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Abstract

In the context of a multidimensional exponential Lévy market, we focus on the Esscher change of measure and suggest a more 
flexible tool allowing for a fuzzy version of the standard Esscher transform. Motivated both by the empirical incompatibility of 
market data and the analytical form of the standard Esscher transform (see [8]) and by the desire to introduce a pricing technique 
under incompleteness conditions, we detect the impact of fuzziness in terms of measure change function and in contingent claims’ 
pricing. In a multidimensional setting the fuzzy Esscher transform is a copula whose invariance, under margins’ transformations 
induced by a change of measure, is investigated and connected to the notion of the absence of arbitrage opportunities. We highlight 
how Esscher transform, primarily used in pricing techniques, preserves the invariance of the aggregation operator and it can be 
generalized to the fuzzy version assuming that the measurable functions defining the Choquet marginal integrals are increasing. 
Furthermore, the empirical evidence seems to suggest that a weaker concept of invariance may be more suitable, i.e. the ε-measure 
invariance, coherent with the Esscher fuzzy copula tool. An empirical experiment for our model will make clear how this blurring 
technique fits the market data.
© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Extended literature is witness to the extraordinary efforts deployed to analytically define the Esscher transform 
in very general Lévy settings (see [25]), whose incompleteness makes the problem undetermined. Among several 
possible solutions, the exponential form was supported by Madan and Milne [23] due to approximation reasons and 
because this choice assures the closure of the Lévy class for changes of measure. Nevertheless, this shape of the 
Esscher transform seems to fail in consistency with the market data because it cannot capture the empirical U-shape 
feature of the change of measure function discussed by Carr et al. [8]. To overcome a super-imposed pricing technique 
and allow for the presence of unobservable variables justified by possible information incompleteness, here we propose 
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a fuzzy version of the Esscher transform which translates the blurriness of the market into a corridor of Esscher 
transforms. It is worth mentioning the effort done in the last decades by many authors to combine randomness and 
fuzziness, especially in option pricing (see [27] for an in-depth literature review). Several contributions have been 
made to address direct problems in option pricing with fuzzy models, either in discrete or continuous time, which 
differ in the number of parameters taken as imprecise, in the type of fuzzy numbers used to model the parameters, and 
in the techniques used in the fuzzy computations. Among them, the seminal contribution of Muzzioli and Torricelli 
[29] proposed a fuzzy version of the Cox-Ross-Rubinstein model [13] where the price of the underlying asset is 
represented by both a triangular and an L-R type fuzzy number as well. In the financial literature of option pricing in 
continuous time, we can find many fuzzy versions of the well-known Black-Scholes model [5] where some parameters 
(for example the underlying asset, the risk-free rate, or the volatility) are represented by triangular fuzzy numbers as 
in Wu [43–45], to take into account the decision maker’s subjective judgment. A fuzzy version of Merton’s [24]
jump-diffusion model has been proposed by several authors as Xu et al. [46], where fuzziness is used to characterize 
the uncertainty related to the number of jump times and the jump amplitudes and by using their crisp possibilistic 
mean value, eventually to recover the option’s price. Always taking into account the possibility of jumps in the asset 
price, Nowak and Romaniuk [34] designed a fuzzy Lévy process to describe the dynamic of the underlying affected 
by different experts’ opinions or imprecise estimates of parameters; Nowak and Romaniuk [35,36] proposed a pricing 
model for European options in a fuzzy-Lévy environment, based on the Esscher transformed, the mean correcting, and 
the minimal entropy martingale measure, giving a notable contribution to direct problems in fuzzy exponential-Lévy 
models. Other relevant contributions in the same field of research have been given by Nowak and Pawlowski [32,33], 
where a geometric Lévy model is analyzed and an analytical option valuation expression is obtained both in crisp and 
fuzzy case (here some model parameters are described in an imprecise way by fuzzy numbers), for European-style 
options by using as pricing measure the variance equivalent martingale measure. An extension to a multidimensional 
setting is provided by Wang and He [42] who priced n-fold compound options in a fuzzy geometric Lévy market with 
a martingale approach. To highlight the differences between our results and some previously discussed contributions 
showing many similarities in the setting of the market’s structure, we need to mention another kind of literature 
contribution which addresses inverse problems instead of direct ones in a fuzzy setting: an inverse problem embraces 
a market approach which, given the market data, i.e. options’ prices, aims to infer the underlying asset process.1 As a 
matter of fact, our contributions are to inverse problems in fuzzy option pricing since our goal is to propose a model 
flexible enough to capture the market’s feature and based on the decision-maker’s uncertainty, to calibrate the pricing 
measure as a consequence. We propose a new class of pricing measures called Choquet-fuzzy Esscher transforms: 
they can be seen as a fuzzy version of the Esscher transformed martingale measure used to price options in [35,36]. 
The class of Choquet-fuzzy Esscher transforms is represented by a corridor of Esscher transforms, which depends 
on fuzzy variables adding flexibility to the model and allowing it to be more adherent to the empirical feature of the 
market; the proposed Choquet-fuzzy Esscher transform is a fuzzy version of the implied Esscher transform recovered 
by market data.2 Therefore we can state that the goal of the paper is mainly to allow for a representation of market 
data as more adherent as possible, hence given the probability distributions under the historical and the risk-neutral 
measure implied by spot and options’ prices respectively, we can detail the coherent transformed function very same 
explaining the data. Thus arguments of no-arbitrage lead us to define the fuzzy version of Esscher transform to assure 
at least for a weak absence of arbitrage assumption.3

In a multidimensional setting, the fuzzy Esscher transforms are connected by a copula function (i.e. the Esscher 
copula), whose invariance for marginals’ change of measure, is studied. The invariance of the copula function for 
transformations of variables has been studied in the seminal paper by Schweizer and Wolff [41] where the invariance 
of bivariate copulas under a.s. strictly increasing transformations of variables has been proved. Invariance under in-
creasing bijections on the unit interval and relationships with the maximum attractor are investigated in [20,21]. Here 
Archimax copulas are defined and their invariance properties are proved.

1 For example in [26] and [28] the implied volatility smile function is recovered from options’ prices through a fuzzy quadratic regression model, 
proving its superiority to the market practice approach based on standard cubic spline interpolation.

2 A similar idea of Choquet integral has been proposed in [30] to calibrate an interval-valued implied tree by using information coming from call 
and put options.

3 As it will be clarified in the following, the no-arbitrage condition is strictly related to invariance properties, involving a copula function in a 
multidimensional setting.
2



E. Bernardi, D. Ritelli and S. Romagnoli Fuzzy Sets and Systems 466 (2023) 108466
In [38] the invariance property of multidimensional dependencies under transformations of variables involved by 
some change of measure is investigated. Changes of probability measures are important in quantitative finance because 
they allow many derivatives prices (e.g. options) to be computed in closed form. This pricing technique consists in 
choosing a useful numeraire, for the problem at hand, to express market prices. This corresponds to a probability 
measure making the rescaled process of prices into a martingale. In this way, the recovered derivatives’ prices are 
computed in an artificial world where an artificial probability measure assigns different probabilities to states of the 
world from the true probability measure. However, under some technical conditions assuring the respect of the absence 
of arbitrage opportunities (i.e. no free lunch or better no financial strategies assuring sure profit without risk is admitted 
into the market), the rescaling technique is just a way to simplify the calculus without modifying the final results that 
are real-world prices. Whenever the pricing problem involves a multidimensional random variable, the dependence 
structure among its components becomes necessarily the main ingredient that would be affected by the margins’ 
transformations induced by the change of measure. In this paper, we generalize the argument to the Lévy markets 
and investigate the effects of Esscher transformations on the dependence structure itself. In the case of standard 
Esscher transforms we come to the invariance properties proved in [41] while in the case of not only mean-monotone 
transformations modeled in terms of fuzzy Esscher transforms, we generalize the invariance result introducing a 
weaker concept of invariance. Fuzzy Esscher transform allows us to formalize the implications of an incomplete 
setting in pricing, giving support to the lack of unicity through the definition of a corridor of Esscher transforms which 
translates the blurriness of the market itself. Esscher bounds are related to the concept of quasi-invariance, which we 
call ε-measure invariance, and which is based on the discrepancy to the strongest copula used to measure the distance 
between distributions in meaning very close to the maximum mean discrepancy (see [6,16,37]). A weaker request 
concerning the monotonicity of the change of measure transforms could justify the empirical evidence and motivate 
the pricing under the assumption of quasi absence of arbitrage opportunities based on the concept of ε-measure 
invariance. Rather than exogenously define the risk-neutral probabilities as fuzzy numbers (by fuzzifying the up/down 
jump factors as in [2,1]) and select weighted intervals of probabilities derived by no-arbitrage argument as proposed 
in [31], this paper accounts for a fuzzy Esscher transform able to represent several kinds of uncertainty/blurriness 
and at the same time to assure for a strong or weak no-arbitrage condition by invariance arguments. In support of our 
approach we provide, an empirical experiment based on market data to show how it is possible to properly calibrate 
a fuzzy system; it seems to suggest that an ε-measure invariance would be more suitable. Given that the literature 
focuses mainly on the theoretical aspects of the model’s fuzzification, not paying much attention to the empirical 
investigation, the method proposed here seems relevant to us because the theoretical fuzzy structure is motivated by 
the need to make the model coherent with market data and risk-neutral pricing techniques, by eventually relaxing the 
definition of no-arbitrage if empirical data reveal critical features.

