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Simple Summary: Extracellular vesicles (EVs), consisting of microvesicles and exosomes, serve as
messengers for intercellular communication by transporting proteins and nucleic acids. In solid
cancers of epithelial origin, Epidermal Growth Factor Receptor (EGFR) plays a pivotal role as
a driver. In vitro studies conducted on EGFR-dependent solid tumours revealed the significant
correlation between EGFR and EVs production, leading to the dissemination of EGFR itself and
related molecules along with inducing cell proliferation, modifying the tumour microenvironment,
facilitating metastases, and conferring resistance to treatments. Recently, liquid biopsy approaches
started to exploit the interplay of EGFR and EVs in delivering proteins, RNAs, and DNAs via
blood/plasma of EGFR-dependent tumour patients to evaluate their possible roles and applications
as candidate biomarkers in diagnosing and monitoring tumour progression and therapy efficacy.

Abstract: Extracellular vesicles (EVs) are of great interest to study the cellular mechanisms of cancer
development and to diagnose and monitor cancer progression. EVs are a highly heterogeneous popu-
lation of cell derived particles, which include microvesicles (MVs) and exosomes (EXOs). EVs deliver
intercellular messages transferring proteins, lipids, nucleic acids, and metabolites with implications
for tumour progression, invasiveness, and metastasis. Epidermal Growth Factor Receptor (EGFR)
is a major driver of cancer. Tumour cells with activated EGFR could produce EVs disseminating
EGFR itself or its ligands. This review provides an overview of EVs (mainly EXOs and MVs) and
their cargo, with a subsequent focus on their production and effects related to EGFR activation. In
particular, in vitro studies performed in EGFR-dependent solid tumours and/or cell cultures will
be explored, thus shedding light on the interplay between EGFR and EVs production in promoting
cancer progression, metastases, and resistance to therapies. Finally, an overview of liquid biopsy
approaches involving EGFR and EVs in the blood/plasma of EGFR-dependent tumour patients will
also be discussed to evaluate their possible application as candidate biomarkers.

Keywords: microvesicles; exosomes; NSCLC; tumour progression; tumour microenvironment;
metastasis; therapy resistance; biomarker; liquid biopsy

1. Introduction

Extracellular vesicles (EVs) are a highly heterogeneous population of cellular-derived
phospholipid bilayer membrane entities. These particles can be isolated from various
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human biofluids [1–3] and deliver complex messages by transferring cytosolic proteins,
lipids, RNA, DNA, and metabolites inside and on their surface [4–8].

Since the first hypothesis in 1946 by Chargaff and West [9], EVs were described decades
later from platelets in 1967 [10] and then observed as matrix vesicles [11]. Other indepen-
dent studies reported the release of membrane vesicles from rectal adenoma microvillus
cells [12], virus-like particles in human cell cultures and bovine serum [13,14] and seminal
plasma [15]. In the early 1980s, tumour-originating fragments were also described, report-
ing the fusion of multivesicular bodies (MVBs) with the plasma membrane, leading to the
release of vesicles, later named exosomes (EXOs) [16–18]. Finally, in 1996, Raposo et al.
documented that EVs could stimulate adaptive immune responses [19].

A milestone in EVs research was the discovery of cargo RNA encapsulated within
EVs, suggesting a function as a means for intercellular transfer of genetically encoded
messages [20–22] and, more recently, cargo DNA and the EV-DNA-protein complex [23–25].
EVs were then isolated from most cells and body fluids, and the research field is
constantly growing.

The EV population comprises different subtypes and is currently categorized based on
their biogenesis and size into two main groups: large/medium EVs and small EVs (sEVs). In
general, large/medium EVs include apoptotic bodies and microvesicles (MVs), while sEVs
include EXOs [3,4,6,26]. The list of EV subtypes is constantly growing, including exospheres,
migrasomes, small EV clusters, and the recently discovered exomeres, supermeres, and
chromatimeres [27–30]. In addition to these classes, some cancer-specific subtypes of EVs
have been identified: oncosomes (~100–400 nm) produced by non-transformed cells, whose
contents can determine oncogenic effects, and large oncosomes (~1–10 µm) derived from
malignant cells [5].

In oncology, EVs were reported as essential for tumour initiation, progression, and
metastasis. Malignant cells were shown to transfer bioactive molecules to the neighbouring
stroma, interfering with signalling and regulation of gene expression in the recipient cell
and creating a favourable tumour microenvironment (TME) for cancer progression and
metastatic spread [31–34]. EVs also mediate epithelial-to-mesenchymal transition (EMT),
invasion, angiogenesis, immune modulation, and migration, and communicate over long
distances, influencing normal distant cells and establishing a pre-metastatic niche [7,35,36].
EVs’ roles in metastatic growth and the removal of chemotherapeutics from cancer cells
have also been extensively studied [32,37,38].

In this review, we will primarily focus on EXOs and MVs. First, we will provide an
overview of EVs, their biogenesis mechanisms, and the differences in light of EGFR. Next,
we will examine and analyse the interplay between EVs and EGFR. We will explore two
main perspectives: namely, the molecular mechanisms of EV release consequent to EGFR
activation, and, conversely, EGFR activation in relation to EV release and capture. Finally,
the use of EVs as diagnostic tools and putative biomarkers in EGFR-dependent tumours
will be described.

2. EGFR and EV Biogenesis

EGFR (or ERBB1/HER1) is a prototype transmembrane tyrosine kinase receptor
activated by several growth factors. Upon ligand binding, conformational changes in-
duce the monomeric “activator kinase” to form homo- or heterodimers with other fam-
ily members (HER2, HER3, and HER4) [39]. Subsequently, the “receiver kinase” trans-
phosphorylates specific tyrosine residues on the activator C-lobe, which, in turn, stimulates
a cascade of effector proteins. Some of them culminate with the activation of several
intracellular pathways like the Ras/Raf/Mitogen-activated protein kinases (MAPK) path-
way, the phosphatidylinositol 3-kinase (PI3K)/AKT8 virus oncogene cellular homolog
(AKT)/Mammalian target of rapamycin (mTOR) pathway, and the signal transducer and
activator of transcription (STAT) [40]. All of them influence specific and important cellular
functions: proliferation, survival, angiogenesis, inflammation, and metabolism [41]. On
the contrary, for fine regulation of this receptor, other effectors trigger the negative route
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through CBL and E3 ubiquitin ligase for EGFR sorting and degradation in the lysosome.
Moreover, recent findings have attributed structural function not only to EGFR monomers
and dimers, but also to other alternative oligomers both in the basal and ligand-bound
states, suggesting the complexity of EGFR signalling [42,43]. Ubiquitously expressed in
different tissue types, EGFR is also one of the receptors found to be altered in several
cancers, particularly breast, non-small cell lung cancer (NSCLC), glioblastoma (GBM),
head and neck squamous cell carcinoma (HNSCC), ovarian, and melanoma [44–49]. EGFR
signalling can also induce the loading of phosphorylated EGFR as cargo in sEVs, as well as
the release of EVs [50,51].

