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{mattia.barbaresi, andrea.roli}@unibo.it

† Corresponding author: mattia.barbaresi@unibo.it

Abstract. In this work we combine aspects of implicit learning with
novelty search in an evolutionary algorithm with the aim to automati-
cally generate melodies with improvisational flavour. Using Markov chains,
the technique we present combines implicit statistical knowledge, ex-
tracted from musical corpora, with an adaptive novelty search mecha-
nism. The algorithm is described along with the main design choices.
Preliminary results are shown in two different musical contexts: Irish
music and counterpoint compositions.

Keywords: Evolutionary Art · Computational Creativity · Statistical
Learning · Music · Novelty

1 Introduction

Computational Creativity (CC) is a renewed and vivid field of AI research that
aims at understanding human creativity while trying to produce “machine cre-
ativity”, in which the computer appears to be creative, to some degree [7].
Leaning on such general definitions, approaches to CC often have a twofold
perspective: (i) developing systems that generate “creative” artefacts and (ii)
take this opportunity to investigate the cognitive aspects of such processes on
a computational basis. Following such practice, this work builds on the statisti-
cal approach to implicit human learning and cognitive development, aiming at
engineering more human-like and creative computational procedures.

Implicit Statistical Learning (ISL) refers to the general, implicit and ubiq-
uitous ability of the brain to encode temporal and sequential phenomena and
more generally, to grasp the regularities in the environment, in an implicit and
unconscious way. This approach results from the recent attempt to unify two
research venues in psychology and cognitive science, namely Implicit Learning
(IL) and Statistical Learning (SL) [26, 9]. Implicit Learning refers more in gen-
eral to mechanisms and knowledge, in the brain, that are unconscious. Statistical
Learning, on the other hand, was initially introduced for language acquisition,
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and it is now invoked in various domains of psychology and neuroscience to ac-
count for the human ability to detect and use statistical regularities present in
the environment [30]. Additionally, many animal species are sensitive to distri-
butional statistics, which suggests that learning from distributional statistics is
a domain-general ability rather than a language-specific one [2]. More remark-
ably, it has been suggested that improvisational musical creativity is mainly
formed by implicit knowledge. The brain models music—and other sequential
phenomena such as language or movements—as a hierarchy of dynamical sys-
tems encoding probability distributions and complexity [14]. SL also plays a role
in the production of sequences (e.g. notes or actions); from a psychological per-
spective, transitional probabilities distributions (TPs) sampled from music may
refer to the characteristics of a composer’s implicit (statistical) knowledge: a
high-probability transition may be one that a composer is more likely to predict
and choose, compared to a low-probability transition corresponding more to an
unusual variation [12].

Based on these assumptions, this work aims at combining implicit-knowledge
mechanisms with novelty search in a genetic algorithm to emulate an agent’s
(i.e. the musician who is composing impromptu) effort to produce novel and
interesting sequences of actions (musical pieces) which have to be, at the same
time, both familiar (concerning the knowledge initially provided) and novel. We
assess our technique in two musical contexts that are characterized by a high
degree of improvisation: Irish music and counterpoint.

2 Related Work

The applications of Markov chains in music have a long history dating back to
the 1950s [27]: for detailed reviews on AI methods in music, or other examples
and techniques, see [8, 23, 19, 22, 16]. Similarly, evolutionary computation has
been used for generating music since long [20, 5] and there are currently several
systems that generate music by means of an evolutionary technique [4, 24, 22].

From our perspective, however, music generation is just a case study: we focus
on modeling a general (context-independent) method for generating sequences
(not limited to music) based on implicit mechanisms. In addition, the search
towards creativity represents a different approach compared to the more common
optimization practice, as the objective function tries to capture several, somehow
subjective, features of the piece of art produced.