The plan of the paper is as follows: Section 2 defines the exponential Lévy market and discusses its incompleteness 
feature. The main analytical results are reviewed and the Esscher transform, along with its fuzzy version, is introduced. 
Section 3 discusses the concept of measure invariance under a fuzzy Esscher transform, while Section 4 focuses on an 
empirical example where both fuzziness calibration and pricing under blurred assumptions are investigated. Section 5
sums up our conclusions.

2. A multidimensional exponential Lévy market

We consider a frictionless continuous financial market whose stock price process is a n-dimensional exponential 
Lévy process, i.e.

St = S0 exp{Xt }, t ∈ [0, T ],
where S0 > 0 and X = (Xt )t∈[0,T ] is a Rn Lévy process on a filtered probability space (�, (Ft )t∈[0,T ], P ) with char-
acteristic triple (b, c, K)P . We’ll be working everywhere with a càdlàg modification of X so that the total number of 
jumps is at most countable and the number of jumps, whose size is big,4 is finite.

4 Given an arbitrary ε > 0, the number of jumps whose size is in absolute value bigger than ε, is finite.
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A very useful decomposition of a Lévy process is provided by the Lévy-Itô decomposition5 of X into a deterministic 
drift, a continuous diffusion and a jump part, i.e.

Xt = bt + √
cWt + h(x) ∗ (μX − ν)t + (x − h(x)) ∗ μX,

where b ∈Rn, c ∈ Rn ×Rn is a symmetric non-negative definite matrix, W is a n-dimensional Brownian motion and 
h : Rn → Rn is given by h(x) = x10≤|x|≤1. We observe that the truncation function h(x) guarantees the existence of 
both the stochastic integral with respect to the jump measure μX and the compensated jump measure (μX − ν), where 
ν stands for the intensity measure of the Poisson random measure μX.

It is worth recalling that a Lévy process is usefully represented in terms of its characteristic function. The well-
known Lévy-Khinchin representation (see [40]) provides the characteristic function χt of X, i.e. χt (z) = exp{tψ(z)}
whose cumulant function is given by

ψ(z) = ib′z − 1

2
z′cz +

∫
Rn

(eiz′x − 1 − iz′h(x))K(dx),

where K(A) is the Lévy measure of X and stands for the expected number of jumps per unit time having size in A. 
The Lévy measure allows us to define the intensity of the Poisson random measure μX on [0, T ] ×Rn as dtK(dx).

We point out that Lévy measure, which determines the jump intensity, though we may select three different classes 
of processes. The first one is a pure jump class with an infinite Lévy measure, i.e. it has an unlimited expected number 
of jumps in every finite time interval and infinite variation. The second is also a pure jump class having finite variation 
but the Lévy measure has an infinite mass as well. Finally, the third class represents the jump-diffusion process, mainly 
driven by the diffusive component whereas the jumps occur rarely, i.e. the Lévy measure has a finite mass.

2.1. Change of measure

The change of measure techniques is commonly used to transform the original process into a new one that satisfies 
the desired feature under a new probability measure. When we model securities’ and derivatives’ prices, we take 
as given some true probabilities P , called real-world measures which assigns probabilities to different states of the 
world. Unfortunately, under P one cannot price derivatives as expected discounted dividend streams and no-arbitrage 
constructions or Feynman-Kac theorem can’t give an explicit PDE. The change of measure is a very useful technique 
consisting in rescaling everything in order to have the same return of all assets, i.e. the remuneration for the asset 
without risk. The martingale measure of these rescaled prices is noted as Q and is called risk-neutral measure.

Unfortunately the incompleteness of the Lévy market prevents us from recovering a unique martingale measure 
ensuring the absence of arbitrage opportunity assumptions. It means that we can recover infinitely many martingale 
measures whose corresponding pricing rule preserves the market from the arbitrage strategies. The problem is in 
principle undetermined and we need to set up rules to make it manageable. We observe first of all that there is a 
simple parameterization of the change of measure if we impose to preserve the Lévy structure also under the new 
measure. In this case, the change of measure is realized through a deterministic variable changing the drift of the 
diffusive part and a deterministic positive function called measure change function which modifies the intensity of the 
jumps. Nevertheless, the possible solutions are infinitely many.

Jacod and Shiryaev [22] proved the necessary and sufficient conditions, respectively for all admissible parameteri-
zation preserving the closure of the Lévy market after martingale change of measure. We have in mind the exponential 
Lévy market and deal with necessary and sufficient conditions for the martingality of the stock prices discounted at the 
risk-free rate r . The change of measure is well defined by a deterministic vector β ∈ Rn and a deterministic function 
y : Rn → R+ such that the following conditions are satisfied:∫

|x|≥1

y(x)(exi − 1)K(dx) ≤ ∞,∀i = 1,2, ..., n,

∫
Rn

(1 − √
y(x))2K(dx) ≤ ∞.

5 We invite the interested readers to see Cont and Tankov [12] for the proof of the decomposition.
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Hence the new measure Q will be characterized by a new triplet (b, c, K) defined as follows:

b = b − r1 + cβ + 1

2
C +

∫
Rn

(J (x)y(x) − h(x))K(dx) = 0,

c = c,

dK

dK
(x) = y(x),

where r is the risk-free rate, J (x) = (ex1 − 1, ..., exn − 1) ∈ Rn and C = (c11, ..., cnn) ∈ Rn.

A possible way to make the problem determined and ensure the uniqueness of the solution is given by imposing 
a simple parametrization for the measure change function as we do for the most popular Esscher function; this is an 
exponential function that depends on just one parameter, recovered to assure for the martingale property. This kind of 
function identifies the Esscher martingale measures.

The corresponding change of measure via Esscher transform is given by the following Radon-Nikodym derivative, 
i.e.

dQ

dP
= exp(θXT )

EP [exp(θXT )] = exp{θXT − T ψ(−iθ)},

where ψ is the cumulant function of X1 and θ ∈ Rn. The Esscher parameter θ could be thought as the inverse in 
sign of the relative risk aversion parameter of the representative agent having constant relative risk aversion utility 
function, in a general equilibrium model.

The corresponding measure change function is then given by

y(x) = eθx,

whose choice is approved by Madan and Milne [23] because it corresponds to the first-order Taylor approximation 
of the more general strictly positive function y(x) = ef (x) under the assumption y(0) = 1. Moreover, we observe 
that there is a large class of Lévy processes that are closed under an Esscher change of measure coinciding with 
the minimal entropy measure in the exponential Lévy market at hand. Despite the wide range of justifications for the 
previous choice, it does not seem flexible enough to capture effects empirically recovered as the U-shape feature of the 
change of measure function discussed by Carr et al. [8]. Hence finally this class of measures could fail in consistency 
with the market since it is a super-imposed pricing rule.

Example 1. Let us review very briefly an example of Esscher’s change of measure for an exponential Lévy model. 
All that follows is very classical and can be found in a number of references on Lévy processes: the examples chosen 
here are detailed in [3].

It is well known that if X = (Xt , Ft ) is a Lévy process with local characteristics (b, c, F) and with the characteristic 
function EeiθXt = eXtχ(θ), its local Fourier cumulant function is

ψ(−iθ) = iθb − θ2

2
+

∫ (
eiθx − 1 − iθh(x)

)
F(dx). (1)

Here χ(θ) = ψ(−iθ), the usual switch between Fourier and Laplace transform. A typical model in applications 
arises when the financial price St is given as St = S0e

Xt , the exponential model. In Fig. 1 we can appreciate the 
behavior of the Laplace cumulant function in a normal setting.6

6 The plotted behavior is obviously incompatible with a U-shaped change of measure function which seems supported by market data (see [8]).
5
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Fig. 1. Example of Laplace cumulant function with F(dx) equal to a standard normal density, b = 2, c = 3.

The classical change of measure problem relative to this model can be formulated as the question of finding a new 
probability measure Q absolutely continuous with respect to P , relative to which the process St above becomes a 
local martingale, or even a martingale.

We recall that the necessary and sufficient conditions for a Lévy process X to be a local martingale can be expressed 
as

b +
∫
R

(x − h(x))F (dx) = 0.

When we apply this to the exponential model above we get that

b + c

2
+

∫
R

(ex − 1 − h(x))F (dx) = 0.

If these conditions do not hold, it is still possible to formulate sufficient conditions allowing the construction of 
new probability measures for which the exponential model is again (local) martingale. This is done via the Esscher 
transform, a very quick recap, adapted to this model, follows.

With Xt given as before, it is known that for every θ ∈ R the processes Y (θ) = (Y
(θ)
t )0≤t≤T = eθXt

etχ(θ) = eaXt−tχ(θ)

are positive local martingales, assuming that 
∫

exθ I (|x| > 1)F (dx) < ∞. Here χ(θ) denotes the Laplace’s cumulant 
function defined in (1).

If we further assume that these Y (θ) are martingales, then we can define a new Esscher measure P (θ)
T (A) =∫

A
Y (θ)PT (dω), where A ∈FT and PT = P |FT .
Let us consider this example. Take X = (Xt , Ft ) as a Poisson difference process with drift:

Xt = μt + αN
(1)
t − βN

(2)
t ,

where α > 0, β > 0 and N(1) = (N
(1)
t )t≥0 and N(2) = (N

(2)
t )t≥0 are two independent Poisson processes with intensity 

parameters λ1 > 0 and λ2 > 0.
For this example, we can compute

EXt = (μ + αλ1 − βλ2)t,

and

VXt = (α2λ2
1 − β2λ2

2)t.

The Laplace’s cumulant function χ(θ) can be computed to be

χ(θ) = μθ + λ1(e
αθ − 1) + λ2(e

−βθ − 1).
6
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In the exponential model, the process is a martingale if the parameter ã is chosen as the solution of

μ + λ1e
ãα(eα − 1) + λ2e

−ãβ (e−β − 1) = 0.

If for instance μ = 0 then

ã = 1

α + β
log

λ2(1 − e−β)

λ1(eα − 1)
.

2.2. Fuzzy change of measure

In order to provide a more flexible alternative to the Esscher transform, we plan to construct a fuzzy version of the 
Esscher martingale measure.

The Esscher transformed vector of r.vs (SQ1,t , ..., S
Q
n,t ) and the set of their marginal distributions is given under the 

new measure, i.e. (uQ1,t , ..., u
Q
n,t ), where uQi,t = φ(uPi,t ), i = 1, ..., n and φ stands for the transform induced on the P -cdf 

by the Esscher change of measure.
As proposed by Romagnoli [39] a degree of model ambiguity can be introduced through a fuzzy distortion of 

marginals distribution and the invariance of their dependence structure. Therefore in this kind of model, it is difficult 
to give a degree of ambiguity inducing an order rule. This way, in line with Gilboa and Schmeidler [18], it is possible 
to determine a range of variation of the fuzzy marginals through a particular tool, i.e. the Choquet integral (see [11]). 
The Choquet uncertainty approach (see [19,14]) is a special case of the fuzzification strategy, where the distortion 
is based on a Choquet-integral and originates from a rescaling of the rvs induced by a capacity variable, acting as a 
proxy for decision-makers attitudes towards ambiguity.

We recall the concept of Choquet integral.

Definition 2 (Choquet integral). Let (�, F , μ) be a nonadditive measure space and γ a measurable function on �. 
The Choquet integral of γ : � → [0, +∞) is defined as

(C)

∫
�

γ dμ =
∞∫

0

μ(x|γ (x) ≥ α)dα.

If (C) 
∫
�

γ dμ < +∞, γ said to be C-integrable in the space (�, F , μ). Moreover Choquet integral satisfies the 
following properties:

(i) if ζ ≤ γ , then (C) 
∫
�

ζdμ ≤ (C) 
∫
�

γ dμ;
(ii) if A ⊂ B, A, B ∈ �, then (C) 

∫
A

γ dμ ≤ (C) 
∫
B

γ dμ;
(iii) if μ is lower semicontinuous and γn ↑ γ a.e. in �, then (C) 

∫
�

γndμ ↑ (C) 
∫
�

γ dμ;
(iv) if μ is upper semicontinuous, γn ↓ γ a.e. in �, and there exists a C-integrable function ζ such that γ1 ≤ ζ , then 

(C) 
∫
�

γndμ ↓ (C) 
∫
�

γ dμ.

As we know, if the fuzzy measure μ is subadditive (we denote it μ in the following), the previous definition refers 
to the so-called lower Choquet integral, that should correspond to the lowest bound of fuzzified marginals. Moreover, 
for a well-known property of nonadditive measures (see [17]), any subadditive measure is associated with a dual 
superadditive measure μ by the relationship μ(A) = 1 − μ(A), where A denotes the complement set of A.

Notice that the duality relationship provides a definition of a set of probability measures C said to be the core of 
measure μ, i.e. C = {ξ : μ(A) ≤ ξ(A) ≤ μ(A), μ(A) = 1 − μ(A), ∀A ∈ F}. Based on the core of a fuzzy measure, 
we define the set of Choquet integral of a measurable function γ as SC = {(C) 

∫
�

γ dξ, ξ ∈ C}; this is a bounded set 
delimited by the lower and the upper Choquet integral, respectively.

Definition 3 (Choquet-fuzzy Esscher transforms). Given the Esscher transformed vector (SQ1,t , . . . , S
Q
n,t ), and the cor-

responding set of Esscher cdfs, i.e.

ESQ
t = {(uQ , . . . , u

Q
n,t );uQ = φ(uPi,t ),∀i},
1,t i,t

7
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where φ stands for the transform induced on the P -cdf by the Esscher change of measure, the set of Choquet-fuzzy 
Esscher cdfs, corresponding to a set of core of a nonadditive [0, 1]-measure μ, one for every marginal projection of 
such measure, i.e. C = {Ci , i = 1, . . . , n}, where Ci = {ξi : μ

i
(A) ≤ ξi(A) ≤ μi(A), μ

i
(A) = 1 − μi(A), ∀A ∈ F} is

CFESQ
t =

⎧⎨
⎩

⎛
⎝(C)

∫
�

ũ1,t dξ1, . . . , (C)

∫
�

ũn,t dξn

⎞
⎠ , ξi ∈ Ci ,∀i

⎫⎬
⎭

where ũi,t = γi(u
Q
i,t ) is the fuzzy version of the ith marginal distribution for a measurable function γi, ∀i.

The fuzzy version of the Esscher transform could be seen as an ambiguous version of the standard one, where 
the transformed cdf of SPi,t , ∀i is assumed to be a function of a fuzzy variable. It can be motivated by several kinds 
of uncertainty affecting the model, i.e. lack of information (which implies measurability issues), distortion of the 
information signal due to the decision maker’s beliefs, or also unreliable statistical estimates of specific model’s 
parameters. A fuzzy variable lets us translate, for example, an expert’s opinion about ambiguous parameters. The 
uncertainty is then introduced via a fuzzification of the change of measure transformation, i.e. either the parameter 
θ in equation (1) becomes fuzzy or we make fuzzy the shape of the exponent function y(x). This way we make the 
change of measure more flexible than the standard Esscher transform and allow to be more adherent to the empirical 
feature of the market.

Example 4. Assume an arithmetic Lévy market where a risky asset is traded and whose price evolves as described by 
the following SDE7

dSt = σt θ̂t dt + σtdŴt + ηtdIt ,

where Ŵt is a one-dimensional P -Brownian motion, It is a jump process, independent from Ŵt , while the other 
parameters are real-valued continuous functions. The jump process8 is defined by its associated random jump measure 
N(., .) and compensator Ñ(., .) and by the compensator measure noted as l(., .), i.e.

dIt =
∫
R

z
(
eθ̃t z − 1

)
l(dz, dt) +

∫
R

zÑ(dz, dt).

Recall from arbitrage theory that to coherently solve any pricing problem, we need to identify all equivalent martingale 
measures which are risk-neutral in the market we are considering; this amounts to a rather wide class of potential 
pricing measures that we recognize to be the class of Esscher transforms. The Esscher transform introduces a set of 
parameters θt = (θ̂t , θ̃t ) and allows the description of the equivalent martingale measure Qθ by the density process 
Zθ

t , i.e.

dQθ

dP
|t = Zθ

t ,

where the density can be decomposed into the Doleans-Dade martingales accounting for the continuous and the jump 
component, i.e. Zθ

t = Zθ̂
t × Zθ̃

t . Under technical condition ensuring that Zθ̃
t is at least a local martingale with unitary 

expectation,9 we resort to the Qθ -dynamic of the risky asset, i.e.

dSt = σtdWθ
t +

∫
R

zηt Ñ
θ (dz, dt),

7 It stands for Stochastic Differential Equation.
8 In order to assure that St has finite moments up to a certain order, it is necessary to impose a condition on the jump process It , i.e. it must be 

requested the existence of c > 0, such that 
∫
R

∫
|z|≥1 |z|cl(du, dz) < ∞. See [4].

9 This condition refers to the existence of ν > 0 such that sup |θ̃ | + ν ≤ c, where c is the same positive constant assuring for the finitude of St

moments.
8
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where the change of measure acts for both the Brownian motion and the compensator, i.e.

Wθ
t = Wt +

t∫
0

θ̂sds,

Ñθ (dz, dt) = Ñ(dz, dt) + (eθ̃t z − 1)l(dz, dt).

The price of a call option, whose payoff is assumed to be integrable on the real line, can be recovered by the Fourier 
approach (see [4]). Therefore, the price of a call option written on St , with maturity T and strike price K , is given by

C(t, T ,K) = e−r(T −t) 1

2π

∫
R

ĜT (y)�(t, T )e(a+iy)Uθ
t dy, (2)

where ĜT (y) is the Fourier transform of the dampened version of the payoff function10 for a damping parameter 
a > 0, while

Uθ
t =

t∫
0

σsdWθ
s +

t∫
0

zηsÑ
θ (dz, ds)

ln�(t, T ) = 1

2
(a + iy)2

T∫
t

σ 2
s ds + ψ((y − ia)ηt ),

where ψ(.) is the cumulant function of It .
We observe that for every θ the call price in (2) can be seen as a solution to the crisp pricing problem; the fuzzy 

version of the same problem resorts if for example, we assume to deal with an uncertain set of parameters θ , which 
can be described as fuzzy variables. Therefore we define the Choquet-fuzzy Esscher transforms set, i.e.

CFESQθ

t =
⎧⎨
⎩(C)

∫
�

ũtdξ, ξ ∈ C

⎫⎬
⎭ ,

where ũt = γ (u
Qθ

t ) is the fuzzy version of the risky asset’s distribution ut = F
Qθ

t (s) for a measurable function γ . It 
corresponds to the core of a nonadditive [0, 1]-measure μ, i.e. C = {ξ : μ(A) ≤ ξ(A) ≤ μ(A), μ(A) = 1 −μ(A), ∀A ∈
F}. As a matter of fact, if we have an uncertain set of parameters, θ ∈ [θ, θ ], it is supposed to induce a fuzzy set of 
Esscher transforms whose core allows to define the Esscher bounds, i.e.

SU = (C)

∫
γ (u

Qθ

t )dμ =
∫

Zθ
t dFP

SL = (C)

∫
γ (u

Qθ

t )dμ =
∫

Z
θ
t dFP ,

and consequently to perform the call price at the bounds, i.e.

CU(t, T ,K) = e−r(T −t) 1

2π

∫
R

ĜT (y)�(t, T )e(a+iy)Uθ
t dy

CL(t, T ,K) = e−r(T −t) 1

2π

∫
R

ĜT (y)�(t, T )e(a+iy)U
θ
t dy.

Finally the arbitrage-free corridor price is given by

C(t, T ,K) ∈ [CL(t, T ,K),CU (t, T ,K)].

10 The damping factor e−ax , a > 0 allows to integrate the option’s payoff function on the real line and to apply the Fourier approach. We need also 
to assure for an integrability condition, i.e. c ≥ a sup[0,T ] |ηt |, where c is the positive parameter whose existence proves that St has finite moments.
9
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It is worth mentioning that the proposed model is able to represent the fogginess induced by market data and coherently 
define the core and the uncertain domain of parameters; however, as the empirical example will make clear later, to 
ensure the no-arbitrage condition it may be necessary to impose restrictions and resort to a quasi-absence of arbitrage 
opportunity.

Finally, we observe that the case of multiple priors can be thought of as a special case of Choquet uncertainty, where 
the Choquet capacity may be interpreted in terms of beliefs. As a matter of fact, if the behavior of a decision-maker 
in multiple-priors is represented by a set of probability measures overlapping the core of the Choquet capacity, the 
two models overlie; nonetheless, it works iff the decision-makers capacity is convex, while the behaviors described 
by a Choquet integral with respect to a non-convex capacity cannot be specified by a multiple-priors model (see [9]). 
Therefore we can consider the multiple-priors case as a sub-case of Choquet uncertainty, whose capacity’s core is 
defined by the decision maker’s beliefs.

3. Measure-invariance of the fuzzy Esscher transforms

In this section, we consider the multidimensional feature of our market and investigate some invariance properties 
of copula functions under change of measure transformations. This copula represents, at a given point in time, the 
dependence structure of n exponential Lévy variables.

Given the dependence structure of the stock prices at time t under the historical probability measure P , i.e. given a 
copula function CP

It
(uP1,t , . . . , u

P
n,t ) where It = (SP1,t , . . . , S

P
n,t ) is a vector of random variables defined in a complete 

filtered space (�, (Ft )t∈[0,T ], P )11 and uPi,t = FP
Si,t

(si), ∀i = 1, . . . , n is the cdf of SPi,t under P , we consider a trans-

formation of margins, i.e. φ(uPi,t ), ∀i = 1, . . . , n, induced by a change of measure. What interests us is the resulting 
dependence structure under the new probability measure.

Let η = dQ
dP |t be the Esscher density satisfying the regularity conditions ensuring that it is at least an exponential 

local martingale. Moreover, if EP (η) = 1, the necessary conditions of the Radon-Nikodym theorem are satisfied 
and we are allowed to pass into measure Q. The new margins will be uQi,t = F

Q
Si,t

(si) = FP
Si,t

(α−1
i,t (si)) = φ(uPi,t ), 

∀i = 1, ..., n, where αi,t (.) and φ(.) are the transformations induced on the variable SPi,t and on the P -cdf respectively12

by the change of measure, i.e. SQi,t = αi,t

(
SPi,t

)
. Given a transformation αi,t (.) induced on the univariate r.vs SPi,t by 

a change of measure, we are now interested in the dependence structure of the transformed vector (SQ1,t , . . . , S
Q
n,t ), 

i.e. on the copula function whose marginals are the Q-cdf of the transformed variables. Our main question concerns 
the relationship between the Q-dependence structure and the original one linking the variables defined under the P
measure.

Romagnoli [38] studied in depth this problem and defined the notion of copula m-invariance, i.e. of the depen-
dence structure’s invariance under the measure-change transformation of marginals. More precisely a necessary and 
sufficient condition for the m-invariance is proved to be the strictly increasing behavior of marginals’ transformation, 
i.e. C

SP
i,t ,S

Q
i,t

(uPi,t , u
Q
i,t ) = uPi,t ∧ u

Q
i,t , ∀i.

In case of fuzzy Esscher change of measure, the m-invariance of copula function is assured iff all fuzzy marginals in 
SCi

are strictly increasing transforms of uPi , ∀i. Under this assumption we can say that the conditional Choquet-fuzzy 
copula, already introduced in [39], is m-invariant.

In order to simplify the notation, we assume ui = uPi , ûi = u
Q
i while ũi stands for the fuzzy version of the Esscher 

transform ûi .

Definition 5 (Fuzzy Esscher Copula). A function S̃ : [0, 1]n → [0, 1] corresponding to a set of core of a nonadditive 
[0, 1]-measure μ, one for every marginal projection of such measure, i.e. C = {Ci , i = 1, . . . , n}, where Ci = {ξi :

11 The sigma-algebra Ft is assumed to be generated by all r.vs, i.e. Ft = ∨n
i=1 F

Si
t .

12 The random variables SP
i,t

in It are not necessary equal as function nor do have the same probability law.
10
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μ
i
(A) ≤ ξi(A) ≤ μi(A), μ

i
(A) = 1 − μi(A), ∀A ∈ F},13 and to a measurable function γ is a conditional Choquet-

fuzzy copula14 called Fuzzy Esscher Copula, i.e. for ξi ∈ Ci , ∀i

S̃(ũ1, . . . , ũn) = S̃

⎛
⎝(C)

∫
�

γ1(û1)dξ1, . . . , (C)

∫
�

γn(ûn)dξn

⎞
⎠ ,

where γi(ûi) is a measurable function of ith Esscher transformed marginal.

Theorem 6. Let (Rn+, B(Rn+), μ) be a nonadditive measure space, where B(Rn+) is the Borel set generated by the 
space Rn+ and γ : [0, 1]n → [0, 1]n be a strictly increasing measurable function. Then there exists a unique conditional 
Choquet-fuzzy copula S̃ : [0, 1]n → [0, 1] and

S̃(ũ1, . . . , ũn) = CP (ũ1 ∈ SC1, . . . , ũn ∈ SCn),

where ũi = γi(ûi) and SCi
= {(C) 

∫
ω

γi(ûi)dξi, ξi ∈ Ci}, ∀i.

Proof. It is easily proved by observing that marginals are here increasingly transformed by taking the Choquet inte-
grals of the marginals of the copula S̃. Hence the copula CP is said to be invariant, or m-invariant if the transform γ
is strictly increasing, knowing that its argument is the Esscher measure transform (which is increasing too). �

The previous theorem states that the m-invariance is guaranteed when we deal with fuzzy Esscher copulas, iff the 
fuzzy marginals depend on strictly increasing function γ . Different assumptions about the behavior of γ enable us to 
generalize the Esscher change of measure function and reproduce more general shapes.

Particular components of the set of fuzzy Esscher copulas are recovered, placing the marginals on the bounds; if the 
marginals are ui = (C) 

∫
�

γi(ûi)dμ
i
, ∀i, we talk about the lower fuzzy Esscher copula15 (SL for short) while if the 

marginals are ui = (C) 
∫
�

γi(ûi)dμi, ∀i, we define the upper fuzzy Esscher copula (SU in the following). We remark 
then that the level of ambiguity induced by a fuzzy measure μ is given by a = SU −SL. The following result is proved 
in [39].

Proposition 7. Let S be the set of fuzzy Esscher copulas, i.e. S = {S̃(ũ1, . . . , ũn), ui ∈ SCi
, ∀i}. Then SL ≤

S̃(ũ1, . . . , ũn) ≤ SU , ∀S̃ ∈ S .

Proof. The statement is easily proved, thanks to the monotonicity of the Choquet integral, given the core’s definition, 
and the monotonicity of copulas with respect to the margins. �

Taking into consideration the monotonicity of the fuzzy structure, we now focus on the lower fuzzy Esscher copula
and on the request of strictly increasing monotonicity of its marginals with respect to the historical ones. More pre-
cisely if the fuzzy marginal ui , is a strictly increasing transform of the historical ui, ∀i16 then the dependence structure 
of the exponential Lévy market is invariant for change of measure transforms. We have the following condition for 
m-invariance of a market system.

13 Here F = B([0, 1]), i.e. the Borel set generated by [0, 1].
14 The dependency structure is now a copula because Choquet integrals are defined by additive measures belonging to the core of non-additive μ. 
Obviously, this is not the case for Choquet integrals with respect to the core’s extremes. Nevertheless, we talk here about conditional fuzzy copulas 
instead of semi-copulas.
15 Here the transformation of margins is induced by a non-additive measure, implying that the corresponding dependency structure is a semi-
copula.
16 This condition holds true in case of marginal Esscher transform iff the Choquet integrals are functions of a strictly increasing function γ as 
proved before.
11
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Proposition 8. Let (Rn+, B(Rn+), μ) be a nonadditive measure space, where B(Rn+) is the Borel set generated by the 
space Rn+ and γ : [0, 1]n → [0, 1]n be a strictly increasing measurable function. Then there exists a unique lower 
fuzzy Esscher copula SL induced by a fuzzy Esscher measure transform of a system M and

SL(ũ1, . . . , ũn) = CP (ũ1 ∈ SC1, . . . , ũn ∈ SCn),

where ũi = γi(ûi) and SCi
= {(C) 

∫
ω

γi(ûi)dξi, ξi ∈ Ci}, ∀i. In this case the system M is m-invariant.

Proof. The argument follows easily by Theorem 6 and Proposition 7. �
Having in mind the thesis of Proposition 8, we can define the fuzzification process based on the market data, i.e. 

the bounds of the core, which are compatible with the m-invariance condition or with a weaker condition, as we will 
see in the following section.

3.1. m-Invariance and the absence of arbitrage opportunity assumption

The condition of m-invariance discussed above coincides with the closure of a class under change of measure 
transforms. This closure is frequently imposed in order to simplify the technical tractability of a model and has 
important implications on the assumption concerning the absence of arbitrage opportunity.

The fundamental theorems of asset pricing deal with the implications of the absence of arbitrage opportunity 
assumption on the risk-neutral pricing technique. More precisely: it can be proved that the existence of an equivalent 
martingale measure for the discounted prices, called risk-neutral measure, is essentially equivalent to the absence of 
arbitrage opportunities and that its uniqueness is assured in complete markets. In [38] a statistical test is proposed for 
the absence of arbitrages based on the concept of m-invariance. As a matter of fact, if the m-invariance is not verified 
by data, the historical and the risk-neutral distributions are not coherent in terms of the risk they are representing, 
implying that arbitrages are realizable by portfolios of derivatives and basic stocks bearing independent risks. Hence 
we can state that if the model verifies the m-invariance but is refused by the statistical test, then the no-arbitrage 
assumption should be refused too, or alternatively the model’s assumptions, supporting the m-invariance, should be 
rejected. Therefore, finally, we can say that the m-invariance is necessary and sufficient for the stochastic dominance 
(at the first order) of the historical distribution towards the risk-neutral one and consequently for the absence of 
arbitrage opportunity assumption. This important connection between the m-invariance and the absence of arbitrages 
can be proved under the assumption of the market’s perfection, i.e. ruling out any kind of market’s imperfections 
caused for example by some friction as illiquidity, constraints on short sales, transaction costs or taxes.

Alternatively, we may imagine a connection between a weaker concept of m-invariance, seemingly more coherent 
with the empirical evidence, and an almost everywhere condition of absence of arbitrage opportunity. We observe 
that in the Esscher change of measure, the transformations of marginals implied are deterministic and always strictly 
increasing so that the m-invariance is warranted. Nevertheless, if we generalize the set of transforms allowing for a 
fuzzy Esscher change of measure they become a function of a capacity. In this case, the strictly increasing monotonic-
ity is no longer directly implied by the analytical structure of the Esscher transform and we may be driven to search for 
a quasi-invariance property of copula function in order to relax the monotone condition on γi, ∀i. This more general 
setting can be useful to represent the information caught by real data.

For example if the transformation induced by an Esscher transform is not mean-monotone, we may determine some 
point-wise distance from the copula implied by the nearest monotone transformation. We define the mean discrepancy 
to the strongest copula as

DM
Si,t

=
1∫

0

|C
SP

i,t ,S
Q
i,t

(uPi,t , u
Q
i,t ) − uPi,t ∧ u

Q
i,t |dFi,

where uPi,t = FP
Si,t

(si) and uQi,t = F
Q
Si,t

(si), ∀i = 1, . . . , n and Fi stands for the empirical cdf of the ith discrepancy. 
Based on the mean discrepancy we would define a criterion to establish if dependencies, not explained by the strongest 
12
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copula, are negligible or not. Given a small ε, if DM
Si,t

≤ ε, ∀i = 1, . . . , n, then we confirm a quasi-invariance or ε-
invariance of Esscher copula holds true.

Definition 9 (ε-minvariance). An Esscher copula is ε-measure invariant, ε-minvariant for short, if DM
Si,t

≤ ε, ∀i =
1, . . . , n and for a given small ε ∈ R. We note the ε-minvariance operator as ε= and then we have CQ

It
(u

Q
1,t , . . . , u

Q
n,t ) 

ε=
CP
It

(uP1,t , . . . , u
P
n,t ).

A weaker condition of invariance could be compatible with a different shape of γi, ∀i and able to model special 
empirical features of the market.

We assume for example to consider the ith marginal and to empirically recover the real-world and the risk-neutral 
cdfs; hence we evaluate their dependence structure through a parametric or an empirical method. Therefore we esti-
mate the copula, i.e. C̃(F̃P

S , F̃Q
S ) and the empirical discrepancy, i.e.

D̃S,i = |CSP ,SQ(uPi , u
Q
i ) − uPi ∧ u

Q
i |,

where uPi = F̃P
S (si) and uQi = F̃

Q
S (si), ∀i = 1, ..., n. Moreover we recover the empirical mean discrepancy, i.e. 

D̃M
S,i = ∫ 1

0 D̃S,idFi .
The same idea applies with a multidimensional extension of the discrepancy which refers to the comparison be-

tween a copula representing the historical dependence and the Esscher copula.

The statistical test we propose provides a mechanism to determine whether there is enough evidence to reject a 
conjecture, called null hypothesis, stating the ε-minvariance of the copula, when we pass from the real-world measure 
to the risk-neutral one. If from a theoretical point of view, we know that they must be invariant, but empirically this 
hypothesis is refused, this then means that the data coming from the market are not coherent with the theoretical model 
based on the absence of arbitrage opportunity assumption and its implication in term of fundamental theorem of asset 
pricing. Hence the absence of arbitrage opportunity assumption cannot be accepted.

In order to set up a statistical hypothesis test, we need to specify the tolerance attributable to the concept of m-
invariance. More precisely, since we talk about ε-minvariance, the test statistic, i.e. the mean discrepancy, will be 
specified by a chosen theoretical distribution and a set of parameters’ values. Moreover, since the test-statistic DM

S is 
always positive by definition, we put forward a one-sided test. Let us consider the null hypothesis

H0 : P and Q are ε-minvariant,

based on the test-statistic DM
S ∼ φ(d), where φ identifies a particular distribution function while d stands for a vector 

of parameters. Given a significance level α and let εα = �−1(α), where �(.) stands for the theoretical cdf of the 
statistic, H0 is not rejected iff εα ≥ D̃M

S , where D̃M
S is the empirical mean discrepancy of the experiment. Therefore 

the acceptance region of H0 is identified by all DM
S ∈ [0, εα]. In this case, we are justified in believing the absence of 

arbitrage opportunities assumption is true at the assumed confidence level.
If empirically we have support for a weaker concept of m-invariance, we are justified to preserve the incompleteness 

of the market with a fuzzy Esscher transform based on the non-strictly increasing transform of the standard Esscher 
change of measure.

4. Empirical experiment

Motivated by a pricing problem involving the market M characterized by a multidimensional set of n exponential 
Lévy random variables S, we define a nonadditive measure space (�, F , μ) enabling us to perform a fuzzy Esscher 
risk neutral change of measure. The risk-neutral dependence structure is represented by a set of fuzzy copula functions 
S̃ because the market is ambiguous due to unobservable or unreliable estimates of the model’s parameters. We can 
imagine dealing with a pricing problem under enlarged ambiguous filtration corresponding to the information related 
13
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to unobservable variables.17 To specify the fuzzification, we assume that μ is a fuzzy measure in the class of Sugeno 
gλ-measure; this kind of measure, build starting from the objective measure of the market and a parameter λ > 0, is 
applied to financial markets in [10] and [39].

More formally if F(.) is a probability distribution, a gλ-measure is defined as gF
λ (]a, b]) = F(b)−F(a)

1+λF(a)
and then 

we have a one-to-one correspondence between distribution functions and the class of gF
λ -measures; parameter λ will 

establish the degree of subadditivity of the measure itself. On the other hand, by the duality that holds between 
subadditive and superadditive measures, if we define λ∗ = − λ

1+λ
then the gF

λ∗ -measure is the dual superadditive 
measure of gF

λ .
We know that every pricing problem requires recovering the pricing kernel which will be fuzzy in our setting. If 

the market is incomplete, as in our setting, we’ll have infinitely many prices as long as infinitely many martingale 
measures (whose complexity is given by the set of fuzzy Esscher transforms18). An ambiguous model is characterized 
by a greater level of risk concerning the subjective feelings and beliefs on the model assumptions. If, for example, 
we introduce some level of uncertainty on the parametrization of the univariate Esscher marginals involved in the 
contingent claim valuation, a suitable modelization would be in the same spirit as a fuzzified version of the bottom-up 
approach, whose representation is based on the conditional Choquet-fuzzy copula, we called fuzzy Esscher copula. 
Here the ambiguity is introduced into the model through a fuzzification of risk-neutral marginals whose corresponding 
pricing kernel will be called conditional fuzzy Esscher kernel. Obviously, given the incompleteness of such a market, 
the pricing kernel cannot be unique. Instead, we have a set of kernels Sλ, for a set of measurable functions γi, ∀i and 
the invariance property of copulas for conditional fuzzification, given by the following

Sλ =
{
S̃

(
(C)

∫
γ1(û1)dξ1, . . . , (C)

∫
γn(ûn)dξn

)
, ξi ∈ Ci ,∀i;SL ≤ S̃ ≤ SU

}
,

where ûi = Q(�i), for a general exercise set �i
19 and γi(ûi) is a measurable function of the Esscher risk neutral 

transforms ûi , ∀i, Ci = {ξi; gûi

λ ≤ ξi ≤ g
ûi

λ∗} and where SL = S̃
(
(C)

∫
γ1(û1)dg

û1
λ , . . . , (C)

∫
γn(ûn)dg

ûn

λ

)
and SU =

S̃
(
(C)

∫
γ1(û1)dg

û1
λ∗ , . . . , (C)

∫
γn(ûn)dg

ûn

λ∗
)

are the lower and upper Esscher bounds, respectively.

The sufficient condition for the m-invariance is specified in Proposition 8 and corresponds to the strictly increasing 
monotonicity of γi, ∀i in the lower Choquet bound. This way we can imagine placing ourselves in this setting and to 
calibrate the Sugeno parameter λ coherently with both the market data and the m-invariance condition. The steps to 
be followed are listed below:

1. given the market data and contingent market prices, we can uniquely calibrate the Esscher change of measure, 
i.e. we can recover ûi , ∀i. We can have two different cases: i) ûi , ∀i lies above the corresponding objective cdfs, 
ii) ûi , ∀i goes below the corresponding objective cdfs, in particular domain’s zones. The latter case identifies 
scenarios where the Esscher transform does not act as an increasing transformation;

2. we admit some ambiguity and make ûi, ∀i fuzzy, and in particular we recover the lower and upper bound of the 
fuzzy transforms, i.e. ui, ui, ∀i. More precisely we identify the marginal Esscher transforms as signals, whose 
envelopes permit us to calibrate the system’s fuzziness and coherently recover the Sugeno parameters. In case ii) 
we can imagine performing pricing conditional to unobservable filtration, but under the assumption of invariance 
after Esscher transformation (which turns out to overlap a weaker version of the absence of arbitrage opportunities 
condition). The recovered price under relaxed conditions (about the absence of arbitrage) is evaluated under the 
upper Esscher bound, in the worst case;

3. we check for the condition of m-invariance, i.e. C(ui, ui) = ui ∧ ui, ∀i, where C stands for their dependence 
structure. The condition of m-invariance means that the Esscher marginals are perfectly positively correlated, i.e. 

17 The ambiguous parameters can be represented by any factor characterizing the underlying dynamic, i.e. the drift and the volatility as well, or 
the market where it is traded as the risk-free rate.
18 We can imagine having an Esscher transform which depends on an uncertain parameter a ∈ [a, a]. This induces a fuzzy definition of the 
risk-neutral cdfs ûi ∈ [ûi , ̂ui ], ∀i, corresponding to a range [λ, λ∗] of Sugeno parameters.
19 If we consider an European put option, �i = {Si ≤ Ki }, where Ki is the strike price.
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Table 1
Descriptive statistics of CECE EURO and MSCI EAFE INDEX in two different periods.

Mean Min Max St. Dev. Skewness Kurtosis JB test p-value

CECE EU
period 1 1392.93 1095.50 1618.54 121.79 -0.75 2.55 1
period 2 1269.81 1128.43 1422.70 58.75 -0.05 3.53 0

MSCI EAFE
period 1 2121.03 1780.11 2341.45 153.75 -0.65 2.12 1
period 2 1886.90 1784.91 2040.10 60.04 0.54 2.74 0

ui = φi(ui), ∀i and strictly increasing φi . On the other hand, a weaker version of m-invariance can be considered 
if the mean discrepancies of the historical distributions and at least the upper Esscher transform ui = φi(ui), ∀i

allows us not to reject the ε-minvariance.

4.1. Fuzziness calibration

We propose an empirical experiment applied to two different periods to highlight how the proposed tool works in 
different scenarios. We use daily, publicly available data on the MSCI index traded in the EAFE market and CECE

EURO index, traded in the EUREX market and on the corresponding options maturing in January 2021 and traded on 
December 10, 2020 (first period) and maturing in December 2023 and traded on September 6, 2022 (second period).20

We use Thomson Financial Datastream data and we choose around 3 months of financial end-of-day quotes, from 
10/09/2020 to 10/12/2020 (first period) and from 06/06/2022 to 06/09/2022 (second period) to recover the real-world 
cdf of both MSCI and CECE EURO index. The empirical real-world cdfs are computed through the Kaplan-Meier 
procedure.

Table 1 contains the main descriptive statistics of the two indices considered for two analysis periods. Daily prices 
are decreasing and less volatile in the second period for both the time series considered; the MSCI EAFE index is 
always more volatile than the CECE EU index. As for the daily prices distribution, the statistics show skewness and 
kurtosis measures suggesting a left-skewed and leptokurtic distribution of the CECE EU index in the second period: 
the skewness value is always negative but decreasing from the first period and the kurtosis is greater than 3 only in 
the second period. On the other hand, the MSCI EAFE index changes from left to right-skewed in the second period 
and it is never leptokurtic. The p-values obtained from the Jarque Bera test indicate that the time series are normally 
distributed in the first periods but not in the second one.

On the other hand, end-of-day call prices traded on December 10, 2020, and September 6, 2022, are available for 
different strike prices21 allowing us to recover the implied risk-neutral cdfs of their underlying via the Breeden and 
Litzenberger [7] approach. To implement this procedure we develop a preparation phase based on cubic interpolation 
to have a constant and equal to 25 bp (basis points) spacing between two strike prices.22 Moreover, we identify the 
risk-neutral rate with Euribor 1 month recorded on December 10, 2020, and September 6, 2022, respectively. The 
risk-neutral cdfs are assumed to be signals yielding information about the multitude of Esscher transforms. Therefore 
we identify envelopes of real-valued signals and calibrate the fuzziness of the system as a function of the mode of the 
distribution of the distance between the upper and lower envelopes of signals. Eventually, we translate this information 
in a non-additive measure space with a fuzzy measure in the class of Sugeno gλ-measures, whose parameter λ is 
exactly set at the level of the calibrated fuzziness. Given the sub-additivity level, by duality, we recover the dual 

20 The volume of options counts around 500 products in the first period while it is reduced of 20% in the second one.
21 The end-of-day call prices traded on December 10, 2020, are available for a totally 112 different strike prices while on September 6, 2022, they 
are reduced to 70.
22 This procedure to generate a call price surface (option price, strike, underlying price), returns a vector of interpolated option prices correspond-
ing to the query points of equally spaced strike prices. The interpolated values are determined by cubic spline interpolation of strikes and option 
prices. In line with Fengler [15], we implement a kind of ex-post smoothing by imposing the price function to be convex and non-increasing in 
strikes, conditional on the knot points; as a matter of fact, the idea is not to modify market data in this completion phase, but to enlarge the data set 
without altering the feature of the market by including arbitrage opportunities.
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Fig. 2. CECE EURO and MSCI EAFE INDEX: Risk-neutral cdf and signal envelope’s bounds in the first period.

Fig. 3. CECE EURO and MSCI EAFE INDEX: Risk-neutral and real-world cdfs in the first period.

super-additive measure gλ∗ , where λ∗ = − λ
1+λ

. The computation of the lower and upper Esscher bounds is then 
implied by the fuzziness caught from the data.

4.1.1. First period: analysis at December 10, 2020
We start the fuzziness calibration, considering the first period. In Figs. 2(a) and 2(b), we report the evidence of the 

signals’ bounds and the corresponding Esscher transforms’ bounds in the first period considered.
In Figs. 3(a) and 3(b) both the real-world and the risk-neutral cdfs always concerning the first period are repre-

sented. For sake of comparison, the strictly increasing monotonicity of the lower Esscher transform should be assured.

We point out that a probable cause of unusual shapes of the empirical cdfs may be the lack of data, especially 
for some intervals of strike prices, forcing us to heavily resort to interpolation procedures to complete the data set. 
Still, increasing monotonicity in the MSCI EAFE index must be resorted to by approximating the Esscher transforms’ 
bounds for the smallest concave upper bound and the upper convex lower bound of the Esscher’s bounds set. The 
approximation procedure is articulated by identifying the endpoints, φ, ψ which solve the following optimal prob-
lem:
16
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Fig. 4. MSCI EAFE INDEX: Risk-neutral cdfs, Esscher bounds and approximated Esscher corridor (dotted line).

Fig. 5. CECE EURO and MSCI EAFE INDEX: Kendal functions of the empirical mean discrepancy in the first period.

sup
φ<θ<ψ

{
f (φ)

ψ − θ

ψ − φ
+ f (ψ)

θ − φ

ψ − φ

}
,

and which allow to recover the smallest concave majorant of the upper Esscher transform f (θ). Similarly the up-
per concave minorant of the lower Esscher transform f ∗(θ) is determined by the endpoints φ∗, ψ∗ which solve the 
following optimal problem:

inf
φ∗<θ<ψ∗

{
f ∗(φ∗) ψ∗ − θ

ψ∗ − φ∗ + f ∗(ψ∗) θ − φ∗

ψ∗ − φ∗

}
.

In Fig. 4 the approximated corridor of Esscher transforms is reported. It is worth mentioning that a first check about 
the marginal strict monotonous transformation acted by the change of measure is in order. As it is clear from Fig. 3, 
the Esscher transform of the CECE EURO index is strictly increasing hence its lower bound could be compared with 
the P -marginal distribution. On the other hand, the MSCI EAFE index needs to rely on the approximated Esscher cor-
ridor to assure its increasing monotonicity; therefore we compare its approximated lower bound with the P -marginal 
distribution. The evidences of the empirical mean discrepancies, concerning both the marginal distributions and the 
bivariate copula representing the dependence of the two indexes, are reported in Figs. 5 and 6, respectively. We re-
mark how the order of the Kendal functions ensures the max copula (which stands for the case of perfect positive 
17



Fig. 6. Bivariate copula of CECE EURO and MSCI EAFE INDEX: Kendal functions of the empirical mean discrepancy in the first period.

Table 2
Marginal ε-measure invariance test results: CECE EURO and MSCI 
EAFE INDEX. Evidence on the invariance for the bivariate empirical 
copula in the first period.

τ ρ DM α

CECE EURO INDEX 0.8961 0.9867 0.0100 0.5000
MSCI EAFE INDEX 0.9363 0.9950 0.0166 0.5100
Bivariate Copula 0.6600 0.8607 0.0540 0.5200

correlation between the distribution under the historical and the risk-neutral measure) be dominated by the empirical 
one, implying that the P -distribution is dominated by the Q-one (as clearly shown in Fig. 3).

The results of the test for marginal ε-minvariance for the first period are reported in Table 2.
As we can see the ε-minvariance is not rejected for values of ε greater than or equal to the empirical mean discrep-

ancy level. Therefore both the hypotheses are accepted with a confidence that is at least equal to 99.49%. The last row 
of Table 2 shows the measure invariance results for the bivariate empirical copula of the CECE EURO and the MSCI 
EAFE index; despite the greater empirical mean discrepancy, the significance level remains high and the invariance 
hypothesis results to be accepted with the confidence of 99.48%.

4.1.2. Second period: analysis at September 6, 2022
Now we pass to calibrate the fuzziness of the second period. In Fig. 7 we report the evidence of the signals’ bounds 

and the corresponding Esscher transforms’ bounds in the second period considered. We observe that the calibrated 
fuzziness is greater than in the first period, probably due to the turmoil characterizing the current financial market.

In Figs. 8(a) and 8(b) both the real-world and the risk-neutral cdfs always concerning the second period are rep-
resented. We notice that in this situation we are in presence of strictly increasing functions, but unfortunately, the 
risk-neutral cdfs and the Esscher transforms’ bounds stand below the real-world function in some regions, suggesting 
the empirical rejection of the absence of arbitrage assumption in both the markets (see [38]).

It is worth mentioning that a first check about the marginal strict monotonous transformation acted by the change 
of measure is in order. As it is clear from Fig. 8, Esscher transforms of the CECE EURO and the MSCI EAFE index 
are strictly increasing but not dominating the P -distribution; this implies that the upper bound must be compared with 
the P -marginal distribution to check for a weaker condition on the absence of arbitrage opportunity assumption. The 
evidences of the empirical mean discrepancies (where the upper Esscher bound is taken into account), concerning 
both the marginal distributions and the bivariate copula representing the dependence of the two indexes, are reported 
in Figs. 9 and 10, respectively. We observe that the order of the Kendal functions does not guarantee the maximum 
copula (which stands for the case of perfect positive correlation between the distribution under the historical and the 
E. Bernardi, D. Ritelli and S. Romagnoli Fuzzy Sets and Systems 466 (2023) 108466
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Fig. 7. CECE EURO and MSCI EAFE INDEX: Risk-neutral cdf and signal envelope’s bounds in the second period.

Fig. 8. CECE EURO and MSCI EAFE INDEX: Risk-neutral and real-world cdfs in the second period.

Fig. 9. CECE EURO and MSCI EAFE INDEX: Kendal functions of the empirical mean discrepancy in the second period.
19
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Fig. 10. Bivariate copula of CECE EURO and MSCI EAFE INDEX: Kendal functions of the empirical mean discrepancy in the second period.

Table 3
Marginal ε-measure invariance test results: CECE EURO and MSCI 
EAFE INDEX. Evidence on the invariance for the bivariate empirical 
copula in the second period.

τ ρ DM α

CECE EURO INDEX 0.8721 0.9799 0.1474 0.5586
MSCI EAFE INDEX 0.9559 0.9976 0.1595 0.5634
Bivariate Copula 0.9131 0.9907 0.0054 0.5022

risk-neutral measure) is dominated by the empirical one, implying that actually the P -distribution is not dominated by 
the Q-one (as clearly shown in Fig. 8). On the other hand, the Kendal functions in Fig. 10 are mainly indistinguishable 
thanks to compensator effects in the marginals’ combination.

The results of the test for marginal ε-minvariance (based on the upper Esscher bound and the Q-copula of the 
upper bounds) for the second period are reported in Table 3.

As we can see the ε-minvariance is not rejected for values of ε greater than or equal to the empirical mean dis-
crepancy level. Therefore both hypotheses are accepted with confidence which is at least equal to 99.44%, despite the 
greater empirical mean discrepancy. The last row of Table 3 shows the measure invariance results for the bivariate 
empirical copula of the upper Esscher transforms of the CECE EURO and the MSCI EAFE index; the empirical mean 
discrepancy is very low probably due to errors’ compensation, hence the significance level is high and the invariance 
hypothesis results to be accepted with the confidence of 99.50%.

4.2. Bivariate pricing under enlarged ambiguous filtration

We assume to have a contingent claim whose drivers are MSCI EAFE and CECE EURO index. The pricing problem 
at hand is supposed to be dependent on unobservable variables23 inducing a certain degree of fuzziness into the system. 
The Esscher transforms bounds, recovered after calibration of fuzziness from empirical data (both in the first and the 
second period), represent the first step to evaluate their Fuzzy Esscher Copula. Figs. 11 and 12 depict the scatter plot 
of the indices prices and the transformed data to copula scale using the kernel estimator of the cumulative distribution 
function in both the considered periods.

Assuming to work under the hypothesis of marginal ε-minvariance for ε = 0.0166 and ε = 0.159524 respectively 
in the two periods, we connect the indices by an Archimedean copula function and calibrate the parameter on the 

23 A non-Markovian system, where some model parameters are unobservable and unpredictable, is an example of such kind of ambiguous pricing 
problem.
24 The value of ε stands for a measure of the discrepancy from the standard absence of arbitrage assumption; greater ε, weaker is the m-invariance 
considered in defining the pricing measure. The value of ε is a big deal higher in the second period where the standard assumption of absence 
20
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Fig. 11. CECE EURO and MSCI EAFE INDEX: data scatter plots concerning the first period.

Fig. 12. CECE EURO and MSCI EAFE INDEX: data scatter plots concerning the second period.

corresponding dataset. In order to analyze the implication of the dependence structure, we assume to have every kind of 
tail dependence through the analysis of the comprehensive Archimedean family whose main components are Clayton 
copula, showing lower tail dependence, Gumbel copula, showing upper tail dependence, and Frank copula having 
no tail dependence. Figs. 13 and 14 show the copula pdf with different Archimedean dependences, i.e. for Clayton, 
Frank, and Gumbel copulas. The calibrated parameters are reported in the caption; they correspond to Kendall’s tau 
of 0.66 and 0.54, respectively in the first and second periods.

Moreover in the marginal fuzzifying process, we define the cores through the previously recovered Sugeno mea-
sures. This way of blurring the model is related to assumptions concerning the marginals and is referred to as the 
conditional fuzzy approach (see [39]). In Figs. 15 and 16 we appreciate the range of the bivariate joint distribution, i.e. 
the Esscher transform corridors, for a different choice of Archimedean copulas and different periods. Table 4 reports 
goodness of fit evaluation results based on RMSE, a widely used measure of GOF focusing on the minimization of 
residuals, Akaike and Bayesian Information Criteria (AIC and BIC); the evidence shows a preference for Clayton 
copula (in the first period) and for Gumbel (in the second period), which explain at best the empirical dependence of 

of arbitrage is rejected; as a matter of fact, here we resort to a weaker version of the absence of arbitrage (whose weaