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1. Analytical details

1.1  U-Pb LA-ICP-MS Analysis
Calcite U-Pb dating was performed by laser ablation inductively coupled plasma 
mass spectrometry (LA-ICP-MS) on polished thick sections. The analyses were 
conducted at the ETH Zürich, Switzerland, by using a RESOlution laser ablation 
system with a 193 nm excimer (ArF) laser source and a two-volume Laurin Technic 
S-155 ablation cell coupled to a Thermo Element XR sector-field ICP-MS equipped
with a high-capacity interface pump. The analytical and data reduction protocols
follow Roberts et al. (2017) using NIST 614 and WC-1 primary reference materials
and Guillong et al. (2020) using spot sizes of 110 and 163 µm with a matched
ablation crater aspect ratio for the reference materials and unknowns. U-Pb ages
were calculated from Tera-Wasserburg concordia lower intercepts using the
IsoplotR software package (Vermeesch, 2018). All uncertainties are reported at the
95% confidence level. A long-term excess variance of 2% relative was propagated
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by quadratic addition to the uncertainty of the individual lower intercept dates 
(Guillong et al., 2020). In addition to the samples, the two secondary reference 
materials ASH15D (Nuriel et al., 2021) and JT (Guillong et al., 2020) were 
analyzed in all sessions for validation. Correction for matrix effects with WC-1 was 
done with anchoring to 0.85 common-lead while samples and secondary reference 
materials were not anchored. No disequilibrium correction was applied. 
 

1.2 Raman spectroscopy on carbonaceous material  

Micro-Raman spectra on graphite (Fig. 3A) were obtained using a 
ThermoScientific DXR Raman microscope installed at the Department of 
Chemistry Sciences, University of Padova, Italy. We used a 50× objective and a 
532 nm excitation source. Laser power was 1 mW (to avoid graphite damage) and 
Raman spectra were collected for about 900 s. The spatial resolution was about 1.1 
µm, whereas the spectral resolution was about 2.5 cm–1. 

The Omnic software (Thermo Fisher Scientific) was used for Raman spectrum 
decomposition by using the software Lorentian/Gaussian function, following the 
procedure described in Kouketsu et al. (2014). Peaks with centre in position at~ 
1580 cm-1, 1350 cm-1 and 1620 cm-1 were identified respectively as G, D1 and D2. 
The R2 parameter, defined as the ratio between the peaks area D1/(D1+D2+G), was 
calculated for each measurement.   

A linear relationship between temperature and the Raman parameter R2 forms the 
basis of the CM geothermometer (Beyssac et al., 2002). The temperature can be 
estimated to ± 50° C in the range 330–650° C. Deformation can affect the internal 
disorder and underestimate the temperature obtained from the spectra analysis 
(Kirilova et al., 2018). Care was thus taken to avoid measuring CM within cracks, 
and to prevent altered measurement from CM damaged during the thin section 
polishing; we performed measurements by focusing the laser beam on CM beneath 
the surface of a transparent adjacent grain as suggested in Beyssac et al. (2002).  
CM in the host rock was analysed with λ=473 nm, while CM in the mylonite was 
analysed with λ=532 nm. To avoid errors in the temperature estimation we applied 
two different geothermometers calibrated for the different laser wavelength used to 
collect the data: Beyssac et al. (2002) for the λ=475 nm analysis and Aoya et al. 
(2010) for the λ=532 nm analysis. Although both yield similar results, the equation 
given in Beyssac et al. (2002) for the Raman CM geothermometer is linear whereas 
that in Aoya et al. (2010) is quadratic.  

