} (i ∈N)

Non-atomic propositions are interpreted in a natural way by relying on the standard σ -algebra operations of complemen-
tation, finite intersection and finite union. Since the sets �A� are measurable, and B(2N ) is endowed with a canonical 
probability measure (which gives measure 1

2 to all cylinders), it makes sense, semantically, to ask whether “A is true with 
probability at least q” or “A is true with probability strictly less than q”. Defining a logic capable of expressing these condi-
tions is precisely our goal.

In order to express quantitative conditions like the ones mentioned above, we introduce two quantifiers, Cq and Dq

(inspired from the counting operators from [56,55]), where q ranges over Q[0,1] . Intuitively, the formula Cq A (resp. Dq A) 
expresses that A is satisfied by a portion of interpretations greater (resp. strictly smaller) than the set of all the possible 
ones. For example, the formula C1/2 A expresses the fact that A is satisfied by at least half of its valuations. In other words, A
is true with probability at least 1

2 . Similarly, the formula D3/4 A expresses that A is satisfied by strictly less than three-fourths 
of its valuations. In other words, the probability for A to be true is strictly smaller than 3

4 .

Definition 1 (Formula of CPL0). The formulas of CPL0 are defined by the following grammar:

A, B ::= i | ¬A | A ∧ B | A ∨ B | Cq A | Dq A

where i ∈N and q ∈Q[0,1] .

Let C be the set of all cylinder sets, and let σ(C) indicate the σ -algebra generated by C, that is the smallest σ -algebra 
containing C (which is included in the standard Borel σ -algebra over 2N ). Moreover, let μ denote the standard cylinder 
measure over σ(C), which can be defined as the unique measure on σ(C) such that μ

(
Cyl(i)

) = 1 , see [10].
2
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Definition 2 (Semantics of CPL0). For each formula A of CPL0, its interpretation is the measurable set �A� ∈ B(2N) defined 
in an inductive way as follows:

�i� = Cyl(i)

�¬A� = 2N − �A�

�A ∧ B� = �A� ∩ �B�

�A ∨ B� = �A� ∪ �B�

�Cq A� =
{

2N if μ(�A�) ≥ q

∅ otherwise

�Dq A� =
{

2N if μ(�A�) < q

∅ otherwise.

A formula A is valid when �A� = 2N . Two formulas A, B are logically equivalent (noted A ≡ B) when �A� = �B�.

The examples below can help clarifying the semantics of CPL0.

Example 1. Let us consider the formula C1/2 A, where A = B ∨ C , B = 0 ∧ ¬1 and C = ¬0 ∧ 1. The measurable sets �B� and 
�C� both have measure 1

4 and are disjoint. Hence, μ(�A�) = μ(�B�) + μ(�C�) = 1
2 , which means that �C1/2 A� = 2N , and so 

the formula C1/2 A is valid.

Example 2. Let us consider the formula D1 A, where A = B ∨ C , B = (0 ∧ ¬1) ∨ 2 and C = (¬0 ∧ 1) ∨ 2. Both sets �B�
and �C� have measure 5

8 (in fact, 5 of their 8 possible models are satisfying ones). Nevertheless, they are not disjoint, as 
�B� ∩ �C� = �2� = Cyl(2), which has measure 1

2 . Hence, μ
(
�A�

) = μ
(
�B�

) + μ
(
�C�

) − μ
(
Cyl(2)

) = 3
4 . So, the formula D1 A is 

valid.

One can easily check that �C0 A� = 2N and �D0 A� = ∅. Moreover, the two counting quantifiers are inter-definable, as can 
be easily shown semantically:

Cq A ≡ ¬Dq A Dq A ≡ ¬Cq A. (1)

Observe that they are not dual in the sense of standard modal operators: Cq A is not equivalent to ¬Dq¬A. Notably, using 
these quantifiers, it is even possible to express that a formula A is satisfied with probability strictly greater than q or no 
smaller than q, as (resp.) D(1−q)¬A and C(1−q)¬A.

3. Univariate counting logic: correspondence with P�SAT

In order to investigate the complexity of the validity problem for the formulas of CPL0, let us start by introducing the 
notion of Boolean formula:

Definition 3 (Boolean formula). Boolean formulas are defined by the following grammar:

b,c ::=xi | � | ⊥ | ¬b | b∧ c | b∨ c,

where i ∈N . The interpretation of a Boolean formula b, �b� ∈ B(2N), is inductively defined as follows:

�xi� = Cyl(i)

��� = 2N

�⊥� = ∅

�¬b� = 2N − �b�

�b∧ c� = �b� ∩ �c�

�b∨ c� = �b� ∪ �c�.

In the following, we will consider semantic properties of Boolean formulas of the form μ(�b�) �q, where � ∈ {≥, >, ≤, <, =}, 
b is a Boolean formula and q ∈Q[0,1] .

The measure of a Boolean formula, μ
(
�b�

)
can be related to the number �SAT(b) of the valuations making b true.

Lemma 1. For any Boolean formula b, in which exactly n distinct propositional variables occur, μ(�b�) = �SAT(b) · 2−n.

Proof. Any valuation θ : {x0, . . . , xn−1} → 2 is associated to a measurable set X(θ) ∈ B(2N) by letting X(θ) =
{ f | ∀i<n f (i) = θ(xi)} = ⋂n−1

i=0 Cyl(i)θ(xi ) , where Cyl(i)θ(xi ) is Cyl(i) if θ(xi) = 1 and Cyl(i) otherwise. Observe that 
μ(X(θ)) = 2−n . For any b, we have that �b� = ⋃

θ�b X(θ) (this is easily checked by induction on b). Since for all dis-
tinct θ , θ ′ , X(θ) ∩ X(θ ′) = ∅, we conclude that �SAT(b) · 2−n = 

∑
θ�b 2−n = 

∑
θ�b

(
μ(X(θ))

)
= μ

(⋃
θ�b X(θ)

)
= μ(�b�). �
3
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Bool(i) =xi

Bool(A ∧ B) = Bool(A) ∧ Bool(B)

Bool(A ∨ B) = Bool(A) ∨ Bool(B)

Bool(¬A) = ¬Bool(A)

Bool(Cq A) = Val(Cq A)

Bool(Dq A) = Val(Dq A)

Val(A ∧ B) = Val(A) and Val(B)

Val(A ∨ B) = Val(A) or Val(B)

Val(¬A) = not Val(A)

Val(Cq A) = let b= Bool(A) in

let n = �vars(b) in

�SAT(b)

2n
≥ q

Val(Dq A) = let b= Bool(A) in

let n = �vars(b) in

�SAT(b)

2n
< q

Fig. 1. Algorithms Bool(·) and Val(·).

We now show that the validity of a formula of CPL0 can be decided by a polytime algorithm having access to an oracle 
for the problem �SAT of counting the models of a Boolean formula. Indeed, checking that a quantified formula, such as 
Cq A or Dq A, is valid can be done by invoking an oracle that provides measurements of the form μ

(
�b�

)
, for any Boolean 

formula b. As shown by Lemma 1, these measurements correspond to actually counting the number of valuations satisfying 
the corresponding formula, and can be thus taken as oracles for �SAT.

A formula A of CPL0 is closed if it is either of the form Cq B or Dq B , or it is a negation, conjunction, or disjunction 
of closed formulas. It can be easily checked by induction on the structure of closed formulas that for any closed A, either 
�A� = 2N or �A� = ∅. We define, by mutual recursion, two polytime algorithms Bool and Val: for each formula A of 
CPL0, Bool(A) computes a Boolean formula bA such that �A� = �bA�, and, for all closed formula A, Val(A) = 1 if and 
only if �A� = 2N and Val(A) = 0 if and only if �A� = ∅. Let �vars(b) denote the number of propositional variables in 
the Boolean formula b. The two algorithms are defined in Fig. 1. Notice that the algorithm Val makes use of a �SAT
oracle. Recall that the class P�SAT is made of those problems which can be decided in polytime having access to a �SAT
oracle, see [4]. One can easily be convinced that the algorithms Bool and Val both belong to P�SAT , which leads to the 
following:

Proposition 1. Validity of closed CPL0-formulas is in P�SAT .

4. Univariate counting logic: proof theory

We introduce a one-sided, single-succedent sequent calculus, called CLK0, and prove it sound and complete with respect 
to the semantics of CPL0. The language of this calculus is constituted by labelled formulas of the form b� A or b� A, 
where b and A are respectively a Boolean formula and a formula of CPL0. Intuitively, � (resp. �) expresses an inclusion 
relation (indeed, an implication) between a Boolean formula and a formula of CPL0: the labelled expression b� A (resp., 
b� A) says that the set of valuations satisfying b is included in (resp., includes) the set of valuations satisfying A. In the 
following, we will use b� c for �b� ⊆ �c�.