The MVs group comprises vesicles of different sizes (~150 nm–1 µm) that directly
arise from the outward budding of the plasma membrane and are involved in intercellular
communication, signalling pathway activation, and cell invasion by cell-independent ma-
trix proteolysis [4,26]. Tumour-derived microvesicles (TMVs) and oncosomes originating
from cancer cells are also classified as MVs and are able to transfer bioactive molecules
(namely nucleic acids, lipids, and proteins) to recipient cells, promoting cancer progression,
drug resistance, and providing diagnostic markers [33,52]. MVs, being derived from the
plasma membrane, carry a portion of their parent cell’s membrane content when released
into the extracellular space. This allows them to reflect the cellular composition and charac-
teristics of their origin. A combination of factors induces the formation of MVs, such as
the redistribution of phospholipids and the contraction of the actin-myosin machinery [53].
ADP-ribosylation factor 6 (ARF6) leads to the activation of phospholipase D, which recruits
the extracellular signal-regulated kinase (ERK) to the plasma membrane. The subsequent
phosphorylation and activation of the myosin light chain kinase finally trigger the release
of MVs [32,33,35,36,54]. Within this mechanism, EGFR is known to interact with ARF6 and
phospholipase D2 through MAPK, also inducing MV shedding [55,56]. As a consequence,
ARF6 was shown to be involved in EGFR-dependent tumours inducing invasion and EMT
and linked to prognosis, further suggesting that a deregulation of MV biogenesis may
contribute to cancer progression [57–59].

EXOs (~40–150 nm) are intraluminal vesicles (ILVs) contained in MVBs, which are re-
leased into the extracellular environment upon fusion with the plasma membrane [5,60,61].
Unlike MVs and despite sharing common intracellular mechanisms and sorting machinery,
EXOs are formed through a distinct and complex intracellular regulatory process that
determines their composition and functions [8,61].

The best-described mechanism of EXO formation is driven by the endosomal sorting
complex required for transport (ESCRT), which is composed of four complexes (ESCRT-0,
-I, -II, and -III) and approximately thirty associated proteins. The membrane is reorganized,
becoming highly enriched in tetraspanins, mainly CD9 and CD63, while ESCRT 0 recog-
nizes ubiquitinated proteins on the outside [61,62]. The presence of different stimuli, such
as phosphatidylinositol 3-phosphate (PIP3), hepatocyte growth factor-regulated tyrosine
kinase substrate, ubiquitination of endocytosed proteins, and/or the curved membrane
topology, induce ESCRT I and II to initiate and drive the intraluminal membrane bud-
ding [63,64]. ESCRT III completes the process of ILV formation through programmed cell
death 6-interacting protein (ALIX) and tumour susceptibility gene 101 (TSG101), which
by interacting with proteins and cellular components, create a physical force that causes
the vesicle scission [8,26,52,65]. Then, EXOs are released by the fusion of the MVB with the
plasma membrane. RAB GTPases, including RAB11 and RAB35, or RAB27A and RAB27B,
as well as SNARE proteins, e.g., vesicle-associated membrane protein 7 (VAMP7), have
been implicated in the membrane fusion [26,27]. Figure 1 summarizes the biogenesis of
MVs and EXOs.

In the case of EGFR, ubiquitination and phosphorylation are key factors for the sorting
of the endocytosed receptor, driving it to lysosomal degradation or recycling back to the cell
surface [66]. Low levels of phosphorylation drive EGFR to clathrin-mediated endocytosis
and recycling, while at high levels, EGFR is ubiquitinated and recognized by the ESCRT
complex, which drives it into ILVs and possibly to lysosomes for degradation. However,
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EGFR mutations can lead to increased auto-phosphorylation and MAPK signalling in
some cancers (e.g., NSCLC), displaying abnormal ubiquitination and an increased rate of
internalization and recycling [67,68].
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Figure 1. Biogenesis of microvesicles (MVs) and exosomes (EXOs) from tumour cells and effects of
EV-EGFR on recipient cells. MVs directly arise from the outward budding of the plasma membrane.
EXO biogenesis involves invagination of the plasma membrane, internalizing EGFR. The early
endosome interacts with the Golgi apparatus and involves complex machinery (endosomal sorting
complex required for transport, ESCRT, programmed cell death 6-interacting protein, ALIX, tumour
susceptibility gene 101,TSG101) and different tetraspanins (CD9, CD63, and CD81), leading to a
second inward invagination and the formation of the intraluminal vesicles (ILVs) contained in multi-
vesicular bodies (MVBs). EXOs are then released into the extracellular milieu upon fusion with the
plasma membrane.

EXOs may also form without the ESCRT complex machinery pathway, mainly involv-
ing ceramide subdomain-mediated curvature and tetraspanin family members (CD9, CD63,
and CD81). Syntenin 1 has also been shown to be involved in the packaging of cargo into
ILVs, as has ARF6, which can aid ILV budding, sorting of molecules, and driving MVBs and
ILVs to lysosomes for degradation [35,69]. The presence of specific surface proteins in MVBs
and ILVs, including EGFR, along with GTPase RAS-related protein RAB7A, HSP70−HSP90
organizing protein complexes, and members of the SNARE complex, including VAMP7 and
syntaxin 7 and 8, results in the degradation of ILV contents, including EGFR itself [36,54].
On the other hand, RABs, actin, and SNARE proteins also mediate the fusion of MVBs
with the cell membrane, and the subsequent release of EXOs [31,36,54,70]. Interestingly,
the role of ARF6 was shown to be specifically involved in sorting and trafficking of EGFR
toward degradation [71], while in aggressiveness in brain tumour-derived sEVs, Annexin1
is involved in inward budding EGFR-associated MVB [72].

3. EVs and EGFR Content as a Biomarker

The contents of vesicles, including MVs and EXOs, can vary depending on several
factors, such as the cell type, biogenesis pathway, and physiological or pathological condi-
tions. In general, all EVs are loaded with proteins, lipids, and nucleic acids. The different
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types of cargo can also be specific per vesicle and cell type, and extensive research has
been carried out to characterize the content of EVs. This resulted in the assembly of
several datasets from EVs studies, and nowadays, two databases are publicly available:
Vesiclepedia (www.microvesicles.org (accessed on 22 March 2023)) [73] and ExoCarta
(www.exocarta.org (accessed on 22 March 2023)) [3,65,74].

The methods used for isolation and characterization of EVs may yield different out-
comes [6,54,75–77]. Ultracentrifugation, polymeric precipitation, filtration, immunoaffinity
isolation, and microfluidics techniques are the most commonly used methods that are
not necessarily mutually exclusive, and combinations are recommended [76,78,79]. For
example, sedimentation by ultracentrifugation procedures, depending on the density or
“cargo”, may lead to the presence of some small EVs in the large vesicle pellet, while some
larger particles may remain in the upper part of the tube [80]. Differently, filter-based
methods with low-molecular-weight filters (0.2 µm), employed to enrich for the smaller
EV fraction, may lead to deformation or breakup of larger vesicles or platelets, thereby
potentially skewing results [78].

This situation is further complicated by EV heterogeneity. The current purification
methods may be unable to identify EVs based on their subtype or biogenesis, due to
overlapping sizes and a lack of well-established genetic markers [4,26]. Furthermore,
different subpopulations of MVBs coexist simultaneously in cells. For example, in HeLa
cells two distinct EV populations have been reported after stimulation with EGF [81]: a
population of CD63-positive endosomes containing EGFR and another subset of MVBs still
positive for CD63 but negative for EGFR cargo.

Despite the difficulties in standardization, mandatory for a possible clinical application,
EVs are considered a good source for tumour molecular profiling compared with cell-free
nucleic acids because EVs protect nucleic acids from degradation [5,82]. Moreover, tumour
cells release EVs with an altered cargo profile, influencing intercellular communication
during metastatic spreading [31,83]. This is also reflected by qualitative and quantitative
changes in sEV populations, which were identified in the blood of cancer patients, cor-
roborating a function of EVs as diagnostic and prognostic markers [52,78,84–88]. In line
with this, increased MV levels have been detected in the plasma of patients suffering from
gastric, lung, breast, pancreatic, colorectal, and prostate cancers, as well as in hematologic
malignancies [33,89–94].