 

1.3 High-resolution Micro-Raman Spectroscopy maps 



High-resolution micro-Raman spectra of calcite-aragonite crystals and fibres were 
produced with a Witec Alpha 300 R Raman microscope installed at the Department 
of Geosciences, University of Padova, Italy. In particular, 2D maps were collected on 
samples CZ2004B and CZ2018 by using a 50X objective and a 532 nm excitation 
wavelength. At the conditions employed during the analyses, the spectral resolution 
was ~3 µm while the spatial resolution is <1 µm.  
The analyses employed a nominal laser power of 40 mW and integration time of 0.5 
s. The high power and low integration time were selected to collect a large number of 
spectra in a reduced amount of time, while maintaining a high intensity of the signal. 
In fact, the maps for samples CZ2004B and CZ2004B covered a 300x300 and 
400x400 µm2 area, respectively, where single spot analyses were collected at 1 µm 
steps. 
 
 

CAPTIONS TO FIGURES AND TABLES 

Fig. S1. Microphotograph of the protolith undeformed Hajir Fm outside of the mylonitic shear 
zones. A) Plain polarized view of the Hajir Fm organic matter-rich carbonate containing 
abundant dispersed graphite. B) Crossed polarized view of (A) highlighting twinned calcite 
grains. C) Plain polarized view microphotograph of the typical mylonitic fabric. The mylonitic 
foliation is outlined by highly transposed and aligned relic carbonate grains. Samples used for 
RSCM are from these mylonitic shear zones, where graphite-rich layers outline and define the 
foliation. D-E) Plain polarized and crossed polarized view of twinned calcite porphyroclast 
mantled by recrystallised new grains.  

Fig. S2. Microphotographic evidence of brittle – ductile deformation cyclicity. A-B) Plain and 
crossed polarized view of calcmylonitic fabric cut across by mode-I veins infilled by stretched 
aragonite and quartz fibres. Fibres do not exhibit evidence of plastic deformation. C-D) Plain and 
crossed polarized view of stretched, segmented and transposed veins and fibres composed of 
quartz and aragonite-calcite. Veins and fibres, related to an earlier transient brittle phase, are 
transposed within and along the mylonitic foliation of the calcmylonitic shear zones.  

Fig. S3. Cathodoluminescence imaging of brittle and ductile fabrics. A-B) Cross polarized and 
cathodoluminescence images of detail in Fig. S2A-B, where stretched vein of quartz is 
represented by the dark brown/black. C-D) Cross polarized and cathodoluminescence images of 
Fig. 2C, showing the difference in chromatic response of rod-shaped aragonite grains (dark 
orange) and of multiple late fractures (bright orange). E-F) Cross polarized and 
cathodoluminescence images of structural relationships of rod-shaped aragonite grains with 
strong SPO (dark orange) and late veins cutting across and along the main foliation (bright 
orange). G-H) Cross polarized and cathodoluminescence images showing the constant dark 
brown sign of rod-shaped aragonite grains. Note that no evidence of reaction between fluids 
infilling fractures and the calcmylonitic fabric is present. 



Fig. S4. Location of points for trace element analysis within quartz and aragonite veins filling 
mode-I fracture within the mylonitic shear zone. Refer to Table S1 for numerical data.  Is not 
possible to discriminate which phase is investigated (aragonite or calcite) due to the size 
difference between LA-ICP-MS spot (hundreds of microns) and preserved aragonite (2 to ~ 20 
micron2).  

Fig. S5. Trace element pattern of aragonite and calcite pseudomorphs over aragonite reported in 
Table S1. Spot location is shown in Fig. S4. Points from the rod-shaped crystals of the mylonitic 
shear zone are reported in the grey field.  

Fig S6. U-Pb radiometric constraints and overview of spot points. A) Hand specimen of 
calcmylonite. Spots analysed for dating are shown. B) Example of dated elongated fibres. C) 
Example of dated mode-I fibres. D) Example of dated rod-shaped grains. E) U-Pb Tera-
Wasserburg (Tera and Wasserburg, 1972) plot of calcite-aragonite fibres. F) U-Pb Tera-
Wasserburg plot of calcite-aragonite crystals of mylonitic fabric, yielding Upper Cretaceous 
(above) and upper Ediacaran (bottom) ages. G) Summary plot of existing radiometric constraints 
on the principal tectonic events dated for the Jabal Akhdar and Saih Hatat Domes (data from 
Garber et al., 2021; Gray et al., 2004; Grobe et al., 2019; Lippard, 1983; Ninkabou et al., 2021; 
Tavani et al., 2020; Warren et al., 2003). For all Tera-Wasserburg plots, the grey area is 2 σ error 
envelopes of the regression line. 

 

Table S1. Trace elements within aragonite and calcite pseudomorphs over aragonite crystals and 
fibres. Analysed spots are shown in Fig. S4. 
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Table S1. Trace elements within aragonite and calcite pseudomorphs over aragonite crystals and fibres. Analysed spots are shown in Fig. S4. 

Sample and  
point number  

Mg25 
ppm 
mean 

Mg wt % 
Mn55 
ppm 
mean 

Mn wt % 
Fe57 
ppm 
mean 

Fe wt % 
Sr88 
ppm 
mean 

Sr wt % 
Pb208 
ppm 
mean 

Pb208 wt % Th232 
ppm mean Th232 wt % 

U238 
ppm 
mean 

U238 wt %  Fabric   

CZ2004B - 1 2,111 0.2111 778 0.078 484 0.048 1,255 0.1255 183.00 0.0183 0.12 0.00001 0.686    0.0001    

Mode-I  
fibres   

CZ2004B - 2 117,104 11.7104 358 0.036 35 0.004 1,137 0.1137 1.33 0.0001 0.02 0.00000 0.248    0.0000    
CZ2004B - 3 2,678 0.2678 561 0.056 279 0.028 1,986 0.1986 31.18 0.0031 0.07 0.00001 0.270    0.0000    
CZ2004B - 4 2,905 0.2905 255 0.025 41 0.004 2,195 0.2195 3.71 0.0004 0.08 0.00001 0.102    0.0000    
CZ2004B - 5 2,788 0.2788 337 0.034 35 0.003 1,755 0.1755 5.12 0.0005 0.09 0.00001 0.108    0.0000    
CZ2004B - 6 3,432 0.3432 374 0.037 88 0.009 2,627 0.2627 13.34 0.0013 0.07 0.00001 0.128    0.0000    
CZ2004B - 7 2,064 0.2064 757 0.076 424 0.042 1,233 0.1233 87.50 0.0087 0.08 0.00001 0.837    0.0001    
CZ2004B - 9 3,665 0.3665 355 0.036 1,520 0.152    1,826 0.1826 41.77 0.0042 4.05 0.00041 6.079    0.0006    Mylonitic 

shear 
zone 

CZ2004B - 10 40,626 4.0626 704 0.070 42,972 4.297 1,162 0.1162 115.29 0.0115 7.92 0.00079 9.235    0.0009    
CZ2004B - 11 2,732 0.2732 313 0.031 881 0.088 1,974 0.1974 33.96 0.0034 1.48 0.00015 2.109    0.0002    
CZ2004B - 12 1,948 0.1948 832 0.083 492 0.049 1,148 0.1148 92.37 0.0092 0.15 0.00002 1.106    0.0001    

Mode-I  
fibres   

CZ2004B - 13 3,405 0.3405 367 0.037 59 0.006 1,913 0.1913 13.34 0.0013 0.09 0.00001 0.662    0.0001    
CZ2004B - 14 2,101 0.2101 977 0.098 492 0.049 1,284 0.1284 182.37 0.0182 0.03 0.00000 1.135    0.0001    
CZ2004B - 16 3,258 0.3258 348 0.035 81 0.008 2,432 0.2432 18.19 0.0018 0.08 0.00001 0.137    0.0000    
CZ2004B - 17 1,674 0.1674 204 0.020 32 0.003 989 0.0989 0.12 0.0000 0.02 0.00000 0.019    0.0000    

                
mean in wt % 1.2833  0.05  0.319  0.16610  0.0055  0.0001  0.0002  
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