Definition 4 (Labelled formula). A labelled formula is an expression of one of the forms b� A, b� A, where b is Boolean 
formula and A is a CPL0-formula. A labelled sequent is a sequent of the form � L, where L is a labelled formula.

The rules of the calculus CLK0 include semantic conditions, called external hypotheses, which express semantic properties of 
Boolean formulas or conditions to be checked inside B(2N ).

Definition 5 (External hypothesis). An external hypothesis is either an expression of the form b� c or of the form μ(�b�) � q, 
where � ∈ {≥, >, ≤, <, =}, b, c are Boolean formulas and q ∈Q[0,1] .

As we have seen, the measure of the interpretation of a Boolean formula is related to the number �SAT(b) of the valuations 
making b true.

The proof system CLK0 is defined by the rules displayed in Fig. 2. Let us call μ-rules the two rules R�
μ and R�

μ . Observe 
that in the last four rules from Fig. 2 the Boolean formula b in the conclusion is chosen arbitrarily. This is coherent with 
the semantics of counting formulas, which are interpreted as either 2N or ∅, i.e. (resp.) superset or subset of any given set. 
The use of external hypotheses, i.e. of genuinely semantic conditions, as premisses of syntactic rules might seem somehow
4
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Initial Sequents

b�xi
Ax1� b� i

xi � b
Ax2� b� i

Boolean Rules

� c� A � d� A b� c∨ d R�∪� b� A

� c� A � d� A c∧ d� b R�∩� b� A

Logical Rules

� c� A b� ¬c R�
¬� b� ¬A

� c� A ¬c� b R�
¬� b� ¬A

� b� A R1�∨� b� A ∨ B
� b� B R2�∨� b� A ∨ B

� b� A � b� B R�∨� b� A ∨ B
� b� A � b� B R�∧� b� A ∧ B

� b� A R�∧� b� A ∧ B
� b� B R�∧� b� A ∧ B

Counting Rules

μ(�b�) = 0
R�

μ� b� A

μ(�b�) = 1
R�

μ� b� A
� c� A μ(�c�) ≥ q

R�
C� b� Cq A

� c� A μ(�c�) < q
R�

C� b� Cq A
� c� A μ(�c�) < q

R�
D� b� Dq A

� c� A μ(�c�) ≥ q
R�

D� b� Dq A

Fig. 2. Proof System for CPL0.

x0 �x0
Ax1�x0 � 0

R�∪�x0 ∧ ¬x1 � 0

x1 �x1
Ax2�x1 � 1

R�
¬� ¬x1 � ¬1
R�∪�x0 ∧ ¬x1 � ¬1
R�∧�x0 ∧ ¬x1 � 0 ∧ ¬1

R1�∨�x0 ∧ ¬x1 � (0 ∧ ¬1) ∨ (¬0 ∧ 1)

x0 �x0
Ax2�x0 � 0

R�
¬� ¬x0 � ¬0
R�∪� ¬x0 ∧x1 � ¬0

x1 �x1
Ax1�x1 � 1

R�∪� ¬x0 ∧x1 � 1
R�∧� ¬x0 ∧x1 � ¬0 ∧ 1

R2�∨� ¬x0 ∧x1 � (0 ∧ ¬1) ∨ (¬0 ∧ 1)
R�∪� (x0 ∧ ¬x1) ∨ (¬x0 ∧x1) � (0 ∧ ¬1) ∨ (¬0 ∧ 1)

R�
C *

� � � C1/2
(
(0 ∧ ¬1) ∨ (¬0 ∧ 1)

)

*as μ(
�(x0 ∧ ¬x1) ∨ (¬x0 ∧x1)�

) ≥ 1
2

Fig. 3. Derivation of � �� C1/2
(
(0 ∧ ¬1) ∨ (¬0 ∧ 1)

)
in CLK0.

unsatisfactory. Such premisses correspond to the idea that, when searching for a proof of a counting formula, one might 
need to query an oracle for values of the form μ(�b�) (in fact, by Lemma 1, an oracle for �SAT(b)). Derivations in CLK0 are 
defined in the standard way. Let �CLK0 L indicate that � L is derivable by the rules in Fig. 2. The height of a derivation in 
CLK0 is defined, as usual, as the greatest number of successive applications of rules in it, where initial sequents and μ-rules 
have height 0. In Fig. 3 we provide an example of derivation in CLK0.
5
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4.1. Soundness and completeness

We will show that CLK0 is sound and complete with respect to the semantics of CPL0: a labelled formula is valid if and 
only if it is provable. Validity of labelled formulas and sequents is defined as follows:

Definition 6 (Validity). A labelled formula b� A (resp. b� A) is valid, noted � b� A (resp. � b� A), when �b� ⊆ �A�
(resp. �A� ⊆ �b�). A sequent � L is valid, denoted � L, when L is a valid labelled formula.

Recall that validity of CPL0-formulae can be checked in polynomial time with an oracle on �SAT. The following useful 
result shows that, with the same complexity, any formula of CPL0 can be transformed into an equivalent Boolean formula.

Proposition 2. For any formula A of CPL0 there exists a Boolean formula bA such that A ≡ bA . Moreover, the computation of bA from 
A can be done in polynomial time with an access to an oracle for �SAT.

Proof. We construct the Boolean formula bA by induction on A. The only non-trivial cases are A = Cq B and A = Dq B . In the 
first case we let bA = � if μ

(
�B�

) ≥ q and bA = ⊥ if μ
(
�B�

)
< q. Similarly, in the second case, we let bA = � if μ

(
�B�

)
< q

and bA = ⊥ if μ
(
�B�

) ≥ q. �
The soundness of CLK0 is proved by induction on the height of derivations.

Proposition 3 (Soundness). �CLK0 L implies � L.

Proof. The proof is by induction on the height of the derivation � L. We only consider a few relevant cases:

• R�∪ . Assume that the last rule applied is an instance of R�∪ and that the derivation is in the following form:

.

.

.

� c� A

.

.

.

� d� A b� c∨ d R�∪� b� A

By IH, � c� A and � d� A, that is �c� ⊆ �A� and �d� ⊆ �A�. Thus also �c� ∪ �d� ⊆ �A� holds. Given the external 
hypothesis b� c∨ d, that is �b� ⊆ �c� ∪ �d�. Then, �b� ⊆ �A� and so � b� A.

• R�
C . Assume that the last rule applied is an instance of R�

C and the derivation is in the following form:

.

.

.

� c� A μ
(
�c�

) ≥ q
R�

C� b� Cq A

By IH, � c� A, that is �c� ⊆ �A�. Since, given the external hypothesis, μ
(
�c�

) ≥ q, also μ
(
�A�

) ≥ q holds. Thus, �Cq A� =
2N and for each b, �b� ⊆ �Cq A�. Therefore, � b� Cq A.

• R�
C . Assume that the last rule applied is an instance of R�

C and the derivation is in the following form:

.

.

.

� c� A μ
(
�c�

)
< q

R�
C� b� Cq A

By IH, � c� A, that is �A� ⊆ �c�. Since by hypothesis μ
(
�c�

)
< q, also μ

(
�A�

)
< q holds. Thus, �Cq A� = ∅ and so for 

every b, �Cq A� ⊆ �b�. Therefore, � b� Cq A.
• R�

D , R�
D . These cases are treated as R�

C , R�
C . �

The proof of completeness is less straightforward. First, we introduce a decomposition relation � between finite sets of 
sequents (that we will indicate as �, �, . . . ), which allows one to decompose the validity of a sequent into that of a finite 
set of less complex sequents. The fundamental ingredients of the completeness proof are then expressed by the following 
three properties:

1. if � is �-normal, then � � if and only if �CLK0 �;
2. if � �, then there is a �-normal � such that � � � and � �;
3. if �CLK0 � and � � �, then �CLK0 .
6
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Using these, one can check that if � L holds, then by (2) � � holds for some �-normal form � of � L. Then, by (1), � is 
derivable in CLK0 and by (3) we conclude that � L is derivable in CLK0 as well. In order to establish properties 1.-3. above, 
some preliminary notions and lemmas are needed.

Definition 7 (Basic formula and sequent). A basic formula of CLK0 is a labelled formula, b� A or b� A, in which the logical 
part A is atomic. A basic sequent of CLK0 is a sequent of the form � L, where L is a basic formula.

The decomposition reduction � is defined starting from the following relation:

Definition 8 (Decomposition reduction, �0). The decomposition reduction, �0, from a sequent to a set of sequents (both in 
the language of CLK0), is defined by the following decomposition rules:

if b� ¬c, � b� ¬A �0 {� c� A}
if ¬c� b, � b� ¬A �0 {� c� A}

if b� c∨ d, � b� A ∨ B �0 {� c� A,� d� B}
� b� A ∨ B �0 {� b� A,� b� B}
� b� A ∧ B �0 {� b� A,� b� B}

if c∧ d� b, � b� A ∧ B �0 {� c� A,� d� B}
if μ

(
�c�

) ≥ q, � b� Cq A �0 {� c� A}
if μ

(
�c�

)
< q, � b� Cq A �0 {� c� A}

if μ
(
�c�

)
< q, � b� Dq A �0 {� c� A}

if μ
(
�c�

) ≥ q, � b� Dq A �0 {� c� A}
if μ

(
�b�

) = 0, � b� A �0 {}
if μ

(
�b�

) = 1, � b� A �0 {}
if μ

(
�b�

) �= 0,� b� D0 A �0 {� ⊥}
if μ

(
�b�

) �= 1, � b� C0 A �0 {� ⊥}.