Hereafter, the review will focus on EXO cargo, namely, proteins, RNAs, and DNA
found within EXOs and MVs, with a focus on EGFR-dependent tumours. EV-EGFR as a
biomarker in body fluids will also be discussed.

3.1. Proteins

Proteomics approaches in primary cell cultures or biofluids yielded catalogues of pro-
teins in different types of EVs. Notably, the proteomic profiles obtained were significantly
influenced by the isolation methods used for EVs, resulting in variable homogeneity of EVs
and subfractions [79]. Furthermore, the same cell type may secrete different subgroups of
vesicles depending on environmental factors (e.g., oxygen tension) or an activating stimu-
lus [3]. Despite the partial overlapping results, some proteins can be considered pan-EV
markers (i.e., common for most EVs), while other proteins and post-translational modifica-
tions are specific for vesicle localization, cellular origin, and mechanism of secretion. As
expected, either cytoskeletal proteins and plasma membrane proteins or proteins involved
in vesicle trafficking are highly abundant in EVs and are currently used as markers of EV
subpopulations (Table 1).

www.microvesicles.org
www.exocarta.org


Cancers 2023, 15, 2970 6 of 21

Table 1. Some of the most commonly found proteins in MVs and EXOs [3,26,33,52,65,95].

Biological Role MVs EXOs

Membrane Organizers—Adhesion
Molecules—Membrane Receptor

Tetraspanins: CD9, CD81, CD82 Tetraspanins: CD9, CD81, CD63, TSPAN6,
TSPAN8, CD151, CD37, CD53,

Integrins, selectins Flotilin 1 and 2, A33, EpCAM, CD147,
Integrin α and β, P-selectin

Biogenesis and Sorting ARF6, RAB11, ALIX, TSG101, ERK, PLD,
VPS4, ESCRT-I, -III, LGALS4

Protein kinases, β-catenin, 14-3-3,
G proteins, ALIX, TSG101, syntenin,
ubiquitin, clathrin, VPS32, VPS4,
ESCRT-0-III, LGALS3BP

Cytoskeletal Proteins Actin, tubulin, moesin Tubulin, moesin

Cell Type Specific MHC-I, CD14, HSP70-90 MHC-I-II, TFR, WNT, CD86,
HSP20-27-60-70-84-90

Cancer Associated and Growth Factors c-Met, Caveolin-1, EGFR, EpCAM,
EMMPRIN, MUC1, FAK, HepPar1 TNF-α, TGF-β, TRAIL, GPC1

A33, cell surface A33 antigen; ALIX, programmed cell death-6 interacting protein; ARF6, ADP-ribosylation
factor 6; CD, cluster of differentiation; c-Met, hepatocyte growth factor receptor; EGFR, epidermal growth
factor receptor; EMMPRIN, extracellular matrix metalloproteinase inducer; EpCAM, epithelial cell adhesion
molecule; ERK, extracellular signal-regulated kinase; ESCRT, endosomal sorting complex required for transport;
FAK, focal adhesion kinase; HSP, heat shock protein; LGALS, lectin galactoside-binding soluble; MHC, major
histocompatibility complex; MUC1, Mucin short variant S1; PLD, phospholipase-D; RAB, Ras-related protein;
TfR, transferrin receptor; TGF, transforming growth factor; TNF, tumour necrosis factor; TRAIL, TNF-related
apoptosis-inducing ligand; TSG101, tumour susceptibility gene 101; TSPAN, tetraspanin; VPS4, vacuolar
protein sorting.

In addition to the various proteins involved in biogenesis (e.g., ESCRT complex,
ALIX, TSG101), sorting (e.g., glycan binding, tetraspanins) [3,26,65,96–98], and fusion
with membrane (GTPase RAS-related protein, SNARE complex, ARF6, VAMP7, and
syntaxin 7 and 8) [52,69] usually used to characterize EV populations, EVs contain specific
stress proteins (heat shock proteins; HSP70−HSP90), antigen presentation complex (MHC
I and MHC II) and transmembrane proteins (lysosomal-associated membrane protein,
LAMP1; transferrin receptor, TfR), including the membrane receptor EGFR.

Li et al. [99] analysed EVs secreted by nasopharyngeal carcinoma (NPC) cells and de-
tected an EXO subpopulation enriched for membrane CD9 and CD63 and non-membrane
ALIX and TSG101 proteins. Subsequently, the authors evaluated the role of EGFR-rich
EVs both in vivo (tumour tissues) and in vitro (high and low metastatic NPC cell lines).
Additionally, they found that EGFR was overexpressed in metastatic NPC cell lines and
patients. Furthermore, EGFR-rich EVs secreted by metastatic NPC cell lines induced
cellular up-regulation of EGFR and abnormal signalling activation, which, in turn, are
responsible for EMT and shorter survival in xenografted mice treated with secreted
EGFR-rich EVs [99]. The importance of EXO-EGFR and related proteins was also re-
ported in lung cancer and EMT. Jouda et al. [100], showed that EXO-EGFR from EGFR
mutated NSCLC patients can induce the activation of the PI3K/AKT/ mTOR pathway
in A549 cells. The authors also demonstrated an increase in vimentin, nuclear factor
erythroid 2-related factor 2, and P-cadherin, suggesting that EXOs may act as mediators
of EMT and tumour invasion.

The oncogenic role of EGFR in triggering the release of EXO-like extracellular
vesicles and the evaluation of phosphoprotein content both in vivo and in vitro was also
reported [101]. Both wild-type and mutant EGFR were detected in EVs isolated in the
plasma of patients affected by GBM and in GBM xenograft mice, reflecting the mutations
found in the tumour. After highlighting the ability of GBM-EVs to induce the release
of EGFR and phospho-EGFR, the authors also reported similar findings in additional
cancer cell lines, including A431 (epidermal), MDA-MB-231 (breast), BxPC3, PANC-1
(pancreatic), PC-3 (prostate), HCT116, DLD-1, and CaCo-2 (colon). In A431 cells, TGFα
treatment boosted phosphorylation of both membrane EGFR and EV-engulfed EGFR.
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On the other hand, panEGFR inhibitors reduced phosphorylation only on the membrane
located EGFR, but intriguingly increased the pEGFR activation recovered as cargo in the
EV. Remarkably, the inhibition of both the EXO biogenesis and the apoptotic caspase
cascade reduced the EVs release, suggesting a possible shared mechanism between
EXO biogenesis and apoptosis. Thus, in EGFR-dependent cancer cells, blocking the
oncogenic signals may lead to cellular stress that stimulates both exosomal and apoptotic
pathways [101].

3.2. RNA

A milestone in EV research was the discovery of cargo RNA, suggesting its function
as a means for intercellular transfer of genetically encoded messages.

The RNAs initially discovered and most studied in EVs are messenger RNA (mRNA)
and microRNA (miRNA) [5,6,102]. The role of EV-RNAs is also emerging in liquid biopsy,
as a promising non-invasive source for molecular testing, complementing and improving
the use of circulating tumour cells and cell-free DNA (cfDNA) analysis [33,102]. In
addition, enrichment analysis observed that several miRNAs were almost undetectable
in colorectal cancer cell lysates but were found at high levels in the respective cell-
derived MV and EXO [103]. Usually, the absence or minor amounts of ribosomal 18S
and 28S in EVs are reported. However, with the rapid advances in deep sequencing or
Next Generation Sequencing (NGS) techniques, fragments of rRNA, as well as long and
short non-coding RNA and tRNA fragments, have been found in EVs [1,65]. Currently,
the Vesiclepedia database includes over 27,000 and 10,000 entries mRNAs and miRNAs,
respectively [73]. The general consensus is that EVs protect RNA from digestion in the
extracellular environment. Furthermore, different ribonucleoproteins, as well as high-
and low-density lipoproteins, can stably associate with RNA species [3,65,82].

