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Abstract
Denoising Diffusion models are gaining increasing popularity in the field of generative 
modeling for several reasons, including the simple and stable training, the excellent genera-
tive quality, and the solid probabilistic foundation. In this article, we address the problem 
of embedding an image into the latent space of Denoising Diffusion Models, that is find-
ing a suitable “noisy” image whose denoising results in the original image. We particu-
larly focus on Denoising Diffusion Implicit Models due to the deterministic nature of their 
reverse diffusion process. As a side result of our investigation, we gain a deeper insight into 
the structure of the latent space of diffusion models, opening interesting perspectives on 
its exploration, the definition of semantic trajectories, and the manipulation/conditioning 
of encodings for editing purposes. A particularly interesting property highlighted by our 
research, which is also characteristic of this class of generative models, is the independence 
of the latent representation from the networks implementing the reverse diffusion process. 
In other words, a common seed passed to different networks (each trained on the same 
dataset), eventually results in identical images.

Keywords Denoising diffusion models · Generative models · Embedding · Latent space · 
Representation learning

 * Andrea Asperti 
 andrea.asperti@unibo.it

 Davide Evangelista 
 davide.evangelista5@unibo.it

 Samuele Marro 
 samuele.marro@unibo.it

 Fabio Merizzi 
 fabio.merizzi@unibo.it

1 Department of Informatics: Science and Engineering (DISI), University of Bologna, Mura Anteo 
Zamboni 7, Bologna 40126, Italy

2 Department of Mathematics, University of Bologna, Piazza di Porta San Donato 1, Bologna 40126, 
Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-023-10504-5&domain=pdf


 A. Asperti et al.

1 3

1 Introduction

Denoising Diffusion Models (DDM) (Ho et  al. 2020) are rapidly imposing as the new 
state-of-the-art technology in the field of deep generative modeling, challenging the role 
held so far by Generative Adversarial Networks (Dhariwal and Nichol 2021). The impres-
sive text-to-image generation capability shown by models like DALL⋅ E 2 (Ramesh et al. 
2022) and Imagen Saharia et al. (2022), recently extended to videos in Ho et al. (2022), 
clearly proved the qualities of this technique, comprising excellent image synthesis quality, 
good sampling diversity, high sensibility and easiness of conditioning, stability of training 
and good scalability.

In very rough terms, a diffusion model trains a single network to denoise images with 
a parametric amount of noise, and generates images by iteratively denoising pure ran-
dom noise. This latter process is traditionally called reverse diffusion since it is meant to 
“invert” the direct diffusion process consisting in adding noise. In the important case of 
Implicit Diffusion models (Song et al. 2021), reverse diffusion is deterministic, but obvi-
ously not injective: many noisy images can be denoised to a single common result. Let 
us call emb(x) (embedding of x) the set of points whose reverse diffusion generate x. The 
problems we are interested in are investigating the shape of emb(x) (e.g. is it a connected, 
convex space?), finding a “canonical” element in it (i.e. a sort of center of gravity) and, in 
case such a canonical element exists, finding an efficient way to compute it. This would 
allow us to embed an arbitrary image into the “latent” space of a diffusion model, provid-
ing functionality similar to GAN-recoders (see Sect. 2), or to encoders in the case of Vari-
ational AutoEncoders (Kingma and Welling 2019; Asperti et al. 2021).

Since reverse diffusion is the “inversion” of the diffusion process, it might be natural to 
expect emb(x) to be composed by noisy versions of x, and that the canonical element we 
are looking for could be x itself. This is not the case: indeed, x does not seems to belong to 
emb(x). Figure 1 details some examples of the output obtained by using the image itself as 
input to the reverse diffusion process.

Since the input signal is clearly too strong, we may be tempted to reduce it using 
a multiplicative factor equal to the minimum signal rate used to train the denoising 
network (0.02 in our case), or a similarly low value. Examples of results are shown in 
Fig. 2. Although some macroscopic aspects of the original image like orientation and 
illumination are roughly preserved, most of the information is not embedded in these 
seeds: scaling does not result in a reasonable embedding. We also attempted to inject 
some additional noise into the initial seed, hoping to obtain a more entropic signal that 

Fig. 1  Examples of faces obtained using the image itself as input to the reverse diffusion process. The input 
signal is clearly far too strong
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is similar to the typical input of the reverse diffusion process, but this merely resulted 
in a less deterministic output.

Therefore, the embedding problem is both far from trivial and very interesting. 
Understanding the embedding would give us a better grasp of the reverse diffusion pro-
gress, as well as a deeper, semantic insight into the structure of its latent space.

Our approaches to the embedding problem are discussed in Sect. 5. Overall, we find 
that we can obtain pretty good results by directly training a Neural Network to com-
pute a kind of “canonical” seed (see Fig. 3).

The reconstruction quality is very high, with an MSE of around 0.0015 in the case 
of CelebA (Liu et al. 2015). More detailed values are provided in Sect. 5.2.

