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ON THE PARTIAL AND MICROLOCAL REGULARITY FOR

GENERALIZED MÉTIVIER OPERATORS

G. CHINNI

Abstract. The partial and the microlocal regularity are provided via L2-

estimate and via FBI-transform respectively, for the following generalization

of the Métivier operator, [26],

D2
x +

(
x2n+1Dy

)2
+ (xnymDy)2 ,

in Ω open neighborhood of the origin in R2, where n and m are positive

integers.

1. Introduction

In [26] G. Métivier studied the hypoellipticity for a class of second order partial
differential operators with analytic coefficients in Ω, open neighborhood of the origin
in Rn, whose principal symbol vanishes exactly of order two on a submanifold of
T ∗Ω. In the case of sum of squares of vector fields the most representative model
of such class is the following

PM = D2
x + x2D2

y + (yDy)
2
.(1.1)

Métivier proves that the operator (1.1) is G2-hypoelliptic and not better at the
origin.
In [17] we studied the hypoellipticity of the following generalization of the Métivier
operator

(1.2) Mn,m =

3∑
j=1

X2
j = D2

x +
(
x2n+1Dy

)2
+ (xnymDy)

2
,

in Ω open neighborhood of the origin. Here n and m are positive integers. In

[17] we show that the operator Mn,m is G
2m

2m−1 -hypoelliptic and not better in any
neighborhood of the origin.
Throughout the paper we need the definition of Gevrey regularity as well as of
partial Gevrey regularity:

Definition 1.1. A smooth function f defined in U , open subset of Rn, belongs to
Gs(U), s ≥ 1, the class of Gevrey functions of order s in U , if for every compact
set K b U there is a positive constant CK such that

|Dαf(x)| ≤ C |α|+1
K |α|s|α|, ∀α ∈ Zn+ and ∀x ∈ K.

When s = 1 we shall say that u is analytic in U , u ∈ Cω(U).
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2 G. CHINNI

The function f(x0, x1, . . . , xn) belongs to the anisotropic Gevrey class G(α0,α1,...,αn)(U)
at the point x0 if there exists a neighborhood, U , of x0 and a constant Cf such that
for all multi-indices β

|Dβf | ≤ C |β|+1
f β!α in U,

where β!α = β0!α0β1!α1 . . . βn!αn .

Definition 1.2. A differential operator P is said to be Gs-hypoelliptic, s ≥ 1, in Ω,
open subset of Rn, if for any Ω1 open subset of Ω, the conditions u ∈ D ′ (Ω1) and
Pu ∈ Gs(Ω1) imply that u ∈ Gs(Ω1). When s = 1 we shall say that P is analytic
hypoelliptic.

Definition 1.3. A sum of squares operator

(1.3) P =

m∑
j=1

(Xj(x,D))
2
,

where Xj are vector fields in Ω, open subset of Rn, with real-valued real analytic
coefficients, satisfies the Hörmander condition if the Lie algebra generated by the
vector fields Xj and their commutators has the dimension equal to the dimension
of the ambient space, that is n.

The operator Mn,m satisfies the Hörmander condition.
Furthermore by the results in [23],[28] and [5] the following subelliptic a priori
estimate holds:

(1.4) ‖u‖21/2(n+1) +

3∑
j=1

‖Xju‖2 ≤ C
(
|〈Mn,mu, u〉|+ ‖u‖2

)
,

Here u ∈ C∞0 (Ω), ‖ · ‖0 denotes the norm in L2(Ω) and ‖ · ‖s the Sobolev norm of
order s in Ω.
The study of these models is motivated by the problem of the analytic hypoel-
lipticity sum of squares of vector fields with real-valued real analytic coefficients,
satisfying the Hörmander condition.
A famous example, useful to better understand the complexity of the problem, is due
to Baouendi and Goulaouic, [4]. They studied the operator PBG = D2

1 +D2
2 +x2

1D
2
3,

in R3, showing that it is G2-hypoelliptic and no better in any neighborhood of the
origin.
Both PBG and PM have non symplectic characteristic varieties, but in the case of
the Baouendi-Goulaouic operator the Hamilton (bicharacteristic) leaf lies on the
base of the cotangent bundle, whereas, in the case of the Métivier operator, the
Hamilton leaf lies along the fiber of the cotangent bundle.
In 1996 [31] Treves suggested that the analytic hypoellipticity could depend on
suitable geometrical properties of the characteristic variety, and he proposed to
use the Poisson-Treves stratification (see [32] and [13]), formulating the following
conjecture:

Conjecture: Let P be as in (1.3). Then P is analytic hypoelliptic if and only if
every Poisson stratum of the characteristic variety is symplectic.

Recently in [3] and in [8] it has been shown that the sufficient part of the Treves
conjecture does not hold neither locally nor microlocally in dimension greater or
equal to 4. Moreover it is believed that it does not hold also in dimension 3.
The results in [3] and in [8] have de facto completely reopened the problem of the
analytic hypoellipticity of operators of the form (1.3).
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In dimension 2 no counterexamples are known, but it is believed that the Treves
conjecture holds.
For completeness we recall that F. Treves, in [32], has also stated a conjecture in
the global case: P is globally analytic hypoelliptic on Ω, compact analytic manifold
without boundary and countable at infinity, if and only if every Poisson stratum of
the characteristic variety has the following property: the closure in T ∗Ω of every
bicharacteristic leaf is compact.
We point out that the scenario can be very different moving from the local to the
global case see [20], [7], [16], [18].
We emphasize that at present, contrary to what happens in the local case, the
global Treves conjecture has not yet been proved or disproved.
In order to try to better understand what happens in dimension 2, we continue
the study started in [17], and in this paper we analyze the partial and microlocal
regularity of the operator (1.2).
In [12], Bove and Tartakoff studied the partial regularity of the Baouendi-Goulaouic
operator and more in general of the Olĕınik-Radkevič operator, [27], POR = D2

t +
t2(p−1)D2

x + t2(q−1)D2
y, where 1 < p ≤ q and p, q ∈ N. They prove that POR is

Gq/p-hypoelliptic and moreover that if u solves the problem PORu = f , f analytic,
then u ∈ G(s0,s1,s2), where s0 ≥ 1− 1

q + 1
p , s1 ≥ 1 and s2 ≥ q

p ; their result is sharp

(for generalization of this result in dimension greater then three see [14], [15].)
We state our result about the partial regularity of the operator (1.2).

Theorem 1.1. Let u be a solution to the equation Mn,mu = f , n ≥ 1, f analytic.

Then u ∈ G(s0,s1) where s1 = 2m
2m−1 and s0 = 1 + 1

(n+1)(2m−1) .

Remark 1.1. We point out that in the above Theorem, we may assume that f
belongs to G(s0,s1), moreover by Theorem 3.1 in [25] we deduce that u ∈ G(s0,s1)

with s1 ≥ 2m
2m−1 and s0 ≥ 1 + 1

(n+1)(2m−1) .

Remark 1.2. The Gevrey regularity index, 2m
2m−1 , is in accordance with that ob-

tained in [11] and in [9].
In the case of the Métivier operator (1.1), using the same strategy adopted in the
proof of the Theorem 1.1, we have that the solutions u to the problem PMu = f , f
analytic, belong to G(s0,s1), where s1 = 2 and s0 = 3

2 .
We notice that this partial regularity with respect to x is better if compared to that
obtained in Theorem 1.1. This fact will be clarified at the end of the proof of the
theorem, see Remark 2.2.