In oncology, EV-RNAs are studied both as potential biomarkers in blood/plasma/serum
or as emergent treatment strategies for malignant neoplasms. Table 2 reports RNAs studied
in cell cultures or as biomarkers. For example, EV-miRNA Let-7b-3p, miR-150-3p, miR-145-
3p, and miR-139-3p were suggested as biomarkers in the plasma of colon, breast, or lung
cancer patients [104,105]. In line with this, Ogata-Kawata et al. [106] revealed that miR-23a,
miR-1246, and miR-21 differ between EVs from CRC patients and controls. Furthermore,
miR-486 was significantly enriched in serum EV-miRNA of CRC patients and associated
with shorter survival and liver metastases [107–109]. Furthermore, Cha et al. [110] evalu-
ated eight mRNA markers (MYC, VEGF, CDX2, CD133, CEA, CK19, EpCAM, and CD24)
extracted from plasma EVs, showing statistically significant differences between healthy
subjects and CRC patients for the combination of VEGF and CD133. Differently, Krug
et al. [111] demonstrated that the measure of circulating tumour DNA (ct-DNA) and EXO-
RNA was more sensitive than ct-DNA alone to detect EGFR mutations in advanced NSCLC.
Nevertheless, whether enough RNA molecules are shuttled to EV to functionally influence
the recipient cell remains to be proven.

In NSCLC, Xia et al. [112] suggested the possible use of EXO-miRNA as markers
to identify patients with wild-type or mutated EGFR. In particular, the authors high-
lighted 96 EXO-miRNAs differentially expressed between the serum of healthy and
NSCLC patients. Interestingly, 40 of them were also different between patients with
mutated EGFR, including miR-142-5p, -592, -217, -451b, and -150, already reported as
putative biomarkers. Moreover, the authors searched for EXO-miR-260 and -miR-1169
in cancer cell lines showing the same trend and expression as in the serum of patients,
suggesting a correlation between downregulation of EXO-miR-260 and mutated EGFR,
while upregulation of EXO-mir-1169 may identify patients with wild-type EGFR. Finally,
EVs were also reported to mediate the transfer of long noncoding RNAs implicated in
the pathological process of lung pulmonary fibrosis [113], which correlated with the
presence of missense polymorphisms in members of the EGFR family [114].
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Table 2. Some of the RNAs found in MVs and EXOs and studied in cell culture or as liquid
biopsies biomarkers.

Target/Cargo RNA Type EVs Cancer Type Cell Line/Tissue References

let-7-b3p, miR-150-3p, miR-145-3p,
miR-139-3p miRNA sEV Colon/Breast/Lung Plasma [105]

miR-486, miR-548c miRNA EXO Colorectal Serum [107–109]

miR-1246, miR-21, miR-23a miRNA EXO Colorectal Serum/plasma [106]

miR-92a miRNA EXO Colorectal Serum [115]

MYC, VEGF, CDX2, CD133, CEA, CK19,
EpCAM, CD24 mRNA EXO/MV Colorectal Plasma [110]

miR-1246, -23a, -200c, -203a, -19a, 7641 miRNA EXO/MV Colorectal LM1863 [116]

BCAR4 lncRNA EXO Colorectal Serum [117]

KRTAP5-4, MAGEA3 mRNA EXO Colorectal Serum [117]

miR-142-5p, -592, -217, -451b, -150, -260,
-1169 miRNA EXO NSCLC Serum [112]

linc00152 lncRNA EXO Gastric cancer Plasma [118]

let-7a miRNA EXO Breast HCC70 [119]

miR-145 miRNA EXO Breast T-47D [120]

miR-214 miRNA EXO Gastric SGC7901 [121]

KRASG12D (target) siRNA EXO Pancreas PANC-1, BxPC-3, Capan-1,
MIA PaCa-2 [122]

TPD52 (target) siRNA EXO Breast SKBR3 [123]

miR-494-3p miRNA EXO NSCLC Plasma/NCI-H1975, HCC827 [124]

miR-6087, miR-99b-5p, miR-7641,
miR-378a-3p, miR-25-5p, miR-1293,
miR-184, miR-3913-5p

miRNA EXO NSCLC Plasma/H1975 [125]

miR-26a/b miRNA EXO Gastric SGC7901 [126]

m, messenger; mi, micro; EXO, exosome; MV, microvesicle; NSCLC, non-small cell lung cancer; sEV, small
extracellular vesicle.

3.3. DNA

Despite most of the EV literature focusing on proteins and RNAs, numerous studies
have recently reported the presence of DNA either associated with the surface of EVs or
within their lumen [4]. Table 3 reports DNA genes studied in EVs. In 2013, one of the first
studies reported the presence of genomic and mitochondrial DNA in human plasma EVs,
and in 2014, mutant KRAS and TP53 DNAs were found in serum EXOs collected from
cancer patients [24,127]. Moreover, recent findings have shown that horizontal transfer of
mitochondrial DNA can occur through EVs. In detail, mitochondrial DNA carried within
EVs has been found to promote the reactivation of dormant cancer stem-like cells, resulting
in resistance to endocrine therapy [128].

Traditionally, it was believed that EV-DNA was the passive result of cell death by
apoptosis or necrosis. However, recent studies have suggested an interesting hypothesis
about the capability of EVs to also store and remove damaged DNA, potentially contribut-
ing to the maintenance of DNA integrity and homeostasis [129]. Additionally, Montermini
et al. reported the EXO-DNA release as a response to cellular stress [101]. However, the
biological role of EV-DNA requires further investigation.
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Table 3. DNA found in MVs and EXOs.

DNA EV Cancer/Normal Cell Line/Tissue Reference

BCR/ABL EV Chronic Myelogenous
Leukaemia/Healthy Plasma/VSMC, HEK293, K562 [23]

KRAS, TP53 EXO Pancreatic cancer Serum/Panc-1, T3M-4 [24]

APC, KRAS, TP53, PIK3CA MV, EXO Colorectal cancer Tissue biopsy [130]

TGFBR2 EXO Colorectal cancer HCT116 [131]

HRAS EXO-like intestinal epithelial cells
and fibroblasts IEC-18, RAS-3, RAT-1 [132]

EGFR EXO-like epidermoid cancer A431 [101]

EGFR EXO NSCLC Plasma and tissue biopsy [111]

EGFR T790M EXO NSCLC Plasma [133]

KRAS EXO Pancreatic cancer Plasma [134]

KRASG12D, TP53R273H EXO Pancreatic cancer Plasma [135]

BRAFV600E EV Melanoma Plasma [136]

TP53, MLH1, PTEN MV, EXO Prostate cancer Plasma/LNCaP, PC-3,
RC92a/hTERT [137]

MYC L and S-EV Prostate cancer Plasma/PC3, U87, U2OS-H2B-GFP [138]

DROSHA, LIG4, MACROD2, SATB1,
RASSF6, BIRC2 EXO Ovarian cancer Plasma/OVCAR-8, OVCAR-5, FTE [139]

APC, Adenomatous Polyposis Coli; BCR/ABL, break-point cluster region v-abl Abelson murine leukaemia viral
oncogene; BIRC2; baculoviral IAP repeat containing 2, BRAF, B-Raf proto-oncogene serine/threonine kinase;
DROSHA, drosha ribonuclease III; EXO, exosome; HRAS, HRas proto-oncogene, GTPase; KRAS, Kirsten rat
sarcoma virus; l-EV, large extracellular vesicle; LIG4, DNA ligase 4; MACROD2, mono-ADP ribosylhydrolase 2;
MLH1, mutL homolog 1; MV, microvesicle; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha; PTEN, phosphatase and tensin homolog; RASSF6, Ras association domain family member 6;
SATB1, SATB homeobox 1; s-EV, small extracellular vesicle; TGFBR2, transforming growth factor beta receptor 2;
TP53, tumour protein p53; VSMC, vascular smooth muscle cells.