A typical application of the embedding process consists in transforming a signal 
into an element of the data manifold sufficiently close to it (the same principle behind 
denoising autoencoders). An amusing utilization is for the reification of artistic por-
traits, as exemplified in Fig. 4.

Another interesting possibility is that of making sketchy modifications to an image 
(a portrait, or a photograph) and delegating to the embedder-generator pair the burden 
of integrating them in the original picture in a satisfactory way (see Fig. 5).

Fig. 2  Examples of faces obtained using a weak version of the image itself as input signal. The first row 
shows the original image, while the second shows its weak version, which has been scaled by the minimum 
signal rate used to train the denoising network (0.02). This weaker image constitutes the initial seed. In the 
following four rows, we see the reconstructions obtained through reverse diffusion from the initial seed and 
progressively stronger versions of it, varying the signal rate between 0.02 and 0.08



 A. Asperti et al.

1 3

Fig. 3  CelebA: examples of face embeddings (second row) and reconstructions (third row). No cherry-pick-
ing

Fig. 4  Reification of portraits. The portrait is first embedded into the latent space, and then pulled back into 
the data manifold

Fig. 5  Scribbles over David’s Napoleon
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1.1  Structure of the work

The article is structured as follows. In Sect. 2, we discuss related works, mostly focusing 
on the embedding problem for Generative Adversarial Networks. Section 3 is devoted to 
formally introducing the notion of Denoising Diffusion Models, in addition to the deter-
ministic variant of Denoising Diffusion Implicit Models we are particularly interested in. 
In the same section, we also discuss an intuitive interpretation of denoising diffusion mod-
els in terms of a “gravitational analogy” (Sect. 3.3), which drove many of our investiga-
tions and plays an important role in understanding the structure of datapoint embeddings. 
A major consequence of this interpretation, which to the best of our knowledge has never 
been pointed out before, is the invariance of the latent space with respect to different mod-
els: a given seed, passed as input to different models, always produces the same image. In 
Sect. 4, we provide architectural details about our implementation of the Denoising Diffu-
sion model. Our methodology to address the embedding problem is discussed in Sect. 5. 
Two main approaches have been considered, one based on a gradient descent technique, 
which allows us to synthesize large clouds of different seeds in the embedding space of 
specific data points (Sect. 5.2), and another one based on training a neural network to com-
pute a single “canonical” seed for the given image: essentially, a sort of encoder. Conclu-
sions and future works are discussed in Sect. 6.

Code. The source code of the experiments described in this work is freely available at 
the GitHub repository https:// github. com/ asper ti/ Embed ding- in- Diffu sion- Models, along 
with links to weights for pre-trained models.

2  Related works

The embedding problem has been extensively investigated in the case of Generative Adver-
sarial Networks (GANs) (Xia et  al. 2022). Similarly to Denoising Generative Models, 
GANs lack a direct encoding process of the original input sample into the latent space.

Several approaches to inversion have been investigated (Perarnau et al. 2016; Bau et al. 
2019; Daras et al. 2020; Anirudh et al. 2020), mostly with the purpose of editing. The most 
common approaches are based on synthesis of the latent encoding via gradient descent 
techniques (Creswell and Bharath 2019), or by training a suitable neural network to pro-
duce encodings able to reconstruct the original input with sufficient approximation. While 
the former technique generally tends to achieve better reconstruction errors, the latter has 
faster inference times and can take advantage of the fact that, since a GAN produces an 
infinite stream of training data, over-fitting is much less likely. Hybrid methods combining 
both techniques have also been explored (Zhu et al. 2016, 2020).

Recent works have mostly focused on the inversion of the popular StyleGAN and its 
successors (Karras et al. 2019, 2020, 2021), building on previous work with a variety of 
inversion structures and minimization objectives, or aiming to generalize/transfer to arbi-
trary datasets (Abdal et al. 2019; Collins et al. 2020; Abdal et al. 2020; Poirier-Ginter et al. 
2022; Alaluf et al. 2022).

As we already mentioned, the typical application of the embedding is for exploration of 
the latent space, either for disentanglement purposes or in view of editing; the two issues are 
in fact tightly intertwined, since knowledge about semantically meaningful directions (e.g. 
color, pose, shape) can be exploited to tweak an image with the desired features. For instance, 

https://github.com/asperti/Embedding-in-Diffusion-Models
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InterFaceGAN (Shen et al. 2022) uses regression techniques to find a hyperplane in the latent 
space whose normal vector allows for a gradual modification of the feature. Further work 
based on this idea searches for these directions as an iterative or an optimization problem (Li 
et al. 2021) and also extends it to controllable walks in the latent space (Li et al. 2021). In the 
same vein, Kwon et al. (2022) studies the feature space of the U-Net bottleneck of the dif-
fusion model, finding that it can be used as an alternative latent space with highly semantic 
directions.

Another important application of embeddings is for the comparison of the latent space of 
different generative models (Asperti and Tonelli 2022): having the possibility to embed the 
same image in different spaces allows us to create a supervised dataset suitable to learn direct 
mappings from one space to another.