However, some of the latest and most comparable approaches to this work
are perhaps those in [25, 15, 21]. Continuator is an interactive music performance
system that accepts partial input from a human musician and continues in the
same style as the input [25]. The system utilizes various Markov models to learn
from the user input. It tries to continue from the most-informed Markov model
(higher order), and if a match is not found with the user input, the system
continues with the less-informed ones. In [15] the authors describe a method of
generating harmonic progressions using case-based analysis of existing material
that employs a variable-order Markov model. They propose a method for a hu-
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man composer to specify high-level control structures, influencing the generative
algorithm based on Markov transitions. In [21] the authors propose to capture
phrasing structural information in musical pieces using a weighted variation of
a first-order Markov chain model. They also devise an evolutionary procedure
that tunes these weights for tackling the composer identification task between
two composers. Another work is that of GenJam [5]. It uses a genetic algorithm
to generate jazz improvisations, but it requires a human to judge the quality of
evolved melodies. Finally, GEDMAS is a generative music system that composes
entire Electronic Dance Music (EDM) compositions. It uses first-order Markov
chains to generate chord progressions, melodies and rhythms [1]. In a previous
work [3] we conceived a genetic algorithm (GA) which, starting from a given
inspiring repertoire and a set of unitary moves, generates symbolic sequences of
movements (i.e. choreographies) exploiting similarity with the repertoire com-
bined with the novelty search approach [35].

3 Materials and Methods

According to blind-variation and selective-retention principles of creativity, cre-
ative ideas must be generated without full prior knowledge of their utility val-
ues [32, 33]. Herein, genetic algorithms offer a natural setting for the blinded-
divergent and convergent mechanisms involved in the creative process, terms of
diversification and intensification [6]. The evolutionary approach is in itself an
exploratory process: the combination of two individuals from the population pool
is a combinational process, but the use of a fitness function guides the exploration
toward promising areas of the conceptual space, which is bounded and defined
by the genetic encoding of the individuals. Losing the fitness function, or having
one that is unable to effectively guide the exploration, reverts the mechanism to
pure combinational creativity, where elements of the conceptual space are joined
and mutated hoping to find interesting unexplored combinations. In this work,
we combine an adaptive genetic algorithm with Markov chains—built up from
a corpus of music excerpts. The algorithm evolves the parameters (weights) of a
constructive procedure that acts on the model and produces new pieces of music
that are intended to be novel variations upon familiar music. In addition, the
model is used also for evaluating the similarity (the objective function) of gener-
ated sequence to the starting knowledge. In this work we build upon the novelty
approach presented in [3] and we make it adaptive so as to make it independent
on specific ranges of the functions involved in the algorithm. Algorithm 1 shows
the main loop and Algorithm 2 shows such a procedure.

3.1 Markov model: chains and score

Markov chains allow us to grasp the statistical structure of sequential phenom-
ena (i.e. music, movements) but also statistical learning and knowledge in hu-
mans [13]. It has been observed that transitional probabilities sampled from
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Algorithm 1: Pseudo code for GA

eval← mono
for #iters do

eval(pop)
offspring, elite ← pop
offspring crossover and mutation
pop ← offspring + elite
eval← select objective(pop)
archive← archive assessment(elite)

Algorithm 2: Pseudo code for select objective() function

eval =

{
mono // the Markov Score

biobjective // Pareto(MarkovScore(), Novelty())

prevF it = bestF it
bestF it = selBest(pop)
if eval == mono then

if prevFit ' bestFit then
counter ← counter - 1
if counter == 0 then

reset(counter)
lastAvg = avg(pop)
eval← biobjective

else
restart(counter)

else
bestAvg = avg(pop)
if lastAvg ' bestAvg then

eval← mono

music (based on Markov models) may also refer to the characteristics of a mu-
sician’s statistical knowledge and captures temporal individual preferences in
improvisation [11]. We consider here sequences of symbols from a finite alpha-
bet, which can represent e.g. melodies. To model this implicit knowledge, we
computed the Markov chains with memory m (or Markov chain of order m)
up to the m = 5 order1 starting from a set of musical pieces. For each order
m, transitional probabilities are computed for each excerpt as frequency ratios:
P (y|xm) = #xmy

#xm
, given a symbol y and a (sub-)sequence xm (the past) of length

m, where xm → y is the inspected transition. As we increase the context size,

1 In the data we used, orders higher than 5 are not “expressive” because of the data
limits and structure: at some point, higher orders contain about the same information
held in the previous ones.
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the probability of the alphabet becomes more and more skewed, which results
in lower entropy. The longer the context, the better its predictive value.