Reports have also shown that EV-DNA secretion varies under different conditions,
leading to changes in the recipient cells. Lee et al. reported that full-length oncogenic H-RAS
DNA was transferred in vitro via EVs, changing the behaviour of the recipient cells [132].
By comparing the emission of rat intestinal cells (IEC-18) and h-RAS mutated cells (RAS-3),
the authors reported the increased excretion of EXO-like vesicles in non-transformed fibrob-
last (RAT-1), allowing the uptake of the oncogenic h-RAS with a concomitant mitogenic
response. Nevertheless, whether the tumour EXO-gDNA could be horizontally transmitted
with the consequent changes in the recipient cells is still controversial.

EV-DNA was found in different biological fluids and cell cultures, suggesting it is
a promising candidate for liquid biopsy [29,134,140–142]. In cancer patients, EV-DNA is
being investigated in several applications, mainly as a biomarker or to monitor disease and
treatment response in liquid biopsy [139,143]. Moreover, the search by NGS for common
hotspot mutations (BRAF, EGFR, and KRAS) showed a greater sensitivity if compared to
circulating free DNA or circulating tumour DNA. The authors further claimed that cfDNA
in plasma may be mainly present in EXOs [141].

In 2017, Allenson and colleagues found a KRAS mutation in EXOs of pancreatic ductal
adenocarcinoma and associated it with disease free survival [134]. Moreover, the detection
rates of mutant KRAS in EXOs were higher in EXOs as compared to cfDNA. Therefore, EV-
DNA is now also considered a promising liquid biopsy approach for diagnosis, prognosis,
and monitoring of treatment responses, and studies have reported its use in patients
affected by pancreatic, ovarian, pheochromocytoma, and colorectal cancer [133,144–147].
In line with this, recent studies have focused on the role and usefulness of EXOs-DNA in
liquid biopsy to detect mutations related to EGFR [148,149]. EGFR mutations in EXOs of
malignant pleural effusion of lung adenocarcinoma patients reported 100% agreement for
EGFR genotyping with the primary tumour [149]. Moreover, by analysing EV-DNA, it was
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possible to detect three additional T790 mutant cases in patients sensitive to EGFR-TKI and
two more cases in patients with acquired resistance, suggesting that liquid biopsy using
EV-DNA is promising for the detection of low-rate EGFR mutations in lung cancer. The
utility of EV-DNA from liquid biopsies in lung adenocarcinoma was also confirmed by
Park et al. in bronchial wash [150]. The T790M mutation rate was high, confirming that
bronchial wash-derived EVs can be usefully analysed to detect DNA EGFR mutations, thus
implying that EV-DNA analysis may provide valuable information for the management
and treatment of lung cancer.

3.4. EV-EGFR in Body Fluids

In cell–cell communication, EVs have been shown to reflect the composition of their
host cells [151,152]. Probably due to physiological alteration, it has been estimated that the
blood of cancer patients contains around 4000 trillion EXOs, twice as much as compared to
normal human blood, which makes them a potential non-invasive biomarker for different
cancer screenings [153,154]. Many studies are focusing mostly on miRNAs and protein
content analysis of circulating EVs. For example, in lung adenocarcinoma and lung squa-
mous cell carcinoma, researchers are correlating specific EXO miRNAs with stages and
histological subtypes [155]. As a matter of fact, EXOs express a high level of miRNAs, which
are known to influence mRNA stability and TME [156]. The potential diagnostic power
of such molecules has been shown in the literature: miR-139-5p, miR200b-5p, miR-378a,
miR-126, and miR-379 allow for discrimination between healthy and lung cancer smokers,
while other specific EXO miRNAs are useful to distinguish between lung adenocarcinomas
and granulomas [157]. Recently, much attention has been concentrated on the presence of
EXO-EGFR at DNA, RNA, and protein levels as diagnostic, prognostic, and therapeutic
markers. Indeed, early detection of the EGFR mutation profile would lead to a prompt
treatment schedule. An exhaustive table on the evaluation of EV-EGFR in liquid biopsy in
different tumour types is provided by Frawley at al. [7]. Using a microfluidic electrochem-
ical immunosensor system, Ortega et al. indirectly detected the EXO EGFR level for the
diagnoses of 20 healthy patients and 30 breast cancer patients [158]. With a different flow
cytometry-based approach, Wang et al. compared the EV EGFR content in several sample
sera to identify glioma patients in correlation with tumour grade [159]. For diagnostic
purposes, the first FDA approved liquid biopsy test was the Cobas EGFR Mutation Test v2®

(Roche Diagnostics Inc., Basilea, Switzerland), which analyses the EGFR gene mutations
in cfDNA [160]. Based on the study performed by Fernando et al., 93% of cfDNA derives
from EXOs [141]. However, such a test showed only 58% sensitivity and 80% specificity.
Subsequently, further studies suggested that combining the mutational profiles of exosomal
RNA/DNA and cfDNA would improve both sensitivity and specificity [133].

4. Role of EGFR on Cargo Trafficking and Modulation of the Tumour Microenvironment

EVs are generated by the endolysosomal pathway and released by several cell types,
including tumour cells. EVs resemble the phenotypic features of the cell of origin and
carry different bioactive molecules, cytokines, and receptors, including the ERBB receptor
family [161,162]. Zanetti-Domingues et al. reported a central role for EGFR receptor
signalling in EV trafficking and its loading as cargo [35,69]. Several studies demonstrated a
high abundance of circulating EXOs in the plasma of cancer patients compared to healthy
ones [154,163]. While in the latter, EXO contributes to maintaining stable homeostasis,
in the former, EXO release is associated with tumour progression, metastasis, and drug
resistance, and is able to deliver active cargo to recipient cells in an autocrine, paracrine, or
endocrine manner [31,70,151,164]. Indeed, EGFR members and their ligands are expressed
in sEVs released by cancer cells [7,165]. Through a process known as “horizontal oncogene
transmission”, Al-Nedawi et al. demonstrated, in 2008, the presence of a constitutively
activated mutant isoform of EGFRvIII in U373 GBM cell-derived EVs, which appeared to
be functional once internalized by the recipient cells, increasing MAPK, AKT, PDK1, and
RAF signalling as well as VEGF expression [34]. In addition, subsequent studies showed



Cancers 2023, 15, 2970 11 of 21

a different proteome composition in the sEV driven by the mutant EGFR form compared
with the wild-type receptor, influencing a pro-tumoral microenvironment [166].