Concerning the microlocal regularity, the operator Mn,m has the following charac-
teristic set

Char(Mn,m) = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, and η 6= 0},
the related Poisson-Treves stratification is given by

Σ0 = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, y 6= 0, η 6= 0},
Σ1 = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, y = 0, η 6= 0}.

From the point of view of the microlocal regularity, we recall the definition of the
Gevrey (analytic) wave front set of a distribution (function).
First of all we define the cutoff functions that are used for both the Gevrey and the
analytic case defined e.g. in Ehrenpreis [21] (see also Hörmander [24]).
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Definition 1.4. For any N natural number, denote by φN = φN (y) a function in
C∞0 (Rm). We say that φN is an Ehrenpreis sequence of cutoff functions if there is
a positive constant R such that for |α| ≤ RN we have, for every N

|∂αy φN (y)| ≤ C |α|+1
φ N |α|,

where Cφ > 0 and independent of N .

Next we define the Gevrey and analytic wave front set (see [24].) Definition 3.1
gives an equivalent definition more suitable when working with the FBI transform.

Definition 1.5. Let x0 ∈ U and ξ0 ∈ Rn \ {0} and u ∈ D ′(U). Let s ≥ 1. We say
that the point (x0, ξ0) 6∈WFs(u) if and only if there is an open neighborhood U ′ of
x0 and a conic neighborhood Γ of ξ0 and a sequence of Ehrenpreis cutoff functions
identically equal to 1 on U ′ such that

(1.5) |φ̂Nu(ξ)| ≤ CN+1NNs|ξ|−N , N = 1, 2, . . .

for every ξ ∈ Γ and for a suitable positive constant C independent of N .

Theorem 1.2. Let u be a solution of the problem Mn,mu = f , then If ρ1 ∈ Σ1 and
ρ1 /∈WFs0(f) then ρ1 /∈WFs0(u), where s0 = 2m

2m−1 , if ρ0 ∈ Σ0 and ρ0 /∈WFa(f)

then ρ0 /∈WFa(u).

We remark that the microlocal regularity obtained for the operator Mn,m remains
the same if we perturb the operator adding a pseudodifferential operator of order
less then (2n+ 2)−1, this is a consequence of the result in [6].
The partial regularity of the solutions of the problem Mn,mu = f , f ∈ Cω(Ω), will
be obtained using the same technique as in [12], more precisely we will estimate a
suitable localization of a high derivative in the direction Dy and Dx iteratively us-
ing the subelliptic estimate (1.4); the microlocal regularity of the points in Σ0 will
be obtained via FBI-technique (FBI=Fourier-Bros-Iagolnitzer), taking advantage
of a result in [2].

Acknowledgement. The authors would like to thank the anonymous referee for
her/his comments and suggestions in order to improve the manuscript.

2. Partial regularity, proof of the Theorem 1.1

2.1. Regularity with respect y-direction. Let ψN (x, y) be an Ehrenpreis cutoff
sequence. Since in the region x 6= 0 the operator Mn,m is elliptic we may assume
that ψN is independent of the variable x, since in that region analytic regularity is
expected.
In view of [9] we have the estimate

(2.1) ‖ψkDk
yu‖ 1

2(n+1)
≤ Ck+1ks1k,

where s1 = 2m
2m−1 and C is a suitable positive constant independent of k.

2.2. Regularity with respect x-direction. Let ψN be an Ehrenpreis-Hörmander
cut-off sequence as in the previous paragraph. We replace u by ψN (y)Dk

xu in (1.4).
We have

(2.2) ‖ψNDk
xu‖2ε +

3∑
j=1

‖XjψND
k
xu‖20 ≤ C

(
|〈MψND

k
xu, ψND

k
xu〉|+ ‖ψNDk

xu‖20
)
,
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where we set 1
2(n+1) = ε and Mn,m = M .

We start by treating the last term on the right hand side. Since it can be rewritten
as ‖X1ψND

k−1
x u‖20, we can use the subelliptic estimate and restart the process.

More precisely, we have

C‖ψNDk
xu‖20 = C‖X1ψND

k−1
x u‖20 ≤ C

3∑
j=1

‖XjψND
k−1
x u‖20

≤ C2
(
|〈MψND

k−1
x u, ψND

k−1
x u〉|+ ‖ψNDk−1

x u‖20
)
.

Now, focusing on the last term on the right hand side and using the same strategy
adopted above, it can be estimate by

C2‖ψNDk−1
x u‖20 = C2‖X1ψND

k−2
x u‖20

≤ C3
(
|〈MψND

k−2
x u, ψND

k−2
x u〉|+ ‖ψNDk−2

x u‖20
)
.

So, after k steps we obtain

C‖ψNDk
xu‖20 ≤

k∑
j=1

Cj |〈MψND
k−j
x u, ψND

k−j
x u〉+ Ck‖ψNu‖20.

The last term in the sum gives analytic growth, the other terms in the sum,
|〈MψND

k−j
x u, ψND

k−j
x u〉, j = 1, . . . , k − 1, can be handled as the first term on

the right hand side of (2.2), which we are about to analyze. The last term can be

bounded by Ck+1
1 .

Let us now focus on the scalar product:

(2.3) |〈MψND
k
xu, ψND

k
xu〉| ≤ |〈ψNDk

xMu,ψND
k
xu〉|

+ 2|〈
[
x2n+1Dy, ψND

k
x

]
u,X2ψND

k
xu〉|+ 2|〈

[
xnymDy, ψND

k
x

]
u,X∗3ψND

k
xu〉|

+ |〈
[
x2n+1Dy,

[
x2n+1Dy, ψND

k
x

]]
u, ψND

k
xu〉|

+ |〈
[
xnymDy,

[
xnymDy, ψND

k
x

]]
u, ψND

k
xu〉|

= |〈ψNDk
xMu,Dk

xu〉|+
4∑
q=1

Iq.

Let us estimate the terms in the sum above.
I1. Using the following formula

[
Dk
x, x

p
]
u =

inf{p,k}∑
`=1

k!

(k − `)!

(
p

`

)(
1

i

)`
xp−`Dk−`

x ,(2.4)

where k and p are positive integers, we have

(2.5) I1 ≤ 2|〈x2n+1ψ
(1)
N Dk

xu,X2ψND
k
xu〉|

+ 2

inf{2n+1,k}∑
`=1

k!

(k − `)!

(
2n+ 1

`

)
|〈x2n+1−`ψND

k−`
x Dyu,X2ψND

k
xu〉|

≤ 2C0δ
−1‖ψ(1)

N Dk
xu‖+

δ

2
‖X2ψND

k
xu‖
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+42n+1

inf{2n+1,k}∑
`=1

C`k
2`‖x2n+1−`ψND

k−`
x Dyu‖2+

inf{2n+1,k}∑
`=1

1

C`

 ‖X2ψND
k
xu‖2,

where Cj , j = 1, . . . k+ 1, are arbitrary constants. We choose Cj = δ−12j+1, where

δ is a fixed small positive constant. Since
(∑inf{2n+1,k}

`=1
1
C`

)
≤ δ/2, the sum of

the second and the last term on the right hand side of (2.5) can be estimated by
δ‖X2ψND

k
xu‖2; it can be absorbed on the left hand side of (2.2). Concerning the

first term on the right hand side, setting 2C0δ
−1 = C̃0, we can use the subelliptic

estimate and restart the process:

C̃0‖ψ(1)
N Dk

xu‖ = C̃0‖X1ψ
(1)
N Dk−1

x u‖ ≤ C̃0

3∑
j=1

‖Xjψ
(1)
N Dk−1

x u‖20

≤ C̃0C
(
|〈Mψ

(1)
N Dk−1

x u, ψ
(1)
N Dk−1

x u〉|+ ‖ψ(1)
N Dk−1

x u‖20
)
.