3.2 Objective function

The objective function is intended to capture the familiarity (or the membership,
the similarity) of a sequence with respect to the Markov model resulted from the
(inspirational) musical corpus. So given a sequence X = x0x1...xn the Markov
score is defined as the product of TPs of symbols in the sequence

score(X) = P (x0)× P (x1|x0)× P (x2|x0x1)× ...× P (xn|xn−m...xn−1) (1)

where xn−m...xn−1 is the (past) sequence of length m up to the (n−1)th symbol.
For a given chain, it might happen that a transition (past → symbol) does not
exist. If that actual past does not match a transition in that current order, we
shorten the past (xn−m...xn−1 becomes xn−m+1...xn−1) and move down a order
(i.e. a chain), looking at shorter contextual information to guide the generation.
Finally, we apply the negative logarithm to the Markov score and turn the GA
objective into a minimization problem:

minimize
X

: − log(score(X)) (2)

3.3 Encoding

The GA manipulate the parameters of a randomized constructive procedure that
acts on the Markov model. The genotype is an array of 6 decimal elements—
that sum up to 1— representing the weights to assign to each computed chain
in the Markov model. Namely a weight i for each ith-order Markov chain (i.e.,
a categorical distribution for the chain choice), as in Table 1. Every positional

Table 1. Example of an individual

w0 w1 w2 w3 w4 w5

0.0 0.3 0.05 0.4 0.2 0.05

value of the array weights the probability of the corresponding order in the model
when generating a sequence. Notably, these arrays weigh a Monte Carlo process
that selects, for each symbol to be emitted in the generation, the order–i.e. the
Markov chain–to look at when looking for the transitions to produce it. The
phenotype indeed is represented by all sequences generated by the model with
that given array of weights (the individual of the GA).
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3.4 Adaptive Novelty Search

To steer the generation towards novel productions, we followed the novelty search
described in [3, 35]. This algorithm is applied to compensate for a lack of diver-
sity concerning the best individuals already found. It consists of a bi-objective
optimization activated when the main objective (e.g. the fitness) stagnates. The
novelty is computed as the mean L2 norm between a genotype (weight vector)
and an archive of past genotypes. Using the Markov model, there is no explicit
boundary for the objective function since the Markov score depends on the length
of the sequence being evaluated. To tackle this problem, we conceived an adap-
tive mechanism for the activation of novelty based on the results obtained in
previous iterations. At each iteration, the algorithm stores the best result ob-
tained. If such value does not change for a given number of iterations, somehow
the algorithm is stuck at a minimum. In such a case, the algorithm starts to look
at the novelty of individuals. When novelty search has moved the score away of
a certain amount from the last best value found, it is turned off and the regular
evolution with the Markov score is resumed. See Equation 3.{

if bestF it ' prevF it, for k times, switch to bi-objective

if |lastAvg − bestAvg| ' stdevLast, switch to mono
(3)

As well as for the objective function, we applied the negative logarithm to novelty
too. Thus the bi-objective optimization is intended to minimize both the main
objective and the novelty of individuals.

minimize
X

: − log(novelty(X)) (4)

We remark that biasing towards novelty does not mean just adding randomness,
but rather diversifying with respect to the best solutions found.

Archive assessment For the assessment of the archive we followed the ap-
proach used in [35] except for one aspect; we did not consider a threshold for the
individual in order to be added to the archive. Instead we considered, at each
iteration of the genetic algorithm, the individuals of the elite, from the elitism
process. For these individuals we calculate the dissimilarity as in the mentioned
work.