An altered sEV proteome was also found in NSCLC, contributing to resistance to
anti-EGFR therapies [167]. In vitro culture of PC9 cells, harbouring the EGFR-T790M
mutation and insensitive to gefitinib treatment, released sEVs containing specific molecules
of the AKT/mTOR pathway, influencing the drug sensitivity of the recipient cells but
also enhancing proliferation and invasion. Moreover, sEVs secreted by gefitinib-treated
PC9, can induce autophagy in autologous cells, decreasing cisplatin activity and allowing
recipient cells to survive through an antagonistic interaction [168].

EXOs derived from patients with EGFR-positive lung adenocarcinoma caused, in
recipient cells, vimentin overexpression, extracellular matrix degradation, and activation of
PI3K/AKT/mTOR, a well-known pathway involved in the EMT process [100]. The link
between EGFR-mediated EVs biogenesis and EMT was also demonstrated by Fujiwara et al.
in HSC-3 oral squamous cell carcinoma; cells under EGF stimulation induced both EMT and
increased EVs secretion, which, in turn, led to the expression of EMT markers in recipient
cells [50,169]. The same phenomenon was seen in HNSCC under TGF-α stimulation [170].
Stromal cells and TME are also another target affected by EV release in order to sustain
neoplastic features, especially where inflammation is one of the major malignant risk
factors, like in colorectal cancer. EGFR was shown to be overexpressed in inflammatory
bowel disease (IBD)-associated colorectal adenocarcinoma, and indeed, an increased level
of EGFR was found in IBD mice-derived colorectal EVs which were also internalized by
NIH3T3 fibroblast cells [171,172]. NIH3T3, in turn, demonstrated an increased protein level
of EGFR after EVs incorporation associated with high ERK phosphorylation, increased
proliferation, and KI67 expression [125,171]. Thus, EVs are the principal mediator of
tumour–TME communication, interacting not only with fibroblasts, but also with other
important recipient cells, such as endothelial or immune cells, shaping them in favour of
tumour growth. The final effect is translated into pro-angiogenic and immune suppression
signalling [35]. In particular, EVs influence T regulatory cells (Tregs) and myeloid-derived
suppressor cells (MDSCs). For example, it has been demonstrated in NSCLC that EGFR+
sEVs induce tolerogenic dendritic cells, which, in turn, suppress T cell activation [173].

Thus, cancer cell-derived EVs, depending on their specific patterns or cargo, can
reprogram long-distance and organ-specific cells to promote growth and invasion, form a
pre-metastatic niche, modulate TME, and confer drug resistance (Figure 1).

5. EV-EGFR in Resistance to Therapy and as Vehicles of Treatment
5.1. Resistance to Therapy

Recently, EV-EGFR and related proteins have also been described as involved in
resistance to therapies. Choi et al. [167] demonstrated significant differences in the pro-
teome profiles of EVs released by sensitive NSCLC (PC9) compared to gefitinib-resistant
cells (PC9R) due to an acquired EGFR mutation (T790M). In particular, the AKT/mTOR
signalling pathway was hypothesised as a key component actively involved in gefitinib
resistance. The importance of EVs in therapy resistance was also reported in breast cancer.
HER2-positive EVs were shown to bind to monoclonal antibody-based drugs (trastuzumab),
thereby reducing therapy bioavailability to their target tumour cells [94,174,175]. A dif-
ferent mechanism was shown by Martinez et al. [176], highlighting the increased levels
of the immunosuppressive proteins transforming growth factor beta 1 and programmed
death-ligand 1 in EVs in HER2-overexpressing drug-resistant cells and the serum of patients
who do not respond to HER2-targeted drug treatments.

EXO-miRNAs were also associated with resistance to treatments against EGFR. A po-
tential role of miR-494-3p as a marker of osimertinib resistance in NSCLC was reported by
Kaźmierczak et al. [124] by analysing EXO-RNA from plasma sampled at baseline and after
disease progression in patients with mutated EGFR T790M NSCLC. The expression of EXO
miR-494-3p was significantly increased in progression samples compared with baseline sam-
ples. Furthermore, the authors confirmed that miR-494-3p was significantly upregulated
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in two EGFR-mutant NSCLC cell lines refractory to osimertinib, demonstrating a partial
role of miR-494-3p in conferring resistance to treatment in vitro. Li et al. [125], analysing
sensitive and resistant NSCLC cell lines, demonstrated that EXO-derived miRNAs may
be involved in the mechanisms of resistance. Levels of EXO-miR-6087, miR-99b-5p, and
miR-7641 were upregulated, and miR-378a-3p, miR-25-5p, and miR-1293 were downregu-
lated in sensitive cells and linked to the RAS-MAPK signalling pathway, a member of the
bypass pathways involved in drug resistance in EGFR-TKI therapy for NSCLC. Further-
more, analysing blood samples from 64 NSCLC patients with EGFR mutations (on exons
19 and 21), the authors reported that the upregulation of EXO-miR-184 and -3913-5p may
indicate the development of drug resistance in patients.

Despite EGFR being early linked to oncogenesis in GBM, therapies exploiting it as
a target are still not as efficient as in other types of cancer (e.g., NSCLC) [177]. Chi et al.
evaluated the RNA content of tumour-derived EVs in patients unresponsive to dacomi-
tinib [178]. The authors found 32 mRNAs differentially expressed between sensitive and
non-sensitive patients, including LAMTOR2, an activator of MAPK and mTOR signalling,
and CSF1, which encodes macrophage colony-stimulating factor. Tamizolide resistant GBM
cells were shown to induce resistance in sensitive cells by transferring miR-1238 through
EXOs [179]. miR-1238 reduced the activity of caveolin-1, a tumour suppressor gene, also
through its interaction with EGFR. Regarding the role of EXOs in promoting metastasis,
Zhang et al. [126] reported that EGFR delivered via EXOs may regulate TME, promoting
gastric cancer liver metastasis. EGFR was present in EXOs of gastric adenocarcinoma cells
and enriched in EXOs derived from gastric cancer patients serum, but not in EXOs of
healthy human serum. The levels of EGFR in both cancer cells and EXOs were strongly
decreased by transfection of siRNA targeting EGFR, confirming the importance of EGFR
in facilitating protein transfer of EGFR itself. The authors then demonstrated that gastric
cell-EXOs significantly promote HGF and EGFR expression in mixed liver cells while
suppressing miR-26a/b expression, suggesting the regulation of the microenvironment of
the liver to prepare favourable conditions for future metastasis.

Furthermore, EV-DNA was reported to be involved in resistance to therapy. Crow et al.
isolated EXO-gDNA from ovarian cancer cells resistant to carboplatin treatment [180].
The authors further demonstrated that tumour-derived EXOs induced an EMT phe-
notype in sensitive cells, leading to the development of subpopulations of platinum-
refractory cells.