The last term on the right hand side can be submitted to the same treatment used to
handle the last term on the right of (2.2). The scalar product can be handled as done
in (2.3), producing, modulo terms which give analytic growth, terms of the form

|〈Xi[Xi, ψ
(1)
N Dk−1

x ]u, ψ
(1)
N Dk−1

x u〉| and |〈[Xi, [Xi, ψ
(1)
N Dk−1

x ]]u, ψ
(1)
N Dk−1

x u〉|, i = 2, 3.
On all these terms we can restart the processes used to treat the terms Iq, q =
1, 2, 3, 4, on the right hand side of (2.3). We point out that one x-derivative on u is

turned in one derivative on ψN . Now, the term |〈X2[X2, ψ
(1)
N Dk−1

x ]u, ψ
(1)
N Dk−1

x u〉|
can be estimated as done in (2.5), obtaining a term of the form ‖ψ(2)

N Dk−1
x u‖.

Such term has the some form of the first term on the right hand side of (2.5),
we can restart the process above described. So, after k steps, modulo terms

which give analytic growth or terms of the form |〈Xi[Xi, ψ
(j)
N Dk−j

x ]u, ψND
k
xu〉| and

|〈[Xi, [Xi, ψ
(j)
N Dk−j

x ]]u, ψND
k
xu〉|, i = 2, 3 and 1 ≤ j ≤ k − 1, we will obtain a term

of the form C̃k1 ‖ψ
(k)
N u‖, which gives analytic growth.

We focus on the terms in the sum on the right hand side of the above inequality.
We use the Young inequality for products

(
√

2k)`|x|2n+1−` = (
√

2k)(1−θ`)`|x|2n+1−`(
√

2k)θ``

≤
(

(
√

2k)(1−θ`)`|x|2n+1−`
)q

+
(

(
√

2k)θ``
)p
,

where q−1 + p−1 = 1 and θ` is a parameter that we will select later. Choosing
q = 2n+1

2n+1−` and p = 2n+1
` we obtain

(
√

2k)`|x|2n+1−` ≤ (
√

2k)(1−θ`) `(2n+1)
2n+1−` |x|2n+1 + (

√
2k)θ`(2n+1).

Thus we can estimate each term in the sum by

(2.6)

C2`k2`‖x2n+1−`ψND
k−`
x Dyu‖2 ≤ C(

√
2k)2(1−θ`) `(2n+1)

2n+1−` ‖x2n+1ψND
k−`
x Dyu‖2

+ C(
√

2k)2θ`(2n+1)‖ψNDk−`
x Dyu‖2

= C(
√

2k)2(1−θ`) `(2n+1)
2n+1−` ‖X2ψND

k−`
x u‖2 + C(

√
2k)2θ`(2n+1)‖X1ψND

k−(`+1)
x Dyu‖2
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+ C(
√

2k)2(1−θ`) `(2n+1)
2n+1−` ‖x2n+1ψ

(1)
N Dk−`

x u‖2.

For the first term on the right hand side we use the subelliptic estimate (1.4), thus

restarting the process with u replaced by C1/2(
√

2k)(1−θ`) `(2n+1)
2n+1−`ψND

k−`
x u. This

will produce a term of the form

C2(
√

2k)2[2(1−θ`) `(2n+1)
2n+1−` ]‖X2ψND

k−2`
x u‖2,

on which we can restart the process again. We point out that at any step ` x-

derivatives on u are “turned into” a factor k(1−θ`) `(2n+1)
2n+1−` . In the case k/` ∈ N,

iterating this procedure k/`-times, the first term on the right hand side of (2.6)
will give a contribution of the form

C2(k+1)k2k(1−θ`) (2n+1)
2n+1−` ‖X2ψNu‖2,(2.7)

where C is a suitable positive constant independent of k and N .
In the case k/` /∈ N, this term can be handled essentially in the same way with some
more technical difficulties not significant for the purpose of the proof of the result.
We point out that in this case we can apply the same strategy only bk/`c- times,
where bk/`c denotes the integer part of k/`. Iterating this procedure bk/`c-times,

we obtain a term of the form C2(bk/`c+1)k2bk/`c(1−θ`) (2n+1)
2n+1−` |〈MψND

k′

x u, ψND
k′

x u〉|,
where k′ = k−bk/`c`; on this term we can restart the procedure described in (2.3)
up to removing all the x-derivatives acting on u.

Concerning the second term on the right hand side of (2.6), we can once again use
the subelliptic estimate restarting the process. We point out that, in this case, `+1
x-derivatives on u are “turned into” a factor kθ`(2n+1) and in one y-derivative on
u.
Iterating this procedure k/(`+ 1) times, this term gives a contribution of the form

C2 k
`+1 2kθ`

(2n+1)
`+1 k2kθ`

(2n+1)
`+1 ‖ψND

k
`+1
y u‖2,

where C is a suitable positive constant independent of k and N . Since in the
direction y we have a Gevrey growth of order 2m

2m−1 , we can estimate the this term
by

C2(k+1)k2k(θ` (2n+1)
`+1 + 2m

2m−1
1
`+1 ).(2.8)

Now, we choose θ` so that the powers of k in (2.7) and (2.8) are equal. We set

θ`
2n+ 1

`+ 1
+

2m

2m− 1

1

`+ 1
= (1− θ`)

2n+ 1

2n+ 1− `
.

We obtain

θ` =
2m`(2n+ 2)− (`+ 1)(2n+ 1)

(2n+ 2)(2m− 1)(2n+ 1)
.(2.9)

Replacing the value of θ` obtained in (2.7) and (2.8) we have

C2(k+1)k2k(1+ 1
2(n+1)(2m−1)

),(2.10)

that is a Gevrey growth of order 1 + 1
2(n+1)(2m−1) .

Concerning the third term on the right hand side of (2.6), we have
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C(
√

2k)2(1−θ`) `(2n+1)
2n+1−` ‖x2n+1ψ

(1)
N Dk−`

x u‖2

≤ C1(
√

2k)2(1−θ`) `(2n+1)
2n+1−` ‖X1ψ

(1)
N Dk−(`+1)

x u‖2.

Using the subelliptic estimate we restart the process. We point out that in this case

`+1 x-derivatives on u are turned into a factor k(1−θ`) `(2n+1)
2n+1−` and in one y-derivative

on ψN .
Iterating this procedure k/(`+ 1) times, gives a contribution of the form

C
2(k+1)
2 k2(1−θ`) `

`+1
(2n+1)
2n+1−`N2 k

`+1 .

Substituting the value of θ` obtained in (2.9) and taking N ∼ 2k we conclude that
this term has a Gevrey growth of order 1 + 1

2(n+1)(2m−1) .

I2. Consider I2 on the right hand side of (2.3). Using formula (2.4) and since
X∗3 = X3 − imxnym−1, we have

(2.11) I2 ≤ 2|〈xnymψ(1)
N Dk

xu,X3ψND
k
xu〉|+ 2m|〈xnymψ(1)

N Dk
xu, x

nym−1ψND
k
xu〉|

+ 2

inf{n,k}∑
`=1

k!

(k − `)!

(
n

`

)
|〈xn−`ymψNDk−`

x Dyu,X3ψND
k
xu〉|

+ 2m

inf{n,k}∑
`=1

k!

(k − `)!

(
n

`

)
〈xn−`ymψNDk−`

x Dyu, x
nym−1ψND

k
xu〉|

= I2,1 + I2,2 + I2,3 + I2,4.

We analyze the terms obtained separately.
I2,1. We have

I2,1 ≤ C
1

δ
‖ψ(1)

N Dk
xu‖2 + δ‖X3ψND

k
xu‖2 = C

1

δ
‖X1ψ

(1)
N Dk−1

x u‖2 + δ‖X3ψND
k
xu‖2,

where δ is a small positive number. The second term can be absorbed on the right
hand side of (2.2). Concerning the first term we can restart the process, we remark
that one x-derivative on u is turned into one derivative on ψN , so that, iterating
the process, yields analytic growth.

I2,2. We have

I2,2 ≤ C‖X1ψ
(1)
N Dk−1

x u‖2 + C‖ψNDk
xu‖2.

The first term can be handled as done a few lines above. The second term can be
handled as the second term on the right hand side of (2.2).

I2,3. We have

(2.12)

I2,3 ≤ 42n+1

inf{n,k}∑
`=1

C`k
2`‖xn−`ymψNDk−`

x Dyu‖2+

inf{n,k}∑
`=1

1

C`

 ‖X3ψND
k
xu‖2,

where we set C` = δ−12`, δ a fixed small positive constant. Since
(∑inf{n,k}

`=1
1
C`

)
≤

δ, the last term on the right hand side can be absorbed on the left hand side of
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(2.2). In order to handle the terms in the sum we use the Young inequality for
products

(
√

2k)`|x|n−` = (
√

2k)`−θ` |x|n−`(
√

2k)θ` ≤
(

(
√

2k)`−θ` |x|n−`
)q

+ (
√

2k)θ`p,

where q−1 + p−1 = 1 and θ` is a parameter that we will choose later. Taking
q = n

n−` and p = n
` we obtain

(
√

2k)`|x|n−` ≤ (
√

2k)(`−θ`) n
n−` |x|n + (

√
2k)θ`

n
` .

Thus we can estimate each term in the sum by

(2.13) 2`k2`‖xn−`ymψNDk−`
x Dyu‖2 ≤ (

√
2k)2(`−θ`) n

n−` ‖xnymψNDk−`
x Dyu‖2

+ C(
√

2k)2θ`
n
` ‖ψNDk−`

x Dyu‖2.
The first term on the right hand side can be estimated by

(
√

2k)2(`−θ`) n
n−` ‖X3ψND

k−`
x u‖2 + C(

√
2k)2(`−θ`) n

n−` ‖X1ψ
(1)
N Dk−(`+1)

x u‖2.(2.14)

Let us examine the first term on the right. Using the subelliptic estimate we restart
the process. We point out that in this case ` x-derivatives on u are turned into

a factor k(`−θ`) n
n−` . Iterating this procedure k/` times gives a contribution of the

form

C2(k+1)k2k(`−θ`) n
`(n−`) ‖X3ψNu‖2.(2.15)

Concerning the second term on the right hand side of (2.13), it can be handled
using the same strategy adopted to treat the term in the second line of (2.6), more
precisely we have

C(
√

2k)2θ`
n
` ‖ψNDk−`

x Dyu‖2 = C(
√

2k)2θ`
n
` ‖X1ψND

k−(`+1)
x Dyu‖2.

Now, we can take advantage from the subelliptic estimate, (1.4), with u replaced by

C1/2(
√

2k)θ`
n
` ψND

k−(`+1)
x Dyu and restart the process. We point out that at any

time that we restart the process ` + 1 x-derivatives on u are turned into a factor
k2θ`

n
` and in one y-derivative on u.

Iterating the process k/(`+ 1) times gives a contribution of the form

C2 k
`+1 2kθ`

n
`(`+1) k2kθ`

n
`(`+1) ‖ψND

k
`+1
y u‖2,(2.16)

where C is a suitable positive constant independent of k and N .
Since in the direction y we have a Gevrey growth of order 2m

2m−1 , (2.1), we have

‖ψND
k
`+1
y u‖2 ≤ C2(k+1)

1 k2 2m
2m−1

k
`+1 .

We can estimate (2.16) by

C
2(k+1)
2 k2k(θ` n

`(`+1)
+ 2m

2m−1
1
`+1 ).(2.17)

where C2 is a suitable positive constant independent of k and N .
Now, we choose θ` so that the powers of k in (2.15) and (2.17) are equal

θ`
n

`(`+ 1)
+

2m

2m− 1

1

`+ 1
= (`− θ`)

n

`(n− `)
.

Hence

θ` =
`[2m`(n+ 1)− n(`+ 1)]

n(n+ 1)(2m− 1)
.(2.18)
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Substituting the value of θ` in (2.15) and (2.17) we have a contribution of the form

C2(k+1)k2k(1+ 1
(n+1)(2m−1)

),(2.19)

that is a Gevrey growth of order 1 + 1
(n+1)(2m−1) .

We come back to (2.14) and we focus us on the second term on the right hand side.
We can take advantage of the subelliptic estimate restarting the process. We stress

that in this case `+ 1 x-derivatives on u are turned into a factor k(`−θ`) n
n−` and in

one derivative on ψN . Iterating this procedure k/(`+ 1) times gives a contribution
of the form

C2(k+1)k2k
(`−θ`)n

(`+1)(n−`)N2 k
`+1 .

Replacing θ` by the value obtained in (2.18), and taking N ∼ 2k we have a contri-
bution of the form

C
2(k+1)
1 k2k(1+ `

(`+1)
1

(n+1)(2m−1) ),

that is a Gevrey growth of order 1 + `
(`+1)

1
(n+1)(2m−1) . We remark that this index

is smaller than 1 + 1
(n+1)(2m−1) .

I2,4. It can be handled as I2,3. The only difference is the presence of the norm
‖ψNDk

xu‖2, which can be bound as done in the analysis of I2,2.

I3. Consider I3 on the right hand side of (2.3). Using two times formula (2.4), we
have

[x2n+1Dy, [x
2n+1Dy, ψND

k
x]]

=
1

i
[x2n+1Dy, x

2n+1ψ
(1)
N Dk

x]+

inf{2n+1,k−1}∑
`=1

Ck,2n+1,`[x
2n+1Dy, x

2n+1−`ψND
k−`
x Dy]

= −x2(2n+1)ψ
(2)
N Dk

x +
2

i

inf{m,k}∑
`=1

Ck,2n+1,`x
2(2n+1)−`ψ

(1)
N Dk−`

x Dy

+

inf{2n+1,k}∑
`=1

inf{2n+1,k−`}∑
`1=1

Ck,2n+1,` Ck−`,2n+1,`1 x
2(2n+1)−`−`1ψND

k−`−`1
x D2

y,

where

Ck,2n+1,` =
k!

(k − `)!

(
2n+ 1

`

)
and Ck−`,2n+1,`1 =

(k − `)!
(k − `− `1)!

(
2n+ 1

`1

)
.

We remark that the last sum above can be rewritten in the following form

inf{k,2(2n+1)}∑
h=2

 ∑
`+`1=h

1≤`,`1≤inf{k−1,2n+1}

Ck,2n+1,`Ck−`,2n+1,`1

x2(2n+1)−hψND
k−h
x D2

y

=

inf{k,2(2n+1)}∑
h=2

Dh x
2(2n+1)−hψND

k−h
x D2

y,
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where

Dh =



h−1∑
`=1

Ck,2n+1,`Ck−`,2n+1,h−` if h = 2, 3, . . . , inf{k, 2n+ 2},

2n+1∑
`=h−(2n+1)

Ck,2n+1,`Ck−`,2n+1,h−` if h = 2n+ 1 + 2, . . . , inf{k, 2(2n+ 1)}.

We point out that Dh is given by the sum of at most 2n+ 1 summands, moreover
since Ck,2n+1,` ≤ 22n+1k` and Ck−`,2n+1,h−` ≤ 22n+1kh−` we have that Dh ≤
(2n+ 1)22(2n+1)kh.
We obtain

|〈
[
x2n+1Dy,

[
x2n+1Dy, ψND

k
x

]]
u, ψND

k
xu〉| ≤ |〈x2(2n+1)ψ

(2)
N Dk

xu, ψND
k
xu〉|

+ 22n+2

inf{m,k}∑
`=1

k`|〈x2(2n+1)−`ψ
(1)
N Dk−`

x Dyu, ψND
k
xu〉|

+ 23(2n+1)

inf{k,2(2n+1)}∑
h=2

kh|〈x2(2n+1)−hψND
k−h
x D2

yu, ψND
k
xu〉|

= I3,1 + I3,2 + I3,3.

We analyze the terms obtained separately.

I3,1. We have

|〈x2(2n+1)ψ
(2)
N Dk

xu, ψND
k
xu〉| ≤ C|〈(CψN)−1ψ

(2)
N Dk

xu, (CψN)ψND
k
xu〉|

≤ C(CψN)−2‖X1ψ
(2)
N Dk−1

x ‖2 + C(CψN)2‖X1ψND
k−1
x u‖2.

The weight CψN introduced above helps to balance the number of x-derivatives
on u with the number of derivatives on ψN . We consider the factor CψN as a

derivative on ψN , CψNψN and (CψN)−1ψ
(2)
N behave as ψ

(1)
N . On each term we can

restart the process.

We remark that both terms have the same behavior as the term ‖X1ψ
(1)
N Dk−1

y u‖2,
that is we have a shift of one derivative from u to ψN ; iterating the process we will
obtain analytic growth.

I3,2. Since each term in the sum can be estimated by

2`k2`‖x2n+1−`ψND
k−`
x Dyu‖2 +

1

2`
‖X1ψ

(1)
N Dk−1

x u‖2,

we have

I3,2 ≤ C
inf{2n+1,k}∑

`=1

2`k2`‖x2n+1−`ψND
k−`
x Dyu‖2 + 2C‖X1ψ

(1)
N Dk−1

x u‖2.

The norms in the sum have the same form of the norms in the first sum on the right
hand side of (2.5), so that they give a Gevrey growth of order 1 + 1

2(n+1)(2m−1) .

To handle the last term on the right hand side we apply the subelliptic estimate
and remark that we have shifted one derivative from u to ψN , so that, iterating the
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process, yields analytic growth.

I3,3. We distinguish two cases. First: h ≤ 2n+ 1. We have

kh|〈x2n+1x2n+1−hψND
k−h
x D2

yu, ψND
k
xu〉|

≤ kh|x2n+1−hψND
k−h
x Dyu,X2ψND

k
xu〉|+kh|〈x2n+1x2n+1−hψND

k−h
x Dyu, ψ

(1)
N Dk

xu〉|

≤ (δ−1 + 1)k2h‖x2n+1−hψND
k−h
x Dyu‖2 + δ‖X2ψND

k
xu‖2 +C‖X1ψ

(1)
N Dk−1

x u‖2,

where δ is a small suitable positive number. The second term on the right can be
absorbed on the left hand side of (2.4). The first term can be handled as the terms
in the sum on the right hand side of (2.5); thus this term will give a Gevrey growth
of order 1 + 1

2(n+1)(2m−1) . Concerning the last term, we point out that we shifted

one derivative from u to ψN , yielding analytic growth.

Case 2n+ 1 < h ≤ 2(2n+ 1). We set h = 2n+ 1 + h1. Using (2.4), we have

k2n+1kh1 |〈x2n+1−h1ψND
k−(2n+1)−h1
x D2

yu, ψND
k
xu〉|

≤ k2n+1kh1

(
|〈x2n+1−h1ψND

k−(2n+1)−h1
x Dyu, ψND

k
xDyu〉|

+2|〈x2n+1−h1ψND
k−(2n+1)−h1
x Dyu, ψ

(1)
N Dk

xu〉|
)

≤ |〈kh1x2n+1−h1ψND
k−h1
x Dyu, k

2n+1ψND
k−(2n+1)
x Dyu〉|

+ 2|〈kh1x2n+1−h1ψND
k−(2n+1)−h1
x Dyu, k

2n+1ψ
(1)
N Dk

xu〉|

+

2n+1−h1∑
β=1

1

β!

(2n+ 1− h1)!

(2n+ 1− h1 − β)!

(2n+ 1)!

(2n+ 1− β)!

×
(
|〈kh1x2n+1−(h1+β)ψND

k−(h1+β)
x Dyu, k

2n+1ψND
k−(2n+1)
x Dyu〉|

+ |〈kh1x2n+1−(h1+β)ψND
k−(h1+β)
x Dyu, k

2n+1ψ
(1)
N Dk−(2n+1)

x u〉|
)

≤ C
2n+1−h1∑
β=0

k2(h1+β)‖x2n+1−(h1+β)ψND
k−(h1+β)
x Dyu‖2

+C2n+1k2(2n+1)‖X1ψND
k−(2n+2)
x Dyu‖2 +C2n+1k2(2n+1)‖X1ψ

(1)
N Dk−(2n+2)

x u‖2.

The second term and the terms in the sum can be handled as the terms in the sum
on the right hand side of (2.5); thus they give a Gevrey growth 1 + 1

2(n+1)(2m−1) .

Concerning the last term we can restart the process. We point out that 2n + 1

derivatives on u are turned into a factor k2n+1ψ
(1)
N and, since N ∼ 2k, it behaves

as ψ
(2n+2)
N . Iterating gives analytic growth.

I4. Consider I4 on the right hand side of (2.3). Using two times formula (2.4), we
have

(2.20) [xnymDy, [x
nymDy, ψND

k
x]]

=
1

i
[xnymDy, x

nymψ
(1)
N Dk

x] +

inf{n,k}∑
`=1

Ck,n,`[x
nymDy, x

n−`ymψND
k−`
x Dy]
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= −x2ny2mψ
(2)
N Dk

x −mx2ny2m−1ψ
(1)
N Dk

x +
2

i

inf{n,k}∑
`=1

Ck,n,` x
2n−`y2mψ

(1)
N Dk−`

x Dy

+
2m

i

inf{n,k}∑
`=1

Ck,n,`x
2n−`y2m−1ψND

k−`
x Dy

+
m

i

inf{n,k}∑
`=1

inf{n,k−`}∑
`1=1

Ck,n,` Ck−`,n,`1 x
2n−`−`1y2m−1ψND

k−`−`1
x Dy,

+

inf{n,k}∑
`=1

inf{n,k−`}∑
`1=1

Ck,n,` Ck−`,n,`1 x
2n−`−`1y2mψND

k−`−`1
x D2

y,

where

Ck,n,` =
k!