4 Results

The most suitable musical contexts in which our technique can be applied are
those in which improvisation plays an important role; but we also need structure
to some degree, in such a way that the implicit (soft) constraints imposed by
the style can be detected. This way, the music resulting from our method has
some amount of novelty, yet still in the style of the examples provided. For our
experiments we chose two notable musical contexts: traditional Irish tunes and
Orlande de Lassus’ Bicinia [18]. In this section we first introduce these cases
and subsequently we present a selection of the typical results achieved by our
technique.
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4.1 Irish songs and Bicinia

Traditional Irish music is strongly characterized by its melodies: most old tunes
are just melodic (see e.g. [34]) or they are the result of an improvisation upon a
given ground, i.e. a bass line providing also a harmonic base (see e.g. [28]). In any
case, the melodic part of a traditional Irish music is currently the most important
component and melodies are usually played with variations, improvising upon
a given melodic structure. A large corpus of traditional Irish airs is available
in abc notation,2 which makes it possible to extract melodies as sequences of
symbols, each representing both note and duration. A typical traditional Irish
air is shown in Fig. 1. From these airs we extracted all the ones in the key of G
and assigned one symbol to each 〈note,duration〉 pair.

Fig. 1. Score of a well known traditional air titled “The south wind”.

The second musical context we have chosen is that of two voices counter-
point, which is one of the simplest and oldest forms of polyphony [29]. In origin,
a voice was superimposed to a given one, called cantus firmus, in improvisational
settings. This original impromptu spirit was subsequently substituted by a more
elaborated compositional approach, leading to marvelous multi-voices counter-
points, such as the ones composed by Gesualdo da Venosa. The main technical
characteristic of these pieces of music can be summarized in a small set of rules
involving the intervals, i.e. the distance in semitones, between the upper and the
lower voice. For example, the distance between C and F (above C) is 5 semitones.
Obviously, these are not all hard constraints, but some are rather preferences,
and they have also been subject to change in time according to different musical
aesthetics. Examples of such rules, typical of XVI century counterpoint, are:

- no parallel fifths or octaves are allowed (e.g. C-G cannot move to D-A)

- fifths and octaves should be intercalated by imperfect consonances, i.e. thirds
and sixths (e.g. an allowed sequence is C-G, C-A, D-A)

- dissonances, i.e. all intervals except for unisons, octaves and fifths, should be
prepared and then resolve to a consonant interval by descending (e.g. D-B,
C-B, C-A)

2 http://www.norbeck.nu/abc/
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Fig. 2. Excerpt of bicinium no. 1, “Te deprecamus”, by de Lassus. Score extracted
from https://imslp.org/wiki/Category:Lassus, Orlande de.

In our tests, we have taken all the twelve two-voices counterpoint composi-
tions, called bicinia, by Orlande de Lassus, which are available as MIDI files.3 In
Fig. 2 we show an excerpt of a bicinium by de Lassus. This second context was
chosen to assess to what extent our method is able of identifying recurrent pat-
terns and rules typical of a music genre. In this case, we have encoded the twelve
MIDI bicinia as sequences of intervals (i.e. distances in semitones between upper
and lower voice). As the two voices have in general different durations, we have
sampled the music at steps of duration 1/32 and taken the intervals in semi-
tones, deleting repetitions. This provides the repertoire on which the Markov
models are computed. A typical result from our system is a sequence of integer
numbers representing intervals in semitones which can be used as a guideline for
composing the upper voice upon a given cantus firmus.

4.2 Experimental settings

Differently from usual optimization contexts, in our case a good performance
does not correspond to the one that leads to the overall best objective function
values, but rather to a good balance between similarity (Markov score) and
novelty. Therefore, we tuned the parameters of the algorithm trying to attain an
effective interplay between score and novelty. The results we present have been
obtained with a population of 100 individuals, uniform crossover with probability
0.5, Gaussian mutation (µ = 0, σ = 0.3) with both chromosome and gene
probability equal to 0.35, and 200 generations. The novelty is activated after
5 idle generations (the best score spop in the current population is stored, along
with the standard deviation of the populations scores σpop) and deactivated when
the difference between the score of current best individual and spop is greater
than σpop/3. The plot of score and novelty of a typical run is shown in Fig. 3.

We can observe that the score oscillates: whenever the algorithm stagnates,
novelty is activated so as to increase diversification. When this latter is high
enough, only the Markov score is kept as objective function. In a sense, we can
describe the dynamics of the algorithms as a biased exploration of local minima,
as typically done by Iterated Local Search techniques [6].

3 http://icking-music-archive.org/ByComposer1/Lasso.php.
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Fig. 3. Plot of score and novelty of a typical run. Both the functions are to be minimized
and novelty is activated, adaptively, only when diversification is needed. The number
of individuals in the archive, involved in the calculation of novelty [3], is also plotted.

4.3 Musical results

Due to limited space we can just provide a few examples of the musical results
obtained. The generation of melodies inspired to traditional Irish airs has been
evaluated by sampling some weight vectors from the final populations and using
them to generate actual music. By analyzing the results both through visual
inspection and by listening to them, we observed that the music generated is
similar to the repertoire provided but with variations and recombinations of
patterns. A couple of excerpts are shown in Fig. 4, where we can observe varia-
tions of typical Irish melodic and rhythmic patterns: the characteristic run (i.e.
a fast sequence of notes, typically in a scale) in bars 4, 5 of the first example
and the syncopated and composite rhythm in the second one.

Fig. 4. Two typical excerpts of automatically created Irish music.

The second test case concerns de Lassus’ Bicinia. The main result attained is
that it was able to discover the basic rules that characterize two voices counter-



10 M. Barbaresi et al.

point. In particular the rules extracted that have more strength are: incipit with
a perfect consonance (unison, octave or fifth), no consecutive octaves or fifths,
and dissonant intervals followed by consonant ones—both perfect and imperfect.
In Fig. 5 we show an excerpt of the counterpoint produced by applying one of
the sequences generated by our algorithm to a given cantus firmus (Chanson
CXXVI from manuscript Bibl. Nat. Fr 12744 published by G. Paris). As the
algorithm returns a sequence of intervals, it could be used as a tool that assists
composers by suggesting feasible note choices, once one of the two voices (cantus
firmus) is given.

Fig. 5. An example of a two voices counterpoint. The lower voice is the cantus firmus,
while the upper voice has been generated by applying a sequence of intervals generated
by our algorithm.

In conclusion, for both the contexts the algorithm was able to identify the
core regularities and to elaborate around them. The calibration of the parameters
is important to achieve a good balance between the tendency of just recombining
the patterns learned and the exploration of new possibilities. However, the choice
of parameter values does not seem critical, because the combined use of a stack
of Markov models of varying orders and novelty search makes it easier to achieve
this trade-off.

5 Conclusion and Future Work

The algorithm we have presented has proven to be able to generate novel, yet
somehow familiar melodies. An interesting perspective is that of creating non-
homogeneous repertoires, maybe just including music that the user likes, without
any genre restriction. This way, our system can produce music that merges some
of the peculiar features that meet user’s tastes.

Future work is focused on quantitatively assessing the properties of the gen-
erated sequences by means of information theory measures, such as block en-
tropies [31] and complexity measures like set-based complexity [17]. Some of
these measures can also be introduced in the generative process, so as to limit
human evaluation as much as possible. In addition, some metrics can also be
used to assess the distance between sequences or to cluster them [10].

As the proposed technique is general and can be applied whenever the goal
is to produce sequences of actions, we plan to explore multimodal automatic



Statistical Learning and Novelty for automatic improvisation 11

generation by combining Markov models from two different contexts, e.g. music
and text.
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