5.2. Vehicles for Treatment

The use of EVs as cargo vehicles, mainly for miRNA or siRNA, has been explored
as a potential treatment option for cancer. This approach involves using EVs to deliver
therapeutic RNA molecules to cancer cells [181]. For example, EXOs containing the tumour
suppressor miRNA let-7a were able to successfully inhibit EGFR-expressing cancer cells
in vitro and decrease tumour growth in xenograft breast cancer mice in vivo [119]. Inter-
estingly, the authors modified EXOs with GE11 peptide, which binds membrane EGFR
more efficiently than EGF, but with lower mitogenic capability. They proved in vitro and
in vivo that the amount of surface EGFR dictated drug delivery for GE11-EXOs in different
breast cancer cell lines. Indeed, the delivery of let-7 miRNA to cancer cells was able to
impair cell cycle progression and reduced cell division. Similar inhibitory effects were
reported for EXO-mir targeting HER2 [120]. In this case, the authors used mesenchymal
stem cell-derived EXOs as carriers of the oncosuppressor miR-145 in T-47D cells, confirming
the tumour-suppressive effects of miR-145. In particular, miR-MSC-EXO demonstrated
its role in both inducing apoptosis and inhibiting metastasis by downregulating MMP9
and HER2 and upregulating TP53. A different miRNA was tested by Wang et al. with
EXOs transporting anti-miR-214. In this case, a link with chemoresistance was evidenced in
gastric cancer cells in vitro, showing that EXOs, as vehicles of anti-miR-214, enhanced cell
death and inhibited migration in cisplatin-resistant cells [121]. In 2017, EXOs transporting
siRNA targeting the oncogenic mutated GTPase KRASG12D were used to treat pancreatic
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cancer, yielding suppression of tumour growth and extended survival in mice [122]. In
2019, Limoni et al. obtained promising results in vitro with EXOs containing TPD52 siRNA
in HER2-expressing SKBR3 breast cancer cells [123].

6. Conclusions

Although there are several challenges associated with analysing EVs, such as the
numerous sources of secretion into body fluids, the lack of standardized isolation and
purification protocols, and the absence of a universally agreed-upon marker signature
to identify the origin of EVs, their potential use is still significant and promising. An
update in the field of Minimal Information for Studies of Extracellular Vesicles has been
provided recently by the International Society for Extracellular Vesicles (ISEV). However,
more extensive studies are needed to establish a low cost and accurate method for future
clinical applications [182–184].

EGFR-dependent tumours through the EV cargo of specific proteins, mRNAs, or
miRNAs can modulate long-distance and organ-specific cells by promoting growth and
invasion, regulating TME, and conferring drug resistance.

Notably, recent studies demonstrated the transfer of EGFR and associated molecules
from different cancer cells, activating pro-tumorigenic pathways in recipient cells. The
process of transferring biological signals between cells by EV is similar to the hormonal
communication and opens new perspectives in the evaluation of the biological effects
of such transfer. Whether and how tumour cells sort and transfer cargo in EVs is still
an unanswered question. On the other hand, EVs present in liquid biopsies, such as
serum, plasma, CSF, and pleural effusions, offer a crucial and untapped opportunity for the
development of non-invasive biomarkers that can revolutionize the diagnosis, prognosis,
and therapy monitoring not just for EGFR-dependent tumours, but also for a wider range
of cancers and diseases.

Author Contributions: Writing—original draft preparation, E.F. and D.R.; tables, figures, and editing,
F.B., V.G., F.P., C.G., R.S.K., A.M., D.M.F., M.M. and M.S.; writing—review, G.D. and M.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by MIUR, PRIN2017, grant number 2017TATYMP_002, and
Fondazione Carisbo “Ricerca medica e alta tecnologia 2022” and Fondazione del Monte 2021. GD
was supported by AIRC (grant number MFAG 24684).

Acknowledgments: We are grateful to Rossella Solmi for her continuous support and assistance
in writing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Crescitelli, R.; Lässer, C.; Lötvall, J. Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc.

2021, 16, 1548–1580. [CrossRef] [PubMed]
2. Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383.

[CrossRef]
3. Yáñez-Mó, M.; Siljander, P.R.M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.;

Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4,
27066. [CrossRef] [PubMed]

4. Tsering, T.; Li, M.; Chen, Y.; Nadeau, A.; Laskaris, A.; Abdouh, M.; Bustamante, P.; Burnier, J. V EV-ADD, a Database for
EV-associated DNA in human liquid biopsy samples. J. Extracell. Vesicles 2022, 11, e12270. [CrossRef] [PubMed]

5. Desmond, B.J.; Dennett, E.R.; Danielson, K.M. Circulating extracellular vesicle microRNA as diagnostic biomarkers in early
colorectal cancer—A review. Cancers 2019, 12, 52. [CrossRef]

6. Hill, A.F.; Pegtel, D.M.; Lambertz, U.; Leonardi, T.; O’Driscoll, L.; Pluchino, S.; Ter-Ovanesyan, D.; Nolte-‘t Hoen, E.N.M. ISEV
position paper: Extracellular vesicle RNA analysis and bioinformatics. J. Extracell. Vesicles 2013, 2, 22859. [CrossRef]

7. Frawley, T.; Piskareva, O. Extracellular vesicle dissemination of epidermal growth factor receptor and ligands and its role in
cancer progression. Cancers 2020, 12, 3200. [CrossRef]

https://doi.org/10.1038/s41596-020-00466-1
https://www.ncbi.nlm.nih.gov/pubmed/33495626
https://doi.org/10.1083/jcb.201211138
https://doi.org/10.3402/jev.v4.27066
https://www.ncbi.nlm.nih.gov/pubmed/25979354
https://doi.org/10.1002/jev2.12270
https://www.ncbi.nlm.nih.gov/pubmed/36271888
https://doi.org/10.3390/cancers12010052
https://doi.org/10.3402/jev.v2i0.22859
https://doi.org/10.3390/cancers12113200


Cancers 2023, 15, 2970 14 of 21

8. Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular
vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [CrossRef]

9. Chargaff, E.; West, R. The biological significance of the thromboplastic protein of blood. J. Biol. Chem. 1946, 166, 189–197.
[CrossRef]

10. Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967, 13, 269–288. [CrossRef]
11. Anderson, H.C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 1969, 41, 59–72. [CrossRef]

[PubMed]
12. De Broe, M.; Wieme, R.; Roels, F. Membrane fragments with koinozymic properties released from villous adenoma of the rectum.

Lancet 1975, 306, 1214–1215. [CrossRef] [PubMed]
13. Benz, E.W.; Moses, H.L. Brief communication: Small, virus-like particles detected in bovine sera by electron microscopy2. J. Natl.

Cancer Inst. 1974, 52, 1931–1934. [CrossRef]
14. Dalton, A.J. Microvesicles and vesicles of multivesicular bodies versus “virus-like” particles. J. Natl. Cancer Inst. 1975, 54,

1137–1148. [CrossRef]
15. Ronquist, G.; Brody, I.; Gottfries, A.; Stegmayr, B. An Mg2+ and Ca2+-stimulated adenosine triphosphatase in human prostatic

fluid: Part I. Andrologia 2009, 10, 261–272. [CrossRef] [PubMed]
16. Johnstone, R.M.; Adam, M.; Hammond, J.R.; Orr, L.; Turbide, C. Vesicle formation during reticulocyte maturation: Association of

plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987, 262, 9412–9420. [CrossRef]
17. Pan, B.T.; Johnstone, R.M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externaliza-

tion of the receptor. Cell 1983, 33, 967–978. [CrossRef]
18. Dvorak, H.F.; Quay, S.C.; Orenstein, N.S.; Dvorak, A.M.; Hahn, P.; Bitzer, A.M.; Carvalho, A.C. Tumor shedding and coagulation.

Science 1981, 212, 923–924. [CrossRef]
19. Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J. B Lymphocytes secrete

antigen-presenting vesicles. J. Exp. Med. 1996, 183, 1161–1172. [CrossRef]
20. Ratajczak, J.; Miekus, K.; Kucia, M.; Zhang, J.; Reca, R.; Dvorak, P.; Ratajczak, M.Z. Embryonic stem cell-derived microvesicles

reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006, 20, 847–856.
[CrossRef]

21. Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is
a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [CrossRef] [PubMed]

22. Skog, J.; Würdinger, T.; van Rijn, S.; Meijer, D.H.; Gainche, L.; Curry, W.T.; Carter, B.S.; Krichevsky, A.M.; Breakefield, X.O.
Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat.
Cell Biol. 2008, 10, 1470–1476. [CrossRef] [PubMed]

23. Cai, J.; Han, Y.; Ren, H.; Chen, C.; He, D.; Zhou, L.; Eisner, G.M.; Asico, L.D.; Jose, P.A.; Zeng, C. Extracellular vesicle-mediated
transfer of donor genomic DNA to recipient cells is a novel mechanism for genetic influence between cells. J. Mol. Cell Biol. 2013,
5, 227–238. [CrossRef] [PubMed]

24. Kahlert, C.; Melo, S.A.; Protopopov, A.; Tang, J.; Seth, S.; Koch, M.; Zhang, J.; Weitz, J.; Chin, L.; Futreal, A.; et al. Identification of
double-stranded genomic DNA spanning all chromosomes with mutated KRAS and P53 DNA in the serum exosomes of patients
with pancreatic cancer. J. Biol. Chem. 2014, 289, 3869–3875. [CrossRef]

25. Ghanam, J.; Chetty, V.K.; Anchan, S.; Reetz, L.; Yang, Q.; Rideau, E.; Liu, X.; Lieberwirth, I.; Wrobeln, A.; Hoyer, P.; et al.
Extracellular vesicles transfer chromatin-like structures that induce non-mutational dysfunction of P53 in bone marrow stem cells.
Cell Discov. 2023, 9, 12. [CrossRef]

26. Van Niel, G.; D’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018,
19, 213–228. [CrossRef]

27. Zhang, Q.; Jeppesen, D.K.; Higginbotham, J.N.; Graves-Deal, R.; Trinh, V.Q.; Ramirez, M.A.; Sohn, Y.; Neininger, A.C.; Taneja,
N.; McKinley, E.T.; et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic
targets. Nat. Cell Biol. 2021, 23, 1240. [CrossRef]

28. Valcz, G.; Buzás, E.I.; Kittel, Á.; Krenács, T.; Visnovitz, T.; Spisák, S.; Török, G.; Homolya, L.; Zsigrai, S.; Kiszler, G.; et al. En
bloc release of MVB-like small extracellular vesicle clusters by colorectal carcinoma cells. J. Extracell. Vesicles 2019, 8, 1596668.
[CrossRef]

29. Malkin, E.Z.; Bratman, S.V. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 2020, 11, 584. [CrossRef]
30. Ma, L.; Li, Y.; Peng, J.; Wu, D.; Zhao, X.; Cui, Y.; Chen, L.; Yan, X.; Du, Y.; Yu, L. Discovery of the migrasome, an organelle

mediating release of cytoplasmic contents during cell migration. Cell Res. 2015, 25, 24–38. [CrossRef]
31. Seibold, T.; Waldenmaier, M.; Seufferlein, T.; Eiseler, T. Small extracellular vesicles and metastasis—Blame the messenger. Cancers

2021, 13, 4380. [CrossRef] [PubMed]
32. Maacha, S.; Bhat, A.A.; Jimenez, L.; Raza, A.; Haris, M.; Uddin, S.; Grivel, J.C. Extracellular vesicles-mediated intercellular

communication: Roles in the tumor microenvironment and anti-cancer drug resistance. Mol. Cancer 2019, 18, 55. [CrossRef]
[PubMed]

33. Menck, K.; Sivaloganathan, S.; Bleckmann, A.; Binder, C. Microvesicles in cancer: Small size, large potential. Int. J. Mol. Sci. 2020,
21, 5373. [CrossRef]

https://doi.org/10.1146/annurev-cellbio-101512-122326
https://doi.org/10.1016/S0021-9258(17)34997-9
https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
https://doi.org/10.1083/jcb.41.1.59
https://www.ncbi.nlm.nih.gov/pubmed/5775794
https://doi.org/10.1016/S0140-6736(75)92709-9
https://www.ncbi.nlm.nih.gov/pubmed/53703
https://doi.org/10.1093/jnci/52.6.1931
https://doi.org/10.1093/jnci/54.5.1137
https://doi.org/10.1111/j.1439-0272.1978.tb03030.x
https://www.ncbi.nlm.nih.gov/pubmed/152589
https://doi.org/10.1016/S0021-9258(18)48095-7
https://doi.org/10.1016/0092-8674(83)90040-5
https://doi.org/10.1126/science.7195067
https://doi.org/10.1084/jem.183.3.1161
https://doi.org/10.1038/sj.leu.2404132
https://doi.org/10.1038/ncb1596
https://www.ncbi.nlm.nih.gov/pubmed/17486113
https://doi.org/10.1038/ncb1800
https://www.ncbi.nlm.nih.gov/pubmed/19011622
https://doi.org/10.1093/jmcb/mjt011
https://www.ncbi.nlm.nih.gov/pubmed/23580760
https://doi.org/10.1074/jbc.C113.532267
https://doi.org/10.1038/s41421-022-00505-z
https://doi.org/10.1038/nrm.2017.125
https://doi.org/10.1038/s41556-021-00805-8
https://doi.org/10.1080/20013078.2019.1596668
https://doi.org/10.1038/s41419-020-02803-4
https://doi.org/10.1038/cr.2014.135
https://doi.org/10.3390/cancers13174380
https://www.ncbi.nlm.nih.gov/pubmed/34503190
https://doi.org/10.1186/s12943-019-0965-7
https://www.ncbi.nlm.nih.gov/pubmed/30925923
https://doi.org/10.3390/ijms21155373


Cancers 2023, 15, 2970 15 of 21

34. Al-Nedawi, K.; Meehan, B.; Micallef, J.; Lhotak, V.; May, L.; Guha, A.; Rak, J. Intercellular transfer of the oncogenic receptor
EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 2008, 10, 619–624. [CrossRef]

35. Zanetti-Domingues, L.C.; Bonner, S.E.; Martin-Fernandez, M.L.; Huber, V. Mechanisms of action of EGFR tyrosine kinase receptor
incorporated in extracellular vesicles. Cells 2020, 9, 2505. [CrossRef] [PubMed]

36. Bebelman, M.P.; Smit, M.J.; Pegtel, D.M.; Baglio, S.R. Biogenesis and function of extracellular vesicles in cancer. Pharmacol. Ther.
2018, 188, 1–11. [CrossRef]

37. Rodrigues, P.; Melim, C.; Veiga, F.; Figueiras, A. An overview of exosomes in cancer therapy: A small solution to a big problem.
Processes 2020, 8, 1561. [CrossRef]

38. Han, L.; Lam, E.W.F.; Sun, Y. Extracellular vesicles in the tumor microenvironment: Old stories, but new tales. Mol. Cancer 2019,
18, 59. [CrossRef]

39. Purba, E.R.; Saita, E.I.; Akhouri, R.R.; Öfverstedt, L.G.; Wilken, G.; Skoglund, U.; Maruyama, I.N. Allosteric activation of
preformed EGF receptor dimers by a single ligand binding event. Front. Endocrinol. 2022, 13, 1042787. [CrossRef]

40. Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [CrossRef]
41. Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.Z.; Harris, R.C. Expression and function of the epidermal growth factor

receptor in physiology and disease. Physiol. Rev. 2016, 96, 1025–1069. [CrossRef]
42. Kaplan, M.; Narasimhan, S.; de Heus, C.; Mance, D.; van Doorn, S.; Houben, K.; Popov-Čeleketić, D.; Damman, R.; Katrukha, E.A.;
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