(k − `)!

(
n

`

)
and Ck−`,n,`1 =

(k − `)!
(k − `− `1)!

(
n

`1

)
.

We remark that the last two sums above can be rewritten in the following form

inf{k,2n}∑
h=2

 ∑
`+`1=h

1≤`,`1≤inf{k−1,n}

Ck,n,` Ck−`,n,`1

x2n−`−`1y2m−αψND
k−`−`1
x D2−α

y

=

inf{k,2n}∑
h=2

Dh x
2(2n+1)x2n−hy2m−αψND

k−h
x D2−α

y , α = 0, 1,

where

Dh =



h−1∑
`=1

Ck,n,`Ck−`,2n,h−` if h = 2, 3, . . . , inf{k, n+ 1},

n∑
`=h−n

Ck,n,`Ck−`,n,h−` if h = n+ 2, . . . , inf{k, 2n}.

We point out that Dh is given by the sum of at most n terms, moreover since
Ck,n,` ≤ 2nk` and Ck−`,n,h−` ≤ 2nkh−` we have that Dh ≤ n22nkh.
Hence

|〈
[
xnymDy,

[
xnymDy, ψND

k
x

]]
u, ψND

k
xu〉|

≤ |〈x2ny2mψ
(2)
N Dk

x, ψND
k
xu〉|+m|〈x2ny2m−1ψ

(1)
N Dk

xu, ψND
k
xu〉|

+ 2n+1

inf{n,k}∑
`=1

k`|〈x2n−`y2mψ
(1)
N Dk−`

x Dyu, ψND
k
xu〉|

+m22n+1

inf{n,k}∑
`=1

k`|〈x2n−`y2m−1ψND
k−`
x Dyu, ψND

k
xu〉|

+m22n

inf{k,2n}∑
h=2

kh|〈x2n−hy2m−1ψND
k−h
x Dyu, ψND

k
xu〉|
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+ 22n

inf{k,2n}∑
h=2

kh|〈x2n−hy2mψND
k−h
x D2

yu, ψND
k
xu〉| =

6∑
i=1

I4,i.

First we remark that I4,1 can be handled as I3,1. I4,2 is analogous to I4,1.

I4,3. Since each term in the sum can be estimated by

2`k2`‖xn−`ymψNDk−`
x Dyu‖2 +

1

2`
‖X1ψ

(1)
N Dk−1

x u‖2.

We have

I4,3 ≤ C
inf{n,k}∑
`=1

2`k2`‖xn−`ymψNDk−`
x Dyu‖2 + 2C‖X1ψ

(1)
N Dk−1

x u‖2.

The summands have the same form of the those in the first sum on the right hand
side of (2.12); they give a Gevrey growth of order 1 + 1

(n+1)(2m−1) . To handle the

last term on the right hand side we can use the subelliptic estimate. We remark
that we have shifted one derivative from u to ψN , this term has analytic growth.

I4,4. Since each term in the sum can be estimated by

2`k2`‖xn−`ymψNDk−`
x Dyu‖2 +

1

2`
‖ψNDk

xu‖2,

we have

I4,4 ≤ C
inf{n,k}∑
`=1

2`k2`‖xn−`ymψNDk−`
x Dyu‖2 + 2C‖ψNDk

xu‖2.

The terms in the sum are analogous to the term in the first sum on the right hand
side of (2.12), and they have a Gevrey growth of order 1+ 1

(n+1)(2m−1) . The second

term can be handled as the second term on the right hand side of (2.2).

I4,5. We focus on a single term in the sum. We distinguish two cases. Case h ≤ n.
We have

kh|〈x2n−hy2m−1ψND
k−h
x Dyu, ψND

k
xu〉|

≤ Ck2h‖xn−hymψNDk−h
x Dyu‖2 + ‖ψNDk

xu‖2.

The first term can be handled as the terms in the sum on the right hand side of
(2.12). The second term can be estimated as the second term on the right hand
side of (2.2).
Case h > n. We set h = n+ h1. We rewrite the summands in I4,5 as

kh|〈x2n−hy2m−1ψND
k−h
x Dyu, ψND

k
xu〉|

= knkh1 |〈Dnxn−h1y2m−1ψND
k−n−h1
x Dyu, ψND

k−n
x u〉|

Using (2.4), we have

knkh1 |〈Dnxn−h1y2m−1ψND
k−n−h1
x Dyu, ψND

k−n
x u〉|

≤ knkh1

n−h1∑
β=0

1

β!

(n− h1)!

(n− h1 − β)!

n!

(n− β)!
|〈xn−(h1+β)ymψND

k−(h1+β)
x Dyu, ψND

k−n
x u〉|
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≤ 2n−h1

n−h1∑
β=0

n2jk2(h1+β)‖xn−(h1+β)ymψND
k−(h1+β)
x Dyu‖2 + k2n‖ψNDk−n

x u‖2
 .

All these terms are analogous to those in the sum on the right hand side of (2.12).

I4,6. In order to handle this term we use the same strategy used to analyze I4,5.
We distinguish tow cases.
Case h ≤ n. We have

kh|〈x2n−hy2mψND
k−h
x D2

yu, ψND
k
xu〉|

≤ k2h‖xn−hymψNDk−h
x Dyu‖2 + ‖X3ψND

k
xu‖2

+ 2mkh|〈x2n−hy2m−1ψND
k−h
x Dyu, ψND

k
xu〉|

+ 2kh|〈x2n−hy2mψND
k−h
x D2

yu, ψ
(1)
N Dk

xu〉|.

The first term has the same form of the terms in the sum on the right hand side of
(2.12). The second term can be absorbed on the left hand side of (2.2). The last
two terms have the same form as I4,4 and I4,3.

Case h > n. We set h = n+ h1. We have

kn+h1 |〈xn−h1y2mψND
k−n−h1
x D2

yu, ψND
k
xu〉|

≤ kn+h1 |〈xn−h1y2mψND
k−n−h1
x Dyu, ψND

k
xDyu〉|

+ 2kn+h1 |〈xn−h1y2mψND
k−n−h1
x Dyu, ψ

(1)
N Dk

xu〉|

+ 2mkn+h1 |〈xn−h1y2m−1ψND
k−n−h1
x Dyu, ψND

k
xu〉|.

Using (2.4), the right hand side of the above inequality can be estimated by

n−h1∑
β=0

1

β!

(n− h1)!

(n− h1 − β)!

n!

(n− β)!

×
(
|〈kh1xn−(h1+β)ymψND

k−(h1+β)
x Dyu, y

mknψND
k−n
x Dyu〉|

+ 2|〈kh1xn−(h1+β)y2mψND
k−(h1−β)
x Dyu, k

nψ
(1)
N Dk−n

x u〉|

+2m|〈kh1xn−(h1+β)y2m−1ψND
k−(h1+β)
x Dyu, k

nψND
k−n
x u〉|

)
≤ (2m+ 3)22n−h1

n−h1∑
β=0

n2jk2(h1+β)‖xn−(h1+β)ymψND
k−(h1+β)
x Dyu‖2

+ 2n−h1

(
k2n‖X1ψND

k−(n+1)
x Dyu‖2 + k2n‖X1ψ

(1)
N Dk−(n+1)

x u‖2

+k2(n+1)‖X1ψND
k−(n+1)
x u‖

)
.

The terms in the sum can be handled as those in the sum on the right hand side
of (2.12). Iteration gives a Gevrey growth of order 1 + 1

(n+1)(2m−1) . The last two

terms have analytic growth.
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Combining and iterating the above processes, modulo terms which give analytic
growth, we obtain terms of the form

N2(i−j)k2 2m
2m−1 (

∑p
β=1 `β+

∑
α=1(lα−1−ε))‖Xjψ

(j)
N D

k−(
∑p
β=1 `β+

∑q
α=1(lα−1−ε))−i

y u‖2

or

N2(i−j)k2 2m
2m−1 (

∑p
β=1 `β+

∑
α=1(lα−1−ε))‖ψ(j)

N D
k−(

∑p
β=1 `β+

∑q
α=1(lα−1−ε))−i

y u‖2ε.
Due to the result in the previous sub-section we can conclude that

‖ψNDk
yu‖2 1

2(n+1)
+

3∑
j=1

‖XjψND
k
yu‖20 ≤ C2(k+1)k2(1+ 1

(n+1)(2m−1) )k,

where C is a suitable positive constant. Thus we have a Gevrey growth of order
1 + 1

(n+1)(2m−1) in the x-direction.

This concludes the proof of Theorem 1.1.

Remark 2.2. In the case of the Métivier operator (1.1) we obtain that u ∈ G(2, 32 ).
This is due to the fact that the vector field yDy commutes with Dx. More pre-
cisely, following the strategy used to estimate ψND

k
xu, we remark that we have to

handle only the terms involving the commutators with the vector field xDy, i.e.
|〈
[
xDy, ψND

k
x

]
u, (xDy)ψND

k
xu〉| and |〈

[
xDy,

[
xDy, ψND

k
x

]]
u, ψND

k
xu〉|.

These terms give a Gevrey growth of order 3
2 .

3. Short background on the FBI-transform

In order to make the paper self-consistent and more readable we recall below some
of the main definitions and properties concerning the Fourier-Bros-Iagolnitzer (FBI)
transform. For further details on the FBI-transform we refer to the papers [29],
[22] and to the lecture notes [30].

3.1. FBI Transform. Let u ∈ E ′(Ω); here E ′(Ω) denotes the space of distributions
with compact support in Ω, open subset of Rn, i.e. the dual space of the space of
smooth functions in Ω equipped with its natural topology.
In what follows Ω is a neighborhood of a point x0. A phase function ϕ(z, w),
z ∈ W ⊂ Cn, w ∈ W ′ ⊂ Cn, is a holomorphic function such that ∂wϕ(z0, w0) =
−η0 6= 0, det ∂z∂wϕ(z0, w0) 6= 0 and =∂2

wϕ(z0, w0) > 0.
We define the FBI transform of u as

Tu(z, λ) =

∫
Rn
eiλϕ(z,y)u(y)dy,

where z ∈ W , λ ≥ 1 is a large parameter. Moreover we assume that W ′ ∩ Rn ⊃ Ω
and we take w0 = x0.
We remark that if ϕ is a complex quadratic form, then the localization becomes
trivial.
To the phase ϕ we associate a weight function φ(z), defined as

φ(z) = sup
y∈Ω
−=ϕ(z, y), z ∈W.

Example 1. A typical phase function is ϕ(z, y) = i
2 (z − y)2, called the classical

phase. The corresponding weight function is given by φ(z) = 1
2 (=z)2.
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We recall that T is associated to the following complex canonical transformation:

HT : (w,−∂wϕ(z, w)) 7→ (z, ∂zϕ(z, w)) ,(3.1)

with ϕ as a generating function, from a complex neighborhood of (x0, η0) to a
complex neighborhood of (z0, ξ0), where ξ0 = 2

i ∂zφ(z0).
We denote by Λφ = {(z,−2i∂zφ(z)) ; z ∈ W}. In the case of the classical phase
function, we write

H0(x, ξ) = (x− iξ, ξ), (x, ξ) ∈ R2n,

and set H0(R2n) = Λφ0
.

We recall the definition of s–Gevrey wave front set of a distribution via classical
FBI transform (see Example 1.)

Definition 3.1. Let u be a compactly supported distribution on Rn. Let (x0, ξ0) ∈
T ∗Rn \ 0. We say that (x0, ξ0) /∈WFs(u), s ≥ 1, if there exist a neighborhood Ω of
x0 − iξ0 ∈ Cn and positive constants C, ε such that

|e−λφ0(z)Tu(z, λ)| ≤ Ce−ελ
1/s

,

for every z ∈ Ω and λ > 1.

3.2. Pseudodifferential Operators. Let λ ≥ 1 be a large positive parameter.
We write

D̃ =
1

λ
D, D =

1

i
∂.

Denote by q(x, ξ, λ) an analytic classical symbol (see [29]) and by Q(x, D̃, λ) the
formal classical pseudodifferential operator associated to q:

Q(x, D̃, λ)u(x, λ) =

(
λ

2π

)n ∫∫
eiλ(x−y)ξq(x, ξ, λ)u(y, λ)dydξ.

The above expression is formal and we realize it by choosing an integration path in
the (complex) variable ξ of the form

ξ =
2

i

∂Φ

∂x
(x) + iR(x− y),

where R is a sufficiently large positive constant and |x−y| ≤ r, with r a sufficiently
small positive constant and Φ denotes a weight function associated to a phase
function.
Using “Kuranishi’s trick” and applying Stokes theorem we have the following Ω-
realization of Q

(3.2) QΩu(x, λ) =

(
λ

π

)n ∫
Ω

e2λψ(x,ȳ)q̃(x, ȳ, λ)u(y)e−2λΦ(y)L(dy),

where L(dy) = (2i)−ndy ∧ dȳ, Ω is a small neighborhood of (x0, x̄0) ∈ C2n and the
integration path is θ = ȳ. Here ψ(x, y) is the holomorphic function defined near
(x0, x̄0) by ψ(x, x̄) = Φ(x). We point out that since Φ is plurisubharmonic, we have
det ∂x∂yψ 6= 0.
For more details on the Ω-realization we refer to [29], [22] as well as the appendix
in [10].

The advantages of such a definition are:
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1- if the principal symbol is real, QΩ is formally self adjoint in L2(Ω, e−2λΦ)
where L2(Ω, e−2λΦ) = {u | ‖u‖Φ < +∞} and

‖u‖2Φ =

∫
Ω

e−2λΦ(x)|u(x)|2L(dx).

2- If q̃ is a classical symbol of order zero, QΩ is uniformly bounded as λ→ +∞,
fromHΦ(Ω) into itself. HereHΦ(Ω) is the space of all holomorphic functions
u(x, λ) such that for every ε > 0 we have

|u(x, λ)| ≤ Ceλ(Φ(x)+ε), C > 0, x ∈ Ω

with C independent of x and λ.

We recall the basic proposition on the composition of two pseudodifferential oper-
ators.

Proposition 3.1 ([22], Proposition 1.3). Let Q1 and Q2 be pseudodifferential op-
erators of order zero. Then they can be composed and

QΩ
1 ◦QΩ

2 = (Q1 ◦Q2)Ω +RΩ,

where RΩ is an error term whose norm is O(1) as an operator from HΦ+(1/C)d2 to

HΦ−(1/C)d2 . Here d(x) = dist(x, {Ω) denotes the distance of x to the boundary of
Ω.

3.3. A subelliptic estimate for sums of squares on the FBI side. Let
X1(x, ξ), . . . , Xν(x, ξ) be classical analytic symbols of the first order defined in an
open neighborhood Ω of (x0, ξ0) ∈ ΛΦ. We assume also that the Xj |ΛΦ

are real

valued, so that we may think of the corresponding pseudodifferential operators as
formally self-adjoint in HΦ. Let

(3.3) L(x, D̃) =

ν∑
j=1

X2
j (x, D̃).

Arguing as in [22], using Proposition 3.1 and (3.2), we see that the Ω-realization of
L can be written as

(3.4) LΩ =

ν∑
j=1

(XΩ
j )2 + O(λ2),

where O(λ2) is continuous from HΦ̃ to HΦ−(1/C)d2 with norm bounded by C ′λ2

(see Proposition (3.1).)
We assume also that there is a Poisson bracket of the symbols of the vector fields of
length ν(x0, ξ0) which is elliptic at (x0, ξ0) ∈ ΛΦ and it is shortest iterated Poisson
bracket non zero at (x0, ξ0).
Next we state the sub-elliptic estimate on the FBI side.

Theorem 3.1 ([1]). Let LΩ be as in (3.4). We write r = ν(x0, ξ0). Let Ω1 be a
neighborhood of (x0, ξ0) such that Ω1 b Ω, then

(3.5) λ
2
r ‖u‖2Φ +

ν∑
j=1

‖XΩ
j u‖2Φ ≤ C

(
〈LΩu, u〉Φ + λα‖u‖2Φ,Ω\Ω1

)
,

where C is a suitable positive constant and α is a suitable positive integer.
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3.4. A criterion of analytic hypoellipticity. We consider an operator of the
form

(3.6) P (x,D) =

N∑
i,j=1

Xi(x,D)aij(x,D)Xj(x,D)

+

N∑
j=1

bj(x,D)Xj(x,D) + c(x,D),

where Dj = Dxj = i−1∂xj and the aij(x, ξ), bj(x, ξ), c(x, ξ) are analytic symbols of
order zero such that

(3.7) [aij ]i,j=1,...,N + [āji]i,j=1,...,N ≥ c,
where c > 0 is a positive constant.
Let (x0, ξ0) ∈ Char(P ). Denote by U a neighborhood of the point (x0, ξ0) in R2n.
We assume that Char(P ) ∩ U is a symplectic real analytic manifold.
We assume that there exists a function r : U → [0,+∞[, real analytic in U , such
that

(1) r(x0, ξ0) = 0 and r(x, ξ) > 0 in U \ {(x0, ξ0)}.
(2) There exist real analytic functions, αj,k(x, ξ), defined in U , such that

(3.8) {r(x, ξ), Xj(x, ξ)} =

N∑
`=1

αj,`(x, ξ)X`(x, ξ),

where j = 1, . . . , N , (x, ξ) ∈ U .

Then the following result holds.

Theorem 3.2 ([2]). Let (x0, ξ0) be a point in Char(P ). Assume that Char(P )
is symplectic near (x0, ξ0) and, as above, that there exists a function r ∈ Cω(U),
satisfying conditions (1), (2). Then we have that if (x0, ξ0) /∈ WFa(Pu), then
(x0, ξ0) /∈WFa(u).

Our purpose will be to use Theorem 3.2 in order to characterize the microlocal
hypoellipticity of the operator Mn,m at the stratum Σ0.

4. Microlocal regularity, proof of Theorem 1.2

We recall that the characteristic set of Mn,m is

Char(Mn,m) = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, and η 6= 0},
and that the related Poisson-Treves stratification is given by

Σ0 = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, y 6= 0, η 6= 0},
Σ1 = {(x, y, ξ, η) ∈ T ∗R2 \ {0} : x = 0 = ξ, y = 0, η 6= 0}.

We point out that Σ0 is symplectic manifold of codimension two.
Let ρ1 ∈ Σ1, ρ1 = (0, 0, 0, 1) with η 6= 0. In view of [9] we have the estimate

‖ψkDk
yu‖ 1

2(n+1)
≤ Ck+1ks1k,

where s1 = 2m
2m−1 , C is a suitable positive constant independent of k. Here u is a

solution of the problem Mn,mu = f , ρ1 /∈WFs1(f), and ψk is an Ehrenpreis cut-off
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sequence associated to the couple (Ω0,Ω1), both open neighborhoods of the origin
with Ω0 b Ω1. We conclude that

|φ̂ku(ζ)| ≤ Ck+1kks1 |ζ|−k, k = 1, 2, . . . ,

ζ = (ξ, η), for every ζ ∈ Γ conic neighborhood of (0, 1) and for a suitable positive
constant C independent of N . By the Definition 3.1, we have that ρ1 /∈WFs1(u).

Let ρ0 ∈ Σ0, without loss of generality we choose ρ0 = (0, y0, 0, 1), y0 6= 0. The
depth of ρ0 is n + 1, i.e. the shortest iterated Poisson bracket of the symbols of

the vector fields non zero at ρ0 has length n + 1. Let ũ, M̃n,m and X̃j , j = 1, 2,
the FBI transform of u, Mn,m and the vector fields Xj respectively. By (3.2), the
Proposition 3.1 and the Theorem (3.1) we have

(4.1) λ2/n+1‖ũ‖2φ0
+

2∑
j=0

‖X̃Ω
j ũ‖2φ0

≤ C
(
〈M̃Ω

n,mũ, ũ〉φ0 + λα‖ũ‖2φ0,Ω\Ω1

)
,

where Ω and Ω1 are neighborhoods of the point (0, y0− i) ∈ C2, Ω1 b Ω and M̃Ω
n,m

is the Ω−realization of the operator M̃n.m.
In order to use the Theorem 3.2, we have to construct a real analytic function
r microlocally defined in a conic neighborhood of the point ρ0 ∈ Σ0, satisfying
conditions (1), (2), see the previous subsection. Let U be a small neighborhood of
the point ρ0 in R4 \{0}. Let r : U → [0,+∞[, the real analytic function of the form

r(x, y, ξ, η) = ξ2 + x2n+2 + (y − y0)2 + (η − 1)2.(4.2)

We have that r(ρ0) = 0, r(x, y, ξ, η) > 0 in U \ {ρ0} and

{X1, r} = {ξ, r} = (2n+ 2)x2n+1 =
2n+ 2

η
x2n+1η = α1(η)X2,

{X2, r} = {x2n+1η, r} = −2(2n+ 1)x2nηξ + 2(y − y0)x2n+1

=
(
−2(2n+ 1)x2nη

)
ξ +

(
2(y − y0)

η

)
x2n+1η = α2,1(x, η)X1 + a2,2(y, η)X2,

{X3, r} = {xnymη, r} = −2nxn−1ymηξ + 2(y − y0)xnym − 2mxnym−1 (η − 1) η

=
(
−2nxn−1ymη

)
ξ +

(
2(y − y0)

η

)
xnymη −

(
2m

η − 1

y

)
xnymη

= α3,1(x, y, η)X1 + α2,2(y, η)X3.

r satisfies the properties (1) and (2), see (3.8). Then by Theorem 3.2 we have that
if ρ0 /∈WFa(Mn,mu), then ρ0 /∈WFa(u).

This concludes the proof of Theorem 1.2.
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