In the realm of diffusion models, much work has been done on the refinement of the reverse 
diffusion process (Nichol and Dhariwal 2021; Choi et al. 2021; Dhariwal and Nichol 2021), 
but relatively little attention has been so far devoted to its inversion. DALL⋅ E 2 Ramesh et al. 
(2022) relies on a form of image embedding, but this is a pre-trained contrastive model not 
learnt as the inversion of the generative task. An additional difference with respect to our work 
is that we are also interested in investigating and understanding the structure of the embed-
ding cloud for each image since it could highlight the organization of the latent space and the 
sampling process.

Finally, in the context of text-conditioned generative models, interesting attempts to invert 
not just the image but a user-provided concept have been investigated in Gal et al. (2022). The 
concept is represented as a new pseudo-word in the model’s vocabulary, which can be then 
used as part of a prompt (e.g. “a flower in the style of S∗ ”, where S∗ refers to an image). The 
mapping is achieved by optimizing the conditioning vector in order to minimize the recon-
struction error (similarly to the technique described in Sect. 5.1). A similar approach is used in 
Dong et al. (2022).

3  Denoising diffusion models

In this section, we provide a general overview of diffusion models from a mathematical per-
spective. All results in Sect. 3.1 and Sect. 3.2 are known in the literature; in Sect. 3.3 we pro-
pose an original interpretation of the reverse diffusion process in terms of a gravitational col-
lapse of the latent space over the data manifold.

3.1  Diffusion and reverse diffusion

Consider a distribution q(x0) generating the data. Generative models aim to find a parameter 
vector � such that the distribution p�(x0) , parameterized by a neural network, approximates 
q(x0) as accurately as possible. In Denoising Diffusion Probabilistic Models (DDPM) (Ho 
et al. 2020), the generative distribution p�(x0) is assumed to have the form

for a given time range horizon T > 0 , where

(1)p�(x0) = ∫ p�(x0∶T )dx1∶T
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with p�(xT ) = N(xT |0;I) and p�(xt−1|xt) = N(xt−1|��(xt, �t);�
2
t
I) . Similarly, the diffusion 

model q(x0∶T ) is considered to be a Markov chain of the form

with {�t}t∈[0,T] being a decreasing sequence in the interval [0, 1]. The parameters of the 
generative model p�(x0) are then trained to fit q(x0) by minimizing the negative Evidence 
Lower BOund (ELBO) loss, defined as

The ELBO loss can be rewritten in a computable form by noticing that, as a consequence 
of Bayes’ Theorem, q(xt−1|xt, x0) = N(xt−1|�̃�(xt, x0);𝜎2

q
⋅ I) . Consequently,

which can be interpreted as the weighted mean squared error between the reconstructed 
image from p�(xt|x0) and the true image obtained by the reverse diffusion process 
q(xt−1|xt, x0) for each time t.

In Song et al. (2021), the authors considered a non-Markovian diffusion process

where q�(xT �x0) = N(xT �
√
�Tx0, (1 − �T ) ⋅ I) , and

with

This construction implies that the forward process is no longer Markovian, since it depends 
both on the starting point x0 and on xt−1 . Moreover, Song et al. (2021) proved that, with this 
choice of q�(x1∶T |x0) , the marginal distribution q�(xt�x0) = N(xt�

√
�tx0;(1 − �t) ⋅ I) , recov-

ers the same marginals as in DDPM, which implies that xt can be diffused from x0 and �t by 
generating a realization of normally distributed noise �t ∼ N(�t|0;I) and defining

Note that when in Equation (7) �t = 0 , the reverse diffusion q�(xt−1|xt, x0) becomes deter-
ministic. With such a choice of �t , the resulting model is named Denoising Diffusion 
Implicit Models (DDIM) by the authors in Song et al. (2021). Interestingly, in DDIM, the 
parameters of the generative model p�(xt−1|xt) can be simply optimized by training a neural 

(2)p�(x0∶T ) = p�(xT )

T∏

t=1

p�(xt−1|xt)

(3)q(xt|xt−1) = N

(
xt

|||||

√
�t

�t−1
xt−1;

(
1 −

�t

�t−1

)
⋅I

)

(4)L(�) = −�q(x0∶T )
[log p�(x0∶T ) − log q(x1∶T )].

(5)L(𝜃) =

T�

t=1

𝛾t�q(xt�x0)

�
‖𝜇𝜃(xt, 𝛼t) − �̃�(xt, x0)‖22

�

(6)q�(x1∶T |x0) = q�(xT |x0)
T∏

t=2

q�(xt−1|xt, x0)

(7)q�(xt−1|xt, x0) = N

(
xt−1

|||��t
(x0, �t−1);�

2
t
⋅ I
)

(8)��t
(x0, �t−1) =

√
�t−1x0 +

�
1 − �t−1 − �2

t ⋅

xt −
√
�tx0

√
1 − �t

.

(9)xt =
√
�tx0 +

√
1 − �t�t.
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network �(t)
�
(xt, �t) to map a given xt to an estimate of the noise �t added to x0 to construct xt 

as in (9). Consequently, p�(xt−1|xt) becomes a �
f
(t)

�

 , where

Intuitively, the network in (10) is just a denoiser that takes as input the noisy image xt and 
the variance of the noise �t and returns an estimate of the denoised solution x0 . In DDIM, 
one can generate new data by first considering random Gaussian noise xT ∼ p�(xT ) with 
�T = 1 . Then, xT is processed by f (T)

�
(xT , �T ) to generate an estimation of x0 , which is then 

corrupted again by the reverse diffusion q(xT−1|xT , f (T)� (xT , �T )) . This process is repeated until a 
new datum x0 is generated by f (1)

�
(x1, �1).

The sampling procedure of DDIM generates a trajectory {xT , xT−1,… , x0} in the image 
space. In Song et  al. (2020); Khrulkov and Oseledets (2022) the authors found that the 
(stochastic) mapping from xT to x0 in DDPM follows a score-based stochastic differential 
equation (SDE), where the dynamic is governed by terms related to the gradient of the 
ground-truth probability distribution from which the true data is generated. The sampling 
procedure for DDIM can be obtained by discretizing the deterministic probability flow 
(Song et al. 2020) associated with this dynamics. Consequently, training a DDIM model 
leads to an approximation of the score function of the ground-truth distribution.

3.2  The diffusion schedule

An important aspect in implementing diffusion models is the choice of the diffusion noise 
{�t}

T
t=1

 , defining the mean and the variance of q(xt|x0) . In Ho et  al. (2020), the authors 
showed that the diffusion process q(xt|x0) converges to a normal distribution if and only if 
�T ≈ 0 . Moreover, to improve the generation quality, �t has to be chosen such that it slowly 
decays to 0.

The specific choice for the sequence �t defines the so-called diffusion schedule.
In Ho et  al. (2020), the authors proposed to use linear or quadratic schedules. This 

choice was criticized in Kingma et al. (2021); Nichol and Dhariwal (2021) since it exhibits 
a too steep decrease during the first time steps, causing difficulties during generation for 
the neural network model. To remedy this situation, alternative scheduling functions with 
a gentler decrease have been proposed in the literature, such as the cosine or continuous 
cosine schedule. The behavior of all these functions is compared in Fig. 6.

The quantity of noise added by each schedule is also represented in Fig. 7, where a sin-
gle image is injected with increasing noise according to the given schedule. It is not hard to 
see that the cosine and the continuous cosine schedules exhibit a more uniform transaction 
between the original image and the pure noise.

3.3  The gravitational analogy

Similarly to other generative models, developing an intuition of the actual behavior of 
diffusion models (and of the mapping from a latent encoding to its visible outcome) can 
be challenging. In this section, we propose a simple gravitational analogy that we found 
extremely useful to get an intuitive grasp of these models, and which suggested us some 
interesting conjectures about the actual shape of the embedding clouds for each object.

(10)f
(t)

�
(xt, �t) =

xt −
√
1 − �t�

(t)

�
(xt, �t)

√
�t

.
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Simply stated, the idea is the following. You should think of the datapoints as corps 
with a gravitational attraction. Regions of the space where the data manifold has high 
probability are equivalent to regions with high density. The denoising model essentially 
learns the gravitational map induced over the full space: any single point of the space 
gets mapped to the point where it would naturally “land” if subject to the “attraction” of 
the data manifold.

In more explicit terms, any point z of the space can be seen as a noisy version of any 
point x in the dataset. The “attraction” exerted by x on z (i.e. the loss) is directly propor-
tional to their distance, usually an absolute or quadratic error.

However, the probability to train the network to reconstruct x from z has a Gaussian 
distribution N(z|x;�2

z
⋅ I) , with �2

z
 depending on the denoising step. Hence, the weighted 

attraction exerted by x on z at each step is

To get a grasp of the phenomenon, in Fig. 8 we compare the gravitational low for a corp 
x with the weighted attraction reported in Equation (11), under the assumption that the 

(11)N(z�x;�2
z
⋅ I) ⋅ ‖x − z‖1

Fig. 6  Comparison of different 
schedules. Generation is better if 
noise variance does not change 
too abruptly, so cosine and con-
tinuous cosine schedules usually 
work better than the linear or 
quadratic ones

Fig. 7  Increasing noise added by the different scheduling: in order, from top to bottom, linear, quadratic, 
cosine, and continuous cosine schedules. For each row, from left to right, the time t is increased linearly 
from 0 to T. The corresponding �

t
 for each schedule and for any t is reported above each image
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variance � has to be compared with the radius of the corp (with constant density, for 
simplicity).

According to the gravitational analogy, the embedding space emb(x) of each datapoint 
x should essentially coincide with the set of points in the space corresponding to trajecto-
ries ending in x. We can study this hypothesis on synthetic datasets. In Fig. 9 we show the 
gravitational map for the well-known “circle” (a) and “two moons” datasets (b); examples 
of embeddings are given in figures (c) and (d).

From the pictures, it is clear in which way the model “fills the space”, that is associating 
to each datapoint x all “trajectories” landing in x. The trajectories are almost straight and 
oriented along directions orthogonal to the data manifold. We believe that this behavior 
can be formally understood by exploiting the dynamics of the trajectories introduced in 
Song et al. (2020), as mentioned in Sect. 3. We aim to deeply investigate those aspects in a 
future work.

The most striking consequence of the “gravitational” interpretation is, however, the 
independence of the latent encoding from the neural network or its training: the gravi-
tational map only depends on the data manifold and it is unique, so distinct networks or 
different trainings of the same network, if successful, should eventually end up with the 

Fig. 8  Gravitational analogy. 
The orange line is the usual 
gravitational low for a corp with 
radius 1 and constant density. 
The blue line is a weighted loss 
N(z�x;1) ⋅ ‖x − z‖1 . The two lines 
have been rescaled to have an 
equal integral

Fig. 9  Gravitational map and embeddings for the “circles” (a, b) and “two moons” (c, d) datasets. Data-
points are in blue. We consider a dense grid of seeds in the latent space, depicted in green. To visualize the 
maps (a) and (c) we draw an arrow pointing from each seed to the corresponding point generated by reverse 
diffusion (in red). To visualize embeddings (b) and (d) we consider a set of elements in the datasets, and for 
each element x we consider all points in the grid generating a sample x̂ sufficiently close to x 
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same results. This seems miraculous: if we pick a random seed in an almost immense 
space, and pass it as input to two diffusion (deterministic) models for the same dataset, 
they should generate essentially identical images.

We experimentally verified and confirmed the previous property on a large number 
of variants of generative diffusion models and different datasets (see Fig. 10 for some 
results relative to CIFAR10, MNIST and Oxford Flowers). In particular, we tested dif-
ferent variants of the U-Net, with different numbers of downsampling blocks, different 
channel dimensions, and different layers in each block. We also optionally added differ-
ent kinds of attention layers, in the traditional spatial form, or acting on channels like 
in squeeze-and-excitation layers (Hu et al. 2020) or in the recent NAFNet (Chen et al. 
2022).

Provided generative models produce acceptable samples, the average quadratic distance 
between images generated by different generators on a same latent seed is always very 
small: typically, two-three orders of magnitude smaller than the average quadratic distance 
between random samples.

Fig. 10  Uniqueness of the generative model. Different diffusion models generate essentially identical 
images when fed with the same seed. The two models in the picture are different versions of the U-Net: the 
first one has three downsampling blocks with channels [32, 64, 128], and the second one has four dowsam-
pling blocks with channels [48, 96, 192, 384]. The training sets are CIFAR10 (top), MNIST (middle), and 
Oxford Flowers 102 (bottom). Seeds have been randomly generated
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The fact that the same encoding works for different models seems to be peculiar to 
this kind of generative models. In Asperti and Tonelli (2022), it was observed that we can 
essentially pass from a latent space to another of different generative models with a simple 
linear map: however, an identity or even a permutation of latent variables does not usually 
suffice.1

While the uniqueness of the latent space is, in our opinion, a major discovery, it is not 
the main focus of this article, and we plan to conduct a more exhaustive and principled 
investigation of this property in future works.

4  Denoising architecture

The pseudocodes explaining training and sampling for diffusion models are respectively 
given in Algorithms 1 and 2 below.

As explained in Sect. 3, they are iterative algorithms; the only trainable component 
is the denoising network ��(xt, �t) , which takes as input a noisy image xt and a noise 
variance �t , and tries to estimate the noise present in the image. This model is trained 
as a traditional denoising network, taking a sample x0 from the dataset, corrupting it 

1 It remains to be checked if imposing a spatial structure to the latent space of GANs and VAEs is enough 
to induce uniqueness in that case too. We plan to investigate this issue in a forthcoming work.
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with the expected amount of random noise, and trying to identify the noise in the noisy 
image.

As a denoising network, it is quite standard to consider a conditional variant of the 
U-Net. This is a very popular network architecture originally proposed for semantic 
segmentation (Ronneberger et al. 2015) and subsequently applied to a variety of image 
manipulation tasks. In general, the network is structured with a downsample sequence 
of layers followed by an upsample sequence, with skip connections added between the 
layers of the same size.

To improve the sensibility of the network to the noise variance, �t is taken as input, 
which is then embedded using an ad-hoc sinusoidal transformation by splitting the 
value in a set of frequencies, in a way similar to positional encodings in Transformers 
(Vaswani et  al. 2017). The embedded noise variance is then vectorized and concat-
enated to the noisy images along the channel axes before being passed to the U-Net. 
This can be done for each convolution blocks separately, or just at the starting layer; 
we adopted the latter solution due to its simplicity and the fact that it does not seem to 
entail any loss in performance.

Having worked with a variety of datasets, we used slightly different implementa-
tions of the previously described model. The U-Net is usually parameterized by speci-
fying the number of downsampling blocks, and the number of channels for each block; 
the upsampling structure is symmetric. The spatial dimension does not need to be 
specified, since it is inferred from the input. Therefore, the whole structure of a U-Net 
is essentially encoded in a single list such as [32, 64, 96, 128] jointly expressing the 
number of downsampling blocks (4, in this case), and the respective number of chan-
nels (usually increasing as we decrease the spatial dimension).

For our experiments, we have mainly worked with two basic architectures, mostly 
adopting [32, 64, 96, 128] for simple datasets such as MNIST of Fashion MNIST, and 
using more complex structures such as [48, 96, 192, 384] for CIFAR10 or CelebA. We 
also used different U-Net variants to extensively test the independence of the latent 
encoding discussed in Sect. 3.3.

5  Embedding

We experimented with several different approaches for the embedding task. The most 
effective ones have been the direct synthesis through gradient descent, and the training 
of ad-hoc neural networks. Both techniques have interesting aspects worth discussing.

The gradient descent technique is intrinsically non-deterministic, producing a var-
iegated set of “noisy” versions of a given image x, all able to reconstruct x via reverse 
diffusion. The investigation of this set allows us to draw interesting conclusions on the 
shape of emb(x).

Gradient descent is, however, pretty slow. A direct network can be trained to com-
pute a single element inside emb(x). Interestingly enough, this single element seems 
to be very close to the average of all noisy versions of x synthesized by the previous 
technique, suggesting evidence of its “canonical" nature.

The two techniques will be detailed in the following subsections.
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5.1  Gradient descent synthesis

In Sect. 3.3, we computed the shape of embeddings for a few synthetic datasets by defining 
a dense grid of points in the latent space and looking for their final mapping through the 
reverse denoising process. Unfortunately, the number of points composing the grid grows 
exponentially in the number of features, and the technique does not scale to more complex 
datasets.

A viable alternative is the gradient descent approach, where we synthesize inputs start-
ing from random noise, using the distance from a given target image as the objective func-
tion. In particular, given a sample x0 ∈ ℝ

n , we propose solving the minimization problem

where f�(xT , {�t}t∈[0,T]) models the sampling process described above with schedule 
{�t}t∈[0,T] . Due to the non-convex nature of (12), the obtained solution strongly depends on 
the starting guess that initializes the optimization algorithm. Thus, by repeating the pro-
cedure above with different starting guesses x0

T
∼ N(0, I) , we were able to obtain multiple 

samples from emb(x0).
Generation usually requires several thousand steps, but it can be done in parallel on a 

batch of inputs. This allows us to compute, within a reasonable time, a sufficiently large 
number of samples in emb(x) for any given x (Fig. 11). Having a full cloud of data, we can 
use standard techniques like PCA to investigate its shape, as well as to study how the image 
changes when moving along the components of the cloud (see Sect. 5.1.1). For PCA inves-
tigations we need an embedding cloud with a dimension larger than the dimension of the 
latent space. We typically worked with clouds of 2k points for MNIST and Fashion MNIST 
and 4k points for CIFAR10.

A first interesting observation is that the average Euclidean distance among samples in 
emb(x) is typically very high, around 0.9: they are not concentrated is a small portion of the 
latent space. However, they seems to occupy a convex region. In Fig. 12 we show images 
obtained by reverse diffusion from 100 random linear combinations of seeds belonging to 
the embedding of the image on the left: all of them result in very similar reconstructions of 
the starting image.

Due to the convexity of the space, its mean is also comprised in it. In Fig. 13 we see the 
reconstructions obtained by considering as seed the average of a progressive number of 
seeds. The resulting images stabilize soon, although the result is slightly more blurry com-
pared to using a single seed. The seeds on the borders of emb(x) seem to provide slightly 

(12)min
xT∈ℝ

d

1

2
‖f�(xT , {�t}t∈[0,T]) − x0‖22

Fig. 11  Examples of seeds in the latent space. The image on the left is the original. On the right, we see 5 
different seeds and their corresponding generations through the reverse diffusion process
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better reconstructions than internal points (which makes the quest for a “canonical”, high-
quality seed even more challenging).

5.1.1  PCA decomposition

Principal Component Analysis allows us to fit an ellipsoid over the cloud of datapoints, 
providing a major tool for investigating the actual shape of embeddings. According to the 
“gravitational” intuition exposed in Sect.  3.3, emb(x) should be elongated along direc-
tions orthogonal to the data manifold: moving along those directions should not sensibly 

Fig. 12  Linear combination of seeds. Given the original image (1 and 3) we compute by gradient descent 
a large cloud of seeds (4K) in its embedding. Then, we compute 100 internal points, as a 1-sum random 
linear combination of the given seeds. Images 2 and 4 contain the results of these linear combinations. All 
generated images are similar between each other and are very close to the original image. Therefore, all 
internal points seem to belong to the embedding

Fig. 13  Progressive averaging in CIFAR10 and CelebA. The first row shows seeds computed as the mean 
of a progressive number of seeds in emb(x), in a linear progression between 1 and 16; the second row shows 
their respective output through the reverse denoising process. The output is very similar. Additionally, 
observe that the original image becomes identifiable in the seeds, even averaging a relatively small number 
of a samples
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influence generation, which should instead be highly affected by movements along minor 
components. Moreover, since the data manifold is likely oriented along a relatively small 
number of directions (due to the low dimensionality of the manifold), we expect that most 
PCA components in each cloud will be orthogonal to the manifold, and have relatively high 
eigenvalues.

For instance, in the case of the clouds of seeds for CIFAR10, eigenvalues along all 3072 
components typically span between 0.0001 and 4. We observe significant modifications 
only moving along the minor components of the clouds: in fact, they provide the short-
est way to leave the embedding space of a given point.However, as soon as we leave the 
embedding space of x we should enter the embedding space of some “adjacent” point x′ . In 
other words, the minor components should define directions inside the data manifold, and 
possibly have a “semantical” (likely entangled) interpretation (Fig. 14).

5.2  Embedding networks

The second approach consists in training a neural network to directly compute a sort of 
“canonical” embedding for each image of the data manifold. The network takes as input 
an image x and produces a seed zx ∈ emb(x) ; the loss function used to train the network 
is simply the distance between x and the result x̂ of the denoising process starting from zx.

We tested several different networks; metrics relative to the most significant architec-
tures are reported in Table 1.

A visual comparison of the behavior of the different networks is given in Fig. 15, rela-
tive to CIFAR10. More examples on CelebA are given below.

We started our investigation with a very simple network: a single convolution with a 
5 × 5 kernel. The reason for this choice is that, according to the discussion we made in 
the introduction and the visualization of the mean element of the embedding clouds of 
Fig. 13, we expected the latent encoding to be similar to a suitably rescaled version of 
the source image. The results on a simple dataset like MNIST confirmed this hypothesis, 

Fig. 14  Fashion MNIST: movements along directions with minimal eigenvalues. The two groups of images 
refer to different components: starting from a mean seed generating the image in the middle, we move along 
a given component by the indicated positive or negative factor of the normalized eigenvector. Observe the 
progressive change in intensity and shape
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but on more complex ones like CIFAR10 it does not seem to be the case, as exempli-
fied in Fig. 15. We then progressively improved the model’s architecture by augmenting 
their depth and channel dimensions, with the latter being typically the most effective 
way to improve their performance. In the end, the best results were obtained with a 
U-Net architecture that is practically identical to the denoising network. Many addi-
tional experiments have been performed, comprising autoencoders, residual networks, 

Table 1  Comparing the Mean Square Error (MSE) through the embedding-reconstruction process using 
different embedding networks; the MSE standard deviation is below the last reported decimal

The number of parameters refers to the instance of the network for the CelebA dataset

Network Params MSE

MNIST Fashion CIFAR10 Oxford CelebA

MNIST Flowers

layers: 1 conv. 5×5 78 .00704 .0152 .0303 .0372 .0189
layers: 3 conv. 5×5
channels: 16-16-out 7233 .00271 .00523 .0090 .0194 .0101
layers: 3 conv. 5×5
channels: 64-64-out 105,729 .00206 .00454 .0061 .0153 .00829

layers: 2conv.5×5
3conv.3×3

859,009 .00121 .00172 .0038 .00882 .00396

channels
128-128-128-128-out
U-Net 9,577,683 .000361 .000890 .0012 .00248 .00147

Fig. 15  Visual comparison with different Embedding Networks. We consider a set of test images from 
CIFAR10 (first row) and compute the embedding with one of the Embedding Networks of Table 1. We then 
use the embeddings to generate the corresponding images (remaining rows)
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inception modules, and variants with different padding modalities or regularizations. 
However, they did not prove to be particularly effective and were thus dropped from our 
discussion.

In Fig. 16, we show some examples of embeddings and relative reconstructions in the 
case of the CelebA dataset.

The quality of the reconstruction is definitely high, with just a slight blurriness. 
There are two possible justifications for the tiny inaccuracy of this result: it could either 
be a fault of the generator, which is unable to create the requested images (as it is fre-
quently the case with Generative Adversarial Networks (Asperti and Tonelli 2022)), or 
it could be a fault of the Embedding Network, which is unable to compute the correct 
seed.

To better investigate the issue, we performed two experiments. First, we restricted 
the reconstruction to images produced by the generator: in this case, if the Embedding 
network works well, it should be able to reconstruct almost perfect images. Secondly, 
we tried to improve the seeds computed by the Embedding Network through gradient 
descent, looking for better candidates.

We report the result of the first experiment in Fig. 17.
While the reconstruction is qualitatively accurate, we can also confirm the effective-

ness in a more analytical way. In Table  2 we compare the mean squared error of the 

Fig. 16  Embedding examples for the CelebA dataset. The first row contains the original examples, the sec-
ond the synthesized latent seed, and the third the reconstructed image. Reconstruction is very good, with 
just a slight blurriness

Fig. 17  Embedding examples on generated images. In this case, we start from images created by the gen-
erator (first row) and re-embed them inside the latent space (second row) using the Embedding Network. 
In the third row, we show the reconstruction, which is almost perfect. This could be either explained by a 
deficiency of the generator, or just by the fact that generated images are “simpler”, and hence can be more 
easily embedded than real ones
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reconstruction starting from original CelebA images versus generated data: the latter is 
sensibly smaller.

The fact that embedding works better for generated images is, however, not conclu-
sive: it could either be explained by a deficiency of the generator, unable to generate all 
images in the CelebA dataset, or just by the fact that generated images are “simpler” 
than real ones (observe the well-known patinated look, which is typical of most genera-
tive models) and hence more easily embeddable.

Even the results of the second experiment are not easily deciphered. From a visual 
point of view, refining the embedding through gradient descent is not producing remark-
able results, as exemplified in Fig. 18.

However, numerically, we see an improvement from an MSE of 0.00147 to an MSE 
of 0.00058, which seems to suggest some margin of improvement for the embedding 
network.

In conclusion, both the generator and the embedder can likely still be improved. 
However, a really interesting research direction seems to be the possibility to modify the 
latent representation to improve the realism of the resulting image, even if possibly not 
in the direction of the original. Therefore, a basic embedder, even if not fully accurate, 
could still provide the starting point for very interesting manipulations.

Table 2  Reconstruction error

In the first case, images are taken from the CelebA dataset: in the sec-
ond case, they have been generated through the reverse diffusion pro-
cess. The mean squared error (MSE) was computed over 1000 exam-
ples. Both experiments achieve a small reconstruction error, although 
the second one is even smaller

Source Images MSE

Dataset 0.00147
Generated 0.00074

Fig. 18  Gradient descent fine-tuning. The seeds obtained through the embedding network (second row) are 
refined through gradient descent (fourth row). The respective resulting reconstructions are depicted in rows 
3 and 5. The improvement is almost imperceptible
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5.3  Latent space interpolation

A typical application of the embedding network is for the investigation of semantical prop-
erties of the latent space, starting from real samples and their attributes. As a preliminary 
step in this direction, in this section we provide examples of latent-space interpolations: the 
crucial additional ability added by the embedder is in the choice of the starting and ending 
point, that can be the embeddings of real data samples: this allows us to produce smooth 
interpolations between any pair of images in the dataset.

In Fig. 19 we show an example relative to the CelebA dataset. The linear interpolation 
in the visible space between a source and a target sample, depicted in the first row, does not 
produce satisfactory results: the superposition of the two images is clearly visible, intro-
ducing annoying artifacts. A better result can be achieved by first embedding both source 
and target into the latent space, and them moving along their (linear) interpolation (second 
row). The images generated from the interpolated latent points provide a smooth transition 
from the source to the target, as shown in the third row of Fig. 19. In this case, the “arti-
facts" of the latent representations are automatically corrected by the generator, trained to 
produce realistic faces.

6  Conclusions

In this article we addressed the problem of embedding data into the latent space of Deter-
ministic Diffusion models, providing functionality similar to the encoder in a Variational 
Autoencoder, or the so-called recoder for Generative Adversarial Networks. The main 
source of complexity when inverting a diffusion model is the non-injective nature of the 
generator: for each sample x, there exists a cloud of elements z able to generate x. We 
call this set the embedding of x, denoted as emb(x). We performed a deep investigation of 
the typical shape of emb(x), which suggests that embeddings are usually orthogonal to the 
dataset. These studies point to a sort of gravitational interpretation of the reverse diffusion 
process, according to which the space is progressively collapsing over the data manifold. In 
this perspective, emb(x) is just the set of all trajectories in the space ending in x. We tested 

Fig. 19  Interpolation between samples of the CelebA dataset. In the first row, we have the linear interpola-
tion between the source and the target. In the second row, the linear interpolation between the latent embed-
ding of the source, and the latent embedding of the target. In the third row, the reconstructed images
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our interpretation on both low- and high-dimensional datasets, highlighting a quite amaz-
ing result: the latent space of a DDIM generator does not significantly depend on the spe-
cific generative model, but just on the data manifold. In other words, passing the same seed 
as input to different DDIMs will result in almost identical outputs. In order to compute 
embeddings, we considered both gradient descent approaches, as well as the definition and 
training of specific Embedding Networks. We showed that, among all the architectures we 
tested, a U-Net obtained the best results, achieving a high-quality reconstruction from both 
a quantitative and qualitative point of view.

Embedding networks have a lot of interesting applications, largely exemplified in the 
introduction. More generally, the simplicity and ease of use of Embedding Networks open 
a wide range of fascinating perspectives about the exploration of semantic trajectories in 
the latent space, the disentanglement of the different aspects of variations, and the possibil-
ity of data editing. We thus hope that our results, by expanding the current understanding 
of generative models, can guide future research efforts.
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