Observe that the rewriting rules are defined so that the application of a decomposition rule to an arbitrary sequent, � L, 
leads to a set of sequents {� L1, . . . , � Ln}, such that for every i ∈ {1, . . . , n}, the number of connectives occurring in the
CPL0-formula of � Li is (strictly) smaller than that of the CPL0-formula of � L.

The set-decomposition reduction, �, relating sets of sequents, is defined starting from �0 as follows:

Definition 9 (Set decomposition, �). The set-decomposition reduction, �, from a set of sequents to another set of sequents in 
CLK0 is defined as follows:

� Li � {� Li1 , . . . ,� Lim }
{� L1, . . . ,� Li, . . . ,� Ln} � {� L1, . . . ,� Li1 , . . . ,� Lim , . . . ,� Ln}

Otherwise said, � is the natural lifting of �0 to a relation on sets.
Each predicate concerning one sequent can be naturally generalized to sets of sequents by stipulating that a predicate 

holds for the set when it holds for every sequent in the set. In order to make the presentation clearer, given a sequent � L, 
we call its corresponding set the set including only this sequent as its element, i.e. {� L}. The notion of �-normal form is 
defined in a standard way:

Definition 10 (�-Normal form). A sequent is a �-normal form if no decomposition rewriting reduction rule, �0, can be 
applied on it. A set of sequents is in �-normal form if it cannot be reduced by any � set-rewriting rule.

The first step consists in showing that � is strongly normalizing, and so that each decomposition process terminates. A 
couple of auxiliary definitions are needed.
7
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Definition 11 (Number of connectives, cn). For any labelled formula L, we define its number of connectives cn(L) as follows:

cn(b� i) = cn(b� i) = cn(i) = 1

cn(b� ¬A) = cn(b� ¬A) = cn(¬A) = 1 + cn(A)

cn(b� A�B) = cn(b� A�B) = cn(A�B) = 1 + cn(A) + cn(B)

cn(b� �A) = cn(b� �A) = cn(�A) = 1 + cn(A)

where � ∈ {∧, ∨} and � ∈ {Cq, Dq}. Notice that cn(L) only counts the connectives in the CPL0-formula of L (for this reason, 
we sometimes note it also as cn(A). Given a sequent � L, we define its number of connectives as cn(� L) = cn(L).

Definition 12 (Set measure, ms). Given a set of sequents � = {� L1, . . . , � Ln}, its measure is defined as ms
(
�

) = ∑n
i=1 cn(�

Li).

Lemma 2. The reduction � is strongly normalizing

Proof. That every set of sequents is �-strongly normalizing is proved by showing that, if � �0 �, then ms
(
�

)
> ms

(
�

)
. 

The proof is based on exhaustive inspection of all possible forms of �-reduction, applicable to the given set, that is by 
dealing with all possible forms of �0-reduction of one of the � Li , where i ∈ {1, . . . , m}. Thus, we will take an arbitrary 
� Li to be the “active” sequent of �. Let us consider all the possible forms of �0 on which � can be based:

• Li = b� ¬A. Assume that � Li is the active sequent in the given �-decomposition and that � is based on the �0

below:

� b� ¬A �0 {� c� A}
where b� ¬c. Thus,

ms
({� L1, ... � c� A, ... � Lm})

= cn(L1) + ... + cn(c� A) + ... + cn(Lm)

= cn(L1) + ... + cn(L) + ... + cn(Lm)

= cn(L1) + ... + cn(¬A) − 1 + ... + cn(Lm)

< cn(L1) + ... + cn(b� ¬A) + ... + cn(Lm)

= ms
({� L1, ... � b� ¬A, ... � Lm}).

• Li = b� ¬A. Equivalent to the case above.
• Li = b� A ∨ B . Assume that � Li is the active sequent of � and that � is based on the following �0:

� b� A ∨ B �0 {� c� A,� d� B}
where b� c∨ d. Thus,

ms
({� L1, ... � c� A, � d� B, ... � Lm})

= cn(L1) + ... + cn(c� A) + cn(d� B) + ... + cn(Lm)

= cn(L1) + ... + cn(A) + cn(B) + ... + cn(Lm)

< cn(L1) + ... + cn(A) + cn(B) + 1 + ... + cn(Lm)

= cn(L1) + ... + cn(b� A ∨ B) + ... + cn(Lm)

= ms
({� L1, ... � b� A ∨ B, ... � Lm}).

• Li = b� A ∨ B, Li = b� A ∧ B, Li = b� A ∧ B . Analogous to the case above.
• Li = b� Cq A. Assume that � Li is the active sequent of the given �-decomposition and that � is in its turn based on 

the �0-decomposition below:

� b� Cq A �0 {� c� A}
where μ

(
�c�

) ≥ q. Then,
8
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ms
({� L1, ... � c� A, ... � Lm})

= cn(L1) + ... + cn(c� A) + ... + cn(Lm)

= cn(L1) + ... + cn(A) + ... + cn(Lm)

< cn(L1) + ... + cn(A) + 1 + ... + cn(Lm)

= cn(L1) + ... + cn(b� Cq A) + 1 + ... + cn(Lm)

= ms
({� L1, ... � b� Cq A, ... � Lm}).

• Li = b� Cq A, Li = b� Dq A, Li = b� Dq A. Similar to the case above.
• Li = b� A. Assume that � Li is the active sequent in the given �-decomposition and that � is based on the �0-

decomposition below:

� b� A �0 {}
where μ

(
�b�

) = 0. Since for Definitions 11 and 12, cn
({}) = 0 and cn(� b� A) > 0, clearly cn({}) < cn(� b� A).

• Li = b� A, Li = b� D0 A, Li = b� C0 A. Analogous to the case above. �
The Lemma below establishes Claim 1.

Lemma 3. For all �-normal sequent � L, � L if and only if �CLK0 L.

Proof. First observe that every �-normal sequent is basic (by inspection of possible cases). Let now � L be a basic sequent.

⇒ Assume that � L. Since L is a basic formula, there are two main cases - Ax1 and Ax2 - which are both trivial.
⇐ Assume that � L is derivable in CLK0. Then, by Proposition 3, � L. �
All the given results can be extended from sequents to sets in a natural way, obtaining in particular that, if a set of sequents 
is �-normal, i.e. each of its sequents is �-normal, then it is valid if and only if it is derivable, namely its sequents are 
valid if and only if they are derivable.

In order to prove Claim 2. we need to show that validity is existentially preserved through �-decomposition.

Lemma 4. Each valid sequent has a valid �-normal form.

Proof. Let � L be an arbitrary valid sequent. It is shown that � L has a valid �-normal form. Since �0 is strongly normal-
izing, it suffices to check that for each possible sequent which is not �0-normal, there is a �0-reduction which preserves 
validity.

• Assume that � L is such that no �0-reduction can be applied on it. Then, as observed in the proof of Lemma 3, the 
sequent is either empty or basic; in other words L is a basic formula. In both cases, the sequent is �-normal and, for 
hypothesis, valid.

• Assume now that � L is �-reducible. The argument is based on the exhaustive inspection of all possible forms of �0-reduction, exploiting Remark 2. We only consider a few interesting cases:

- L = b� ¬A. Let c= ¬b; we have �¬c� = 2N − �c� = 2N − (2N − �b�) = �b� and so, in particular, b� ¬c. Let us 
consider the following well-defined �0-decomposition (given b� ¬c):

� b� ¬A �0 {� c� A}.
Since b�¬A is valid, �b� ⊆ �¬A�, whence �A� ⊆ �¬b� = �c� that is � c� A as desired.

- L = b� A ∨ B . Using Remark 2, from the hypothesis � b� A ∨ B , that is, �b� ⊆ �A� ∪ �B�, we deduce �b� ⊆
�bA� ∪ �bB�, that is b� bA ∨ bB . Let us consider the following reduction, which is well-defined (given b� bA ∨ bB ):

� b� A ∨ B �0 {� bA � A,� bB � B}.
Since �bA� = �A� and �bB� = �B� we then have �bA� ⊆ �A� and �bB� ⊆ �B�. Therefore, � bA � A and � bB � B , as 
desired.

- L = b� A ∨ B . Let us consider the following, well-defined �0-decomposition:

� b� A ∨ B �0 {� b� A,� b� B}.
For hypothesis � b� A ∨ B , which is �A� ∪ �B� ⊆ �b�. Then, by basic set theory, both �A� ⊆ �b� and �B� ⊆ �b�, 
which is � b� A and � b� B , as desired.
9
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- L = b� Cq A. There are two main sub-cases:

- Let μ
(
�b�

) = 0. Then the sequent can be decomposed by means of the following well-defined �0-
decomposition:

� b� Cq A �0 {},
where {} is vacuously valid.

- Let μ
(
�b�

) �= 0. For hypothesis � b� Cq A, that is �b� ⊆ �Cq A�. Since �b� �= ∅, also �Cq A� �= ∅, that is �Cq A� =
2N , so μ

(
�A�

) ≥ q. Then μ
(
�bA�) ≥ q and the following �0-decomposition is well-defined:

� b� Cq A �0 {bA � A}.
By construction �bA� = �A� so, in particular, �bA� ⊆ �A�, that is � bA � A, as desired.

- L = b� Cq A. There are two main sub-cases:

- Let μ
(
�b�

) = 1. Then, the sequent can be decomposed by means of the following well-defined �0-
decomposition:

� b� Cq A �0 {},
where {} is vacuously valid.

- Let μ
(
�b�

) �= 1. By hypothesis � b� Cq A, that is �Cq A� ⊆ �b�. Since �b� �= 2N , �Cq A� = ∅. So, μ
(
�A�

)
< q. 

Then μ
(
�bA�

)
< q and the following decomposition is well-defined:

� b� Cq A �0 {bA � A}.
For construction �bA� = �A� so, in particular, �A� ⊆ �bA�, that is � bA � A as desired. �

It now remains to establish Claim 3. Let �CLK0 � indicate that �CLK0 L holds for all L ∈ �.

Proposition 4. Given two sets of sequents � and �, if � � �, then �CLK0 � implies �CLK0 �.

Proof sketch. Assume � � �. Then, there is a � L ∈ � such that it is the “active” sequent on which � is based, that is �
is based on the �0-decomposition below:

� L �0 {� L1, . . . ,� Ln}.
The proof is by straightforward inspection of all possible forms of �0-reduction. �

Putting these results together, it is possible to conclude that CLK0 is complete with respect to the semantics of CPL0.

Proposition 5 (Completeness). � L implies �CLK0 L.

Proof. If the sequent � L is valid, by Lemma 4, it has a valid �-normal form. By Lemma 3, a �-normal form is valid if 
and only if it is derivable, so the given �-normal form must be derivable as well. Therefore, by Proposition 4, � L must be 
derivable in CLK0. �
Remark 1. As a consequence of the completeness theorem, the following cut-rule turns out to be derivable in CLK0:

� c�¬A ∨ B � d� A b� c∧ d
Cut� b� B

5. Multivariate counting propositional logic: syntax and semantics

As is well-known, counting problems are not restricted to those in P�SAT . For instance, one can consider problems 
concerning relations between valuations of different groups of variables, like MajMajSAT, see [9,34,35]: given a formula A
of PL containing two disjoint sets of variables, x and y, this problem asks whether for at least half of the valuations of x, 
at least half of the valuations of y makes A true.

To express these kinds of problems, we consider a language in which propositional atoms and counting quantifiers 
are named. We use a, b, c, . . . for names. Counting quantifiers, indicated as Cq

a A or Dq
a A, now depend on the number of 

valuations of propositional atoms with name a satisfying A.
10
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Definition 13 (Formula of CPL). The formulas of CPL are defined by the following grammar:

A, B ::= ia | ¬A | A ∧ B | A ∨ B | Cq
a A | Dq

a A

where i ∈N , a is a name, and q ∈Q[0,1] .

The intuitive meaning of named quantifiers is that they count models relative to the corresponding bounded variables. 
Named quantifiers, Cq

a and Dq
a , bind the occurrences of the name a in A. Formulas are thus taken modulo α-equivalence. 

Given a formula A of CPL, we let FN(A) indicate the set of names occurring free (i.e. not bound) in A.
Names can be used to distinguish between distinct groups of propositional variables. For example, the propositional 

formula F = (x1 ∨ y1) ∧ (x2 ∨ y2), containing two groups of variables x = {x1, x2} and y = {y1, y2}, can be expressed in CPL
using two distinct names a, b as G = (1a ∨ 1b) ∧ (2a ∨ 2b). Since the intuitive meaning of Cq

a A is that A is true in at least 
q of the valuations of the variables with name a, we can take the CPL-formula C1/2

a C1/2
b G as expressing the MajMajSAT

problem for F (which happens to have a positive answer, in this case).
While the formulas Cq

a A and Dq
a A have a rather intuitive meaning, the semantics of CPL is slightly subtler than in case 

of CPL0. First observe that the interpretation of a formula A now depends on the choice of a finite set of names X ⊇ FN(A), 
and yields a measurable set �A�X belonging to the Borel algebra B

(
(2N)X

)
(generated by the product topology over “X” 

copies of 2N ). Also in this case, there exists a canonical Lebesgue measure μX over B
(
(2N)X

)
giving measure 1

2 to all 
cylinders (see [10]) of the form

Cyl(a, i) = { f ∈ (2N)X | f (a)(i) = 1} (a ∈ X, i ∈N)

Hence, the quantifiers Cq
a and Dq

a must correspond to operations allowing one to pass, for any set of names X not 
containing a, from subsets of (2N )X∪{a} to subsets of (2N )X . To define such operations we need the following technical 
notion:

Definition 14 ( f -projection). Let X, Y be two disjoint finite sets of names and f ∈ (2N)X . For all X ⊆ (2N)X∪Y , the f-
projection of X is the set 	 f (X ) ⊆ (2N)Y defined as follows:

	 f (X ) = {g ∈ (2N)Y | f + g ∈ X },
where ( f + g)(a) is f (a), if a ∈ X and g(a) if a ∈ Y .

Suppose X and Y are disjoint sets of names, with FN(A) ⊆ X ∪ Y . Then, if we fix a valuation f ∈ (2N)X of the variables 
of A with names in X , the set 	 f

(
�A�X∪Y

)
describes the set of valuations of the variables of A with names in Y which 

extend f .
In general, even if X ∈ B((2N)X∪Y ) is a Borel set, the projection 	 f (X ) ⊆ (2N)X ) needs not be Borel. Indeed, 	 f does 

not define a map from B((2N )X∪Y ) to B((2N)X ), but from 
1
1((2N)X∪Y ) to 
1

1((2N)X ), where 
1
1((2N)X ) indicates the 

class of analytic subsets of (2N )X (see [27]). Importantly, the Lebesgue measure is always defined on 
1
1((2N)X ). Moreover, 

we will exploit the following result:

Lemma 5 ([27], Theorem 14.11 & Theorem 29.26). For any X ∈ B((2N)X∪Y ), with X ∩ Y = ∅, and r ∈ [0, 1], { f ∈ (2N)X |
μ(	 f (X )) ≥ r} ∈ B((2N)X ).

We can now define the semantics of CPL:

Definition 15 (Semantics of CPL). For each formula A of CPL, and finite set of names such that X ⊇ FN(A), the interpretation
of A is a Borel set �A�X ∈ B((2N)X ) inductively defined as follows:

�ia�X = Cyl(a, i)

�A ∧ B�X = �A�X ∩ �B�X

�A ∨ B�X = �A�X ∪ �B�X

�¬A�X = (2N)X − �A�X

�Cq
a A�X = { f | μ(

	 f (�A�X∪{a})
) ≥ q}

�Dq
a A�X = { f | μ(

	 f (�A�X∪{a})
)
< q}.

A formula A is valid when �A�FN(A) = (2N)FN(A) . Two formulas A, B are logically equivalent (noted A ≡ B) when 
�A�FN(A)∪FN(B) = �B�FN(A)∪FN(B) .

The well-definedness of the Borel sets �A�X follows from Lemma 5, in the crucial cases of the sets �Cq
a A�X and �Dq

a A�X . 
However, as a consequence of the Fundamental Lemma below, we will show at the end of this section a more direct proof 
of the fact that all the sets �A�X are Borel. To have a grasp of the semantics of named quantifiers, consider the following 
example:
11
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Example 3. Let A be the following formula of CPL:

A = (
0a ∧ (¬0b ∧ 1b)

) ∨ (¬0a ∧ 0b ∧ ¬1b) ∨ (
(¬0a ∧ 1a) ∧ 1b

)
.

The valuations f ∈ (2N){b} belonging to �C1/2
a A�{b} are those which can be extended to valuations of all Boolean variables 

in A satisfying A in at least half of the cases. In such a simple situation, we can list all possible cases:

1. if f (b)(0) = f (b)(1) = 1, then A has 1
4 chances of being true, since both ¬0a and 1a must be true,

2. if f (b)(0) = 1, f (b)(1) = 0, then A has 1
2 chances of being true, since ¬0a must be true,

3. if f (b)(0) = 0, f (b)(1) = 1, then A has 3
4 chances of being true, since either 0a or both ¬0a and 1a must be true,

4. if f (b)(0) = f (b)(1) = 0, then A has 0 chances of being true.

Thus, �C1/2
a A�{b} only contains the valuations which agree with cases 2. and 3. Therefore, �C1/2

b C1/2
a A�∅ = 2N , that is 

C1/2
b C1/2

a A is valid, since half of the valuations of b has at least 1
2 chances of being extended to a model of A.

The definition of the sets �Cq
a A�X and �Dq

a A�X is not very intuitive at first glance. We now provide an alternative charac-
terization of these sets by means of named Boolean formulas, and show that they are measurable.

Definition 16 (Named Boolean formula). Named Boolean formulas are defined by the following grammar:

b,c :=xa
i | � | ⊥ | ¬b | b∧ c | b∨ c.

The interpretation �b�X of the Boolean formula b with FN(b) ⊆ X is defined in a straightforward way, mimicking Defini-
tion 2:

�xa
i �X := Cyl(a, i)

���X := (2N)X

�⊥�X := ∅X

�¬b�X := (2N)X − �b�X

�b∧ c�X := �b�X ∩ �c�X

�b∨ c�X := �b�X ∪ �c�X .

Remark 2. A result analogous to Lemma 1 holds also for named Boolean formulas. A consequence of this fact is that the 
measure μ(�b�X ) does not depend on the choice of X . For this reason, we will still indicate the measure of a named 
Boolean formula as μ(�b�), as we did for un-named formulas.

Let us now introduce the crucial notion of a-decomposition:

Definition 17 (a-decomposition). Let b be a named Boolean formula with free names in X ∪ {a}. An a-decomposition of b is a 
Boolean formula c= ∨k−1

i=0 di ∧ ei such that:

• �b� = �c�;
• FN(di) ⊆ {a}; and FN(ei) ⊆ X ,
• if i �= j, then �ei� ∩ �ej� = ∅.

The following lemma provides each Boolean formula with an a-decomposition.

Lemma 6. Any named Boolean formula b with FN(b) ⊆ X ∪ {a} admits an a-decomposition in X.

Proof. We will actually prove a stronger statement saying that any named Boolean formula b admits an a-decomposition ∨k
i=1 di ∧ ei , such that �

∨ j
i=1 ei holds. We proceed by induction on b:

• if b=xa
i or b= ¬xa

i , then k = 1, di = b and ei = �.
• if b=xb

i , where b �= a, then k = 2, d0 = �, e1 = ⊥ and e0 = b, e1 = ¬b.

• if b= b1 ∨ b2 then, by IH, b1 = ∨k1
i=1 d

1
i ∧ e1

i and b2 = ∨k2
j=1 d

2
j ∧ e2

j . Then,

b≡
( k1∨

i=0

d1
i ∧ e1

i

)
∨

( k2∨
j=1

d2
j ∧ e2

j

)

≡
( k1∨

d1
i ∧ e1

i ∧ �
)

∨
( k2∨

d2
j ∧ e2

j ∧ �
)

i=1 j=1

12
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≡
( k1∨

i=1

d1
i ∧ e1

i ∧
∨

j

e2
j

)
∨

( k2∨
j=1

d2
j ∧ e2

j ∧
∨

i

e1
i

)

≡
( k1,k2∨

i=1, j=1

(d1
i ∧ e1

i ∧ e2
j )

)
∨

( k2,k1∨
j=1,i=1

(d2
j ∧ e2

j ∧ e1
i )

)

≡
k1,k2∨

i=1, j=1

(d1
i ∨ d2

j ) ∧ (e1
i ∧ e2

j ).

Let k = k1 · k2. We can identify any l ≤ k − 1 with a pair (i, j), i < k1 and j < k2. Let d, j = d1
i ∨ d2

j and ei, j = e1
i ∨ e2

j . 
Then,

b≡
k1,k2∨

i=1, j=1

di, j ∧ ei, j .

Observe that for (i, j) �= (i′, j′), ei, j ∧ ei′, j′ ≡ ⊥. Moreover, 
∨

i, j ei, j ≡ ∨
i, j e

1
i ∨ e2

j ≡ (∨
i e

1
i

) ∨ (∨
j e

2
j

) ≡ � ∨ � ≡ �.

• if b= b1 ∧ b2, then, by IH, b1 ≡ ∨k1
i=1 d

1
i ∧ e1

i and b2 ≡ ∨k2
j=1 d

2
j ∧ e2

j . Then,

b≡
( k1∨

i=1

d1
i ∧ e1

i

)
∧

( k2∨
j=1

d2
j ∧ e2

j

)

≡
k1,k2∨

i=1, j=1

d1
i ∧ e1

i ∧ d2
j ∧ e2

j

≡
k1,k2∨

i=1, j=1

(d1
i ∧ d2

j ) ∧ (e1
i ∧ e2

j ).

As in the case above, let k1 · k2. We can identify any l ≤ k − 1 with a pair (i, j), i < k1 and j < k2. �
It is worth observing that, while an a-decomposition of b always exists, it needs not be feasibly found, since this formula 
can be of exponential length with respect to b. Yet, a-decompositions can be used to show that the interpretation of a 
quantified formula is a finite union of measurable sets:

Lemma 7 (Fundamental Lemma). Let b be a named Boolean formula with FN(b) ⊆ X ∪ {a} and c = ∨k
i=1 di ∧ ei be an a-

decomposition of b. Then, for all q ∈Q[0,1] ,

{ f ∈ (2N)X | μ(
	 f (�b�)

) ≥ q} =
⋃{

�ei�X | μ(
�di�

) ≥ q
}

{ f ∈ (2N)X | μ(
	 f (�b�)

)
< q} =

⋃{
�ei�X | μ(

�di�
)
< q

}
.

Proof. We only prove the first equality, the second one being established in a similar way. First, note that if q = 0, then 
both sets are equal to (2N )X , so we can suppose q > 0.

⊆ Suppose μ
(
	 f (�b�X∪{a})

) ≥ q. Then, 	 f
(
�b�X∪{a}

)
is non-empty and from b≡ ∨k

i di ∧ ei , we deduce that there exists 
an i ≤ k such that f ∈ �ei�X and for all g ∈ �di�{a} , f + g ∈ �di ∧ei�X∪{a} . This implies then that �di�{a} ⊆ 	 f

(
�b�X∪{a}

)
. 

Moreover, since the sets �ei�X are pairwise disjoint, for all j �= i, f /∈ �ej�X , which implies that 	 f
(
�b�X∪{a}

) ⊆ �di�{a} . 
Hence, 	 f

(
�b�X∪{a}

) = �di�{a} , which implies μ
(
�di�

) ≥ q.
⊇ If f ∈ �ei�X , where μ

(
�di�

) ≥ q, then, since di ∧ ei � b, we have that μ
(
	 f (�b�X∪{a})

) ≥ μ
(
	 f (�di ∧ ei�X∪{a})

) =
μ

(
�di�

) ≥ q. �
An important consequence of the Fundamental Lemma is the following result.

Corollary 1. For any formula A of CPL there exists a named Boolean formula bA such that A ≡ bA .

Proof. We construct bA by induction on A. The only non-trivial cases are when A = Cq
a B and A = Dq

a B . For the first case, by 
IH B ≡ bB , for some named Boolean formula bB ; let 

∨
i di ∧ ei be an a-decomposition of bB , and let I = {i1, . . . , ik} be the 
13
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set of indexes i such that μ(�di�) ≥ q. Then, by the Fundamental Lemma, we can take bA = ei1 ∨ · · · ∨ eik . For the second 
case we can argue in a similar way. �

The result above is analogous to the case of CPL0 - cf. Proposition 2. However, contrarily to that case, there is no 
obvious way to compute bA from A in polynomial time (even with an access to an oracle for �SAT), as the computation of 
a-decompositions for all quantified sub-formulas of A is also required.

Finally, Corollary 1 immediately yields a direct argument showing that the sets interpreting CPL-formulas are Borel sets, 
as they correspond to the interpretation of named Boolean formulas (hence they are all obtained by applying finite unions 
and intersections to cylinders).

6. Multivariate counting logic: correspondence with CH

We have already seen that the problem MajMajSAT can be “captured” using formulas of the form Cq
aCr

b A, where A
is quantifier-free. We now extend this result to all levels of CH by considering formulas in which an arbitrary number of 
counting quantifiers may occur. We proceed in three steps. First, we show that any formula of CPL can be put in prenex 
normal form, that is, that all counting quantifiers can be moved at top-level. Next, we prove that the quantifier D, which 
has no counterpart in Wagner’s problems, can be eliminated. Finally, exploiting a result from [56], we show that prenex 
formulas with k nested C-quantifiers characterize the level k of CH.

6.1. Prenex normal forms

We show that any formula of CPL can be converted into prenex normal form. So, let us start by introducing the notion 
of prenex normal form in the language of CPL:

Definition 18 (PNF). A formula of CPL is an n-ary prenex normal form (or simply a prenex normal form, PNF for short) if it can 
be written as �1 . . .�n A, where, for every i ∈ {1, . . . , n}, �i is either Cq

a or Dq
a (for arbitrary a and q), and A is quantifier-free.

To convert a formula of CPL into an equivalent PNF, some intermediate lemmas are needed. As for QPL, conversion into 
PNF of CPL-formulas can have high complexity. Preliminarily, notice that for every CPL-formula A, name a, and finite set 
X such that FN(A) ⊆ X and a /∈ X , if q = 0, then �Cq

a A�X = (2N)X and �Dq
a A�X = ∅.

We will show that the connectives occurring outside the scope of a counting quantifier can be permuted with it. The 
lemma below considers the case of conjunction and disjunction.

Lemma 8. For all q > 0, the following equivalences hold:

A ∧ Cq
a B ≡ Cq

a(A ∧ B)

A ∧ Dq
a B ≡ Dq

a(¬A ∨ B)

A ∨ Cq
a B ≡ Cq

a(A ∨ B)

A ∨ Dq
a B ≡ Dq

a(¬A ∧ B).

To prove Lemma 8 we need a few preliminary results. Let us first define the following operation on sets:

Definition 19. Let X, Y be two disjoint sets of names. For any X ⊆ (2N)X , the set X⇑Y ⊆ (2N)X∪Y is defined by

X⇑Y = { f + g ∈ (2N)X∪Y | f ∈ X , g ∈ (2N)Y }.
The following useful properties are easily checked:

Lemma 9.

i. 	 f (X ∩Y) = 	 f (X ) ∩ 	 f (Y);
ii. 	 f (X ∪Y) = 	 f (X ) ∪ 	 f (Y);

iii. 	 f (X ) = 	 f (X ).

We will need two more technical lemmas.

Lemma 10. Let X, Y be disjoint sets, FN(A) ⊆ X and f ∈ (2N)X . Then:

i. if f ∈ �A�X , then 	 f
(
�A�X∪Y

) = (2N)Y ;
ii. if f /∈ �A�X , then 	 f

(
�A�X∪Y

) = ∅.

Equivalently, �A�X∪Y = (�A�X )⇑Y .
14
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Proof. We argue by induction on A. The base case is easily checked, and all propositional cases can be handled us-
ing the induction hypothesis together with the suitable clause from Lemma 9. Suppose now A = Cq

a B . If f ∈ �A�X , 
then μ(	 f (�B�X∪{a})) ≥ q; let g ∈ (2N)Y ; by induction hypothesis �B�X∪Y ∪{a} = (�B�X∪{a})⇑Y , and we have that 
	 f +g(�B�X∪{a}∪Y ) = {h | f + h + g ∈ �B�X∪{a}∪Y } = {h | f + h + g ∈ (�B�X∪{a})⇑Y } = {h | f + h ∈ �B�X∪{a}} = 	 f (�B�X∪{a}). 
We deduce then μ(	 f +g(�B�X∪Y ∪{a})) ≥ q, and thus f + g ∈ �A�X∪Y . Since g was chosen arbitrary, this shows that 
	 f (�A�X∪Y ) = (2N)Y . If f /∈ �A�X , then μ(	 f (�B�X∪{a})) < q, and by a similar argument we deduce that, for all f ∈ (2N)Y , 
μ(	 f +g(�B�X∪Y ∪{a})) < q holds, whence 	 f (�A�X∪Y ) = ∅. The case of A = Dq

a B can be treated in a similar way. �
Lemma 11. Assume a /∈ X, FN(A) ⊆ X, f ∈ (2N)X , and q > 0. Then,

μ(	 f (�A�X∪{a})) ≥ q iff f ∈ �A�X

μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) ≥ q iff f ∈ �A�X ∧ μ(	 f (�B�X∪{a})) ≥ q

μ(	 f (�A�X∪{a}) ∪ 	 f (�B�X∪{a})) ≥ q iff f ∈ �A�X ∨ μ(	 f (�B�X∪{a})) ≥ q

μ(	 f (�A�X∪{a}) ∪ 	 f (�B�X∪{a})) < q iff f /∈ �A�X ∧ μ(	 f (�B�X∪{a})) < q

μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) < q iff f /∈ �A�X ∨ μ(	 f (�B�X∪{a})) < q.

Proof sketch. Let us consider the first two cases only. For the first one, we have:

⇒ The proof is by contraposition. Assume f /∈ �A�X . Since a /∈ X and f ∈ (2N)X by hypothesis, we apply Lemma 10.ii, 
obtaining 	 f (�A�X∪{a}) = ∅. Then, μ(	 f (�B�X∪{a})) = μ(∅) = 0 < q.

⇐ Assume f ∈ �A�X . Since a /∈ X and f ∈ (2N)X by hypothesis, we apply Lemma 10.i, obtaining 	 f (�A�X∪{a}) = (2N){a} . 
Then, μ(	 f (�A�X∪{a})) = μ((2N){a}) = 1 ≥ q.

For the second one, preliminarily notice that:

• If f ∈ �A�X , then, since a /∈ X and f ∈ (2N)X , by Lemma 10.i, 	 f (�A�X∪{a}) = (2N){a} . So μ(	 f (�A�X∪{a}) ∩
	 f (�B�X∪{a})) = μ((2N){a} ∩ 	 f (�B�X∪{a})) = μ(	 f (�B�X∪{a})).

• If f /∈ �A�X , then, since a /∈ X and f ∈ (2N)X , by Lemma 10.ii, 	 f (�A�X∪{a}) = ∅. So μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) = 
μ(∅ ∩ 	 f (�B�X∪{a})) = μ(∅) = 0.

Then, we conclude the proof as follows:

⇐ By hypothesis f ∈ �A�X and μ(	 f (�B�X∪{a})) ≥ q. Then, by the first clause above together with the first hypoth-
esis, μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) = μ(	 f (�B�X∪{a})) and clearly, by the second hypothesis, μ(	 f (�A�X∪{a}) ∩
	 f (�B�X∪{a})) ≥ q.

⇒ The proof is by contraposition. If f /∈ �A�X , then, by the second clause above, μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) = 0. So, 
trivially, for any q ∈Q[0,1] , we conclude μ(	 f (�A�X ) ∩ 	 f (�B�X∪{a})) < q. Otherwise, f ∈ �A�X and μ(	 f (�B�X∪{a})) <
q. Observe that for the first clause above, μ(	 f (�A�X∪{a}) ∩	 f (�B�X∪{a})) = μ(	 f (�B�X∪{a})) < q. We can then conclude 
μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) < q. �

We can now prove Lemma 8.

Proof of Lemma 8. We only illustrate the case of A ∧ Cq
a B ≡ Cq

a(A ∧ B). We will show that for any set of names X such that 
a /∈ X , FN(A) ⊆ X and FN(B) ⊆ X ∪ {a}, �A ∧ Cq

a B�X = �Cq
a(A ∧ B)�X . Using Lemma 9 i. as well as the second clause from 

Lemma 11, we have that, for all f ∈ (2N)X ,

f ∈ �Cq
a(A ∧ B)�X iff μ(	 f (�A�X∪{a} ∩ �B�X∪{a})) ≥ q

iff μ(	 f (�A�X∪{a}) ∩ 	 f (�B�X∪{a})) ≥ q
iff f ∈ �A�X and μ(	 f (�B�X∪{a})) ≥ q
iff f ∈ �A ∧ Cq

a B�X .

All other cases can be proved in a similar way, exploiting the appropriate clauses from Lemma 9 and Lemma 11. �
Remarkably, a corresponding lemma does not hold for CPL0, due to the impossibility of renaming variables (on which 
Lemma 8 relies).

The lemma below considers the case of negation:
15
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Lemma 12. For every q ∈Q[0,1] ,

¬Dq
a A ≡ Cq

a A ¬Cq
a A ≡ Dq

a A.

Using Lemma 8 and Lemma 12, we can conclude that every formula of CPL can be put in PNF, as desired.

Proposition 6. For every formula A of CPL there is a PNF B, such that A ≡ B holds. Moreover, B can be computed in polynomial time 
from A.

6.2. Positive prenex normal forms

Reducing formulas to PNF is close to what we need, but there is one last step to make, namely getting rid of the 
quantifier D, which does not have any counterpart in Wagner’s construction. In other words, we need to reduce CPL-
formulas to prenex normal forms of a special kind:

Definition 20 (PPNF). A formula of CPL is said to be a positive prenex normal form (PPNF, for short) when it is both PNF and 
D-free.

The gist to convert formulas into (equivalent) PPNF, consists in two main steps: (i) converting each instance of D into one 
of C, using Lemma 12, and (ii) applying the lemma below which states that C enjoys a specific, weak form of self duality, to 
push the negation inside the matrix. In order to prove (ii) we need to introduce some auxiliary definition and to establish 
some results, in particular the so-called Epsilon Lemma, which in its turn relies on some preliminary lemmas.

First of all, for all k ∈ N , let [0, 1]k indicate the set of dyadic rationals of the form q = ∑k
i=1 bi · 2−i , where bi ∈ {0, 1}. 

Notice that, for all p ≤ 2k , p
2k ∈ [0, 1]k .

Lemma 13. For any Boolean formula b with FN(b) ⊆ {a}, μ
(
�b�

) ∈ [0, 1]k, where k is the maximum natural number such that xa
k−1

occurs in b.

Proof. Let p ≤ 2k indicate the number of valuations m : {xa
0, . . . , xa

k−1} → {0, 1} that make b true. Then, by Lemma 1, 
μ(�b�) = p · 2−k ∈ [0, 1]k . �
Lemma 14. For all X ∈ B

(
(2N)X

)
and r ∈ [0, 1], μ(X ) ≤ r holds iff μ(X ) ≥ 1 − r.

Proof. The claim follows from 1 = μ
(
(2N)X

) = μ(X ∪X ) = μ(X ) + μ(X ). �
We now have all ingredients to prove the Epsilon Lemma:

Lemma 15 (Epsilon Lemma). For every formula A of CPL, a ∈ FN(A) and q ∈ Q[0,1] , there is ε ∈ Q[0,1] such that ¬Cq
a A ≡

C1−(q+ε)
a ¬A. Moreover, ε can be computed from q in polynomial time.

Proof. Let bA (Remark 1) be a-decomposable as 
∨n

i di ∧ei and let k be maximum such that xa
k occurs in bA . By Lemma 13, 

for all i = 0, . . . , n, μ
(
�di�{a}) ∈ [0, 1]k . This implies in particular that for every f : X → 2N , μ

(
	 f

(
�A�X∪{a}

)) ∈ [0, 1]k , 
since 	 f

(
�A�X∪{a}

))
coincides with the unique �di�{a} such that f ∈ �ei�X , by Lemma 7. Now, if q /∈ [0, 1]k , let ε = 0 and if 

q ∈ [0, 1]k , then: if q = 1, let ε = −2−(k+1) , and if q �= 1, let ε = 2−(k+1) . In all cases q +ε /∈ [0, 1]k . So, for all X ⊇ FN(A) −{a}, 
we deduce:

�¬Cq
a A�X = { f : X → 2N | μ(

	 f
(
�A�X∪{a}

))
< q}

= { f : X → 2N | μ(
	 f

(
�A�X∪{a}

)) ≤ q + ε}
L14= { f : X → 2N | μ(

	 f
(
�A�X∪{a}

)) ≥ 1 − (q + ε)}
L9= { f : X → 2N | μ(

	 f
(
�¬A�X∪{a}

)) ≥ 1 − (q + ε)}
= �C1−(q+ε)

a ¬A�X . �
From Lemma 15 it follows that any PNF can be transformed into a PPNF, so we deduce the following:

Proposition 7. For every formula A of CPL there is a PPNF B such that A ≡ B holds. Moreover, B can be computed from A in polynomial 
time.
16
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6.3. CPL and the counting hierarchy

We now have all ingredients to establish our main result, that is, the correspondence between CPL and the counting 
hierarchy. The hierarchy CH, introduced in [56], consists in the sequence of complexity classes CHn defined by

CH0 = P CHn+1 = PPCHn .

It is well-known that MajSat, which asks to decide whether a Boolean formula is satisfied by the majority of its models, is a 
complete problem for PP = CH1. Moreover, the already mentioned problem MajMajSat is complete for PPPP = CH2. More 
generally, in the same work Wagner defined complete problems for each level of CH, which can be seen as generalizations 
of the two problems just mentioned. Below, we present a slightly weaker version of Wagner’s Theorem [56, pp. 338-339], 
which perfectly fits our needs.

Let S be a set and suppose L is any subset of Sn , with 1 ≤ m < n, and let b ∈N . We define Cb
mL as the following subset 

of Sn−m:

Cb
mL = {(an, . . . ,am+1) | #({(am, . . . ,a1) | (an, . . . ,a1) ∈ L}) ≥ b} .

For any natural number n ∈ N , let T Fn be the set of all tuples of the form (t1, . . . , tn, A), where A is a propositional 
formula in CNF with at most n free variables x1, . . . , xn , and t1, . . . , tn ∈ {T, F} render A true. Finally, for every k ∈ N , let 
Wk be the language consisting of all (binary encodings of) tuples of the form (m1, . . . , mk, b1, . . . , bk, A) such that A ∈
Cb1

m1 · · ·Cbk
mk
T F

∑
mi .

Theorem 1 ([56], Th. 7). For every k, the language W k is complete for CHk.

Observe that elements of W k can be seen as alternative representations for PPNF formulas of CPL, once any mi is replaced 
by min{1, mi

2bi
}. As a consequence, we finally obtain the following claim, which shows, as desired, that the formulas of CPL

in PPNF provide complete problems for all levels of the counting hierarchy.

Corollary 2. The closed and valid k-ary PPNFs, whose matrix is in CNF, define a complete set for CHk.

7. Multivariate counting logic: proof theory

In this section we define a sound and complete proof system for CPL. As most arguments are straightforward variants 
of those developed in Section 7 for CPL0, we omit most proofs. We introduce named variants of sequents and external 
hypotheses.

Definition 21 (Named external hypothesis). A named external hypothesis is an expression of one of the following forms:

• a ∈ X ,
• μ

(
�b�

) = 0 or μ
(
�b�

) = 1,
• b�X c.

Moreover, with a slight abuse of notation, given an a-decomposition formula 
∨

i ci ∧ di and q ∈ Q[0,1] , we indicate as ∨
i

{
ci | μ(

�di�
) � q

}
(with � ∈ {≥, ≤, >, <, =}) the Boolean formula ci1 ∨ · · · ∨ cin , where {i1, . . . , in} is the set of all 

indexes i such that the condition μ
(
�di�

) � q holds.

Analogously to the case of CLK0, a labelled formula is an expression of one of the forms b� A or b� A, where 
b is a named Boolean formula and A is a CPL-formula. A labelled formula b� A (resp. b� A) is valid when, letting 
X = FN(b) ∪ FN(A), �b�X ⊆ �A�X (resp. �b�X ⊇ �A�X ). A labelled sequent is an expression of the form � L, where L is a 
labelled formula. � L is valid (noted � L) when L is.

We define a one-sided, single-succedent and labelled sequent calculus, called CLK, in analogy with the system CLK0. 
Most rules are straightforward extensions of those of CPL0. The counting rules rely on the Fundamental Lemma 7. The 
rules of CLK are displayed in Fig. 4 As before, let us call R�

μ and R�
μ μ-rules. The notion of derivation height is defined as 

for CPL0.

The proofs of soundness and completeness for CLK are structurally very similar to those for CLK0. For this reason, we 
just sum up their structure and briefly explain a few discrepancies with CPL0.

Soundness is established as for CLK0, by standard induction on the height of derivations. Notice that, in this case, the 
argument for the μ-rules relies on Lemma 7.
17
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Initial Sequents

b�xa
i

Ax1� b� ia

xa
i � b

Ax2� b� ia

Union Rule

� c� A � d� A b� c∨ d
R�∪� b� A

Intersection Rule

� c� A � d� A c∧ d� b
R�∩� b� A

Logical Rules

� c� A b�¬c
R�

¬� b� ¬A

� c� A ¬c� b
R�

¬� b� ¬A

� b� A
R1�∨� b� A ∨ B

� b� B
R2�∨� b� A ∨ B

� b� A � b� B
R�∨� b� A ∨ B

� b� A � b� B
R�∧� b� A ∧ B

� b� A
R1�∧� b� A ∧ B

� b� B
R2�∧� b� A ∧ B

Counting Rules

μ
(
�b�

) = 0
R�

μ� b� A

μ
(
�b�

) = 1
R�

μ� b� A

� c� A b�∨
i{ei | μ

(
�di�

) ≥ q}
R�

C� b� Cq
a A

� c� A
∨

i{ei | μ
(
�di�

) ≥ q}� b
R�

C� b� Cq
a A

� c� A
∨

i{ei | μ
(
�di�

) ≥ q}�¬b
R�

D� b� Dq
a A

� c� A ¬b�∨
i{ei | μ

(
�di�

) ≥ q}
R�

D� b� Dq
a A

where ∨i ei ∧ di is an a-decomposition of c.

Fig. 4. Proof System for CLK.

Proposition 8 (Soundness of CLK). If �CLK L then � L.

Proof sketch. We show that, if �CLK b � A (resp. �CLK b � A) holds, then for any X ⊇ FN(b) ∪ FN(A), �b�X ⊆ �A�X

(resp. �A�X ⊆ �b�X ). The proof is by induction on the height of the derivation of � L.

• Base case. The sequent is either initial or derived by a μ-rule. Let us just consider Ax1 as an example. Assume that the 
derivation is as follows:

b�xa
i

Ax1� b� ia

Let X ⊇ FN(b) ∪ {a}. From b�xa
i , we deduce that �b�X ⊆ �xa

i �X = { f ∈ (2N)X | f (a)(i) = 1} = �ia�X . Hence � b� ia is 
valid.

• Inductive case. Let us consider the counting rule R�
C as an example. Assume that 

∨
i ei ∧ di is an a-decomposition of c

and that the derivation is as follows:
18
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.

.

.

� c� A b�
∨

i{ei | μ(�di�) ≥ q}
R�

C� b� Cq
a A

Let X ⊇ FN(Cq
a A) ∪ FN(b) and let Y be such that Y ∪ {a} ⊇ X ∪ FN(c). We can suppose w.l.o.g. that a /∈ X, Y . From 

b�
∨

i{ei | μ(�di�) ≥ q}, via Lemma 7, we deduce that �b�Y ⊆ { f ∈ (2N)Y | μ(
	 f

(
�c�Y ∪{a}

)) ≥ q}. From � c� A, by 
IH, we furthermore deduce �c�Y ∪{a} ⊆ �A�Y ∪{a} , which implies �b�Y ⊆ { f ∈ (2N)Y | μ(

	 f
(
�A�Y ∪{a}

)) ≥ q}. Now, using 
Lemma 10, we have that, letting Y = X ∪ X ′ , with X, X ′ disjoint, �b�Y = (�b�X )⇑X ′ and �A�Y ∪{a} = (�A�X∪{a})⇑X ′ ; using 
these facts, we can deduce that �b�X ⊆ { f ∈ (2N)X | μ(

	 f
(
�A�X∪{a}

)) ≥ q}, that is �b�X ⊆ �Cq
a A�X , as desired. �

Again, the completeness argument is similar to the one given for CLK0. Also in this case, it is based on a decomposition 
relation � between sets of sequents. Just to give an idea of how �0 is defined, we show a few examples of reduction:

if b� ¬c, � b� ¬A �0 {� c� A}
if b� c∨ d, � b� A ∨ B �0 {� c� A,� d� B}

if b�
∨

i

{ei | μ(�di�{a}) ≥ q}, � b� Cq
a A �0 {�X∪{a} c� A}.

where in the last case it is assumed that c= ∨
i ei ∧ di is an a-decomposition of c.

Again, as for CLK0, � is the natural lifting of �0 to a relation between sets of sequents and predicates about sequents 
can be generalized to predicates about sets. “Multivariate” � is still strongly normalizing, as can be easily established by 
exhaustive analysis of all possible (named) �0.

The notions of �-normal forms, normalization and basic sequents are straightforward generalizations to named sequents 
of the corresponding definitions, as presented in Section 4. Also the proofs of the properties below can be obtained as for 
the univariate language of CLK0, by simply switching to the context of named sequents and of the corresponding (named) �0 (and using the Lemma 7 and Lemma 15).

Proposition 9.

i. If a sequent is �0-normal, then it is valid if and only if derivable in CLK.
ii. Each valid sequent of CLK has a valid �-normal form.1

iii. Given a set of (named) sequents � and �, if � � � and � is derivable in CLK, then � is derivable in CLK.

As in Section 4, completeness easily follows by combining these properties.

Proposition 10. � L implies �CLK L.

8. Related works

Probability logics In the last decades, several probabilistic logical systems have been developed in the realm of modal 
logic, starting from the pioneering works by [39,40]. In particular, in the 1990s, some noteworthy probability logics were 
(independently) introduced both by [7,5,6] and by [17,22,16,23]. In particular, Bacchus defined probability terms in a way 
which is not too different from how we define formulas in CPL0 (even though he considers terms rather than formulas).

Another class of probabilistic modal logics have been designed to model Markov chains and similar structures, see 
for instance [24,30,32]. Some of these logics are probabilistic extensions of CTL, the standard logic for model-checking. 
Differently from CPL, in these systems, modal operators have a dynamical meaning, as they describe transitions in Markov 
decision processes.

While these approaches focus on semantics, several calculi for probabilistic logics have also been studied. On the one 
hand, complete axiomatic systems have been provided for the two probability logics mentioned above [7,17]. The proba-
bilistic logic in [33], which admits a sound and complete axiomatic system, is somehow reminiscent of our system CPL0. 
Another sequent calculus is provided in [11] for a logic describing Carnap-Popper-type probability models. However, our 
calculi are actually inspired by labelled systems, e.g. G3K∗ and G3P∗ , as presented for example in [38,21].

As we said, our notion of counting quantifiers was mostly inspired by Wagner’s counting operator over languages, [54,
56,55]. Other proof-theoretic approaches to probabilistic logics have been studied in connection with computational aspects. 

1 As for CLK0 the proof is by exhaustive inspection of all possible forms of �0. Notice that, when dealing with named sequents, the proof for the 
counting cases relies on Lemma 7 and Lemma 15.
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For instance, Riesz modal logic [18], which admits a sound and complete sequent calculus, was developed to describe prop-
erties of probabilistic Markov processes. [25] describes an extension of linear logic with two probabilistic connectives and 
a deep inference calculus, also with the goal of describing probabilistic processes. Finally, several probabilistic extensions of 
relational logics (like probabilistic relational Hoare logic [8]) have been developed for probabilistic verification (e.g. to formally 
prove properties like differential privacy or the security of cryptographic protocols).

Models of probabilistic computation Probabilistic models and randomized computation are pervasive in many areas of 
computer science and programming. From the 1950s on, the interest for probabilistic algorithms and models started 
spreading, see [31,15,13,43–45,48], and probabilistic computation has been intensively studied by the TCS community, see 
[43,46,31,47]. Nowadays, well-defined computational models, such as randomized variations on probabilistic automata, (both 
Markovian and oracle) Turing machines [46,47,19], and λ-calculi, are available.

Probabilistic complexity classes and the counting hierarchy The counting hierarchy was (independently) defined in the 1980s 
by [54–56] and, by [42]. It was conceived as an extension of [36,37]’s PH aiming at characterizing natural problems in which 
counting is involved. As proved in [52], there are two main, equivalent characterization of CH: the original characterization 
in terms of alternating quantifiers, [56], and the one based on oracles, [51].

Notably, Wagner’s operator was not the only “probabilistic” (class) quantifier introduced in the 1980s. For example, 
[41] characterizes PPSPACE by alternating standard and probabilistic quantifiers, the latter ones expressing that more than 
the half of the strings of a certain length satisfy the underlying predicate. [59] characterizes BPP by means of a random
quantifier. [58] also considered the relationship between classical and probabilistic classes introducing other quantifiers, such 
as the overwhelming and majority ones. However, to the best of the authors’ knowledge, all these operators are counting 
quantifiers on (classes of) languages, rather than stricto sensu logical ones. One remarkable exception is represented by 
[29,28]’s work, in which second-order quantifiers are defined in the style of descriptive complexity.

9. Conclusion

To the best of our knowledge, CPL is the first logical system extending propositional logic with counting quantifiers. 
Our main source of inspiration comes from computational complexity, namely from Wagner’s counting operator on classes. 
By the way, we believe that the main contribution of the paper is not the introduction of counting logics per se, but the 
investigation of its connections with counting classes. Indeed, we have shown that counting quantifiers play nicely with 
propositional logic in characterizing CH, and thus relate nicely with some old and recent results in complexity theory. In 
our opinion, CPL naturally appears as the probabilistic counterpart of QPL.

Due to space reasons, we left out some important applications of counting propositional logic to other branches of 
computer science, such as the theory of programming languages. In particular, it is possible to design type systems for the 
randomized λ-calculus by extending simple types with counting quantifiers, and to define a probabilistic counterpart of 
the Curry-Howard correspondence (see, e.g. [20,49]) relating typing derivations with derivations in an intuitionistic variant of 
CLK, see [3]. Moreover, the proof theory of CPL has just been briefly delineated and the dynamics (i.e. the cut-elimination 
procedure) of the introduced formal systems deserves further investigation.

Promising results also concern the possibility to inject counting quantifiers into the language of arithmetic. In particular, 
in [2] we have investigated an extension of standard Peano Arithmetics with measure quantifiers, which can be seen as 
a natural generalization of the quantifiers of CPL0 to the language of arithmetic. The extension of counting quantifiers to 
arithmetic looks particularly promising, as it suggests ways of characterizing in a somehow logical way explicit lower bounds 
for counting problems [35], as well as the possibility of defining new logical systems capturing probabilistic complexity 
classes like e.g. BPP (see for instance [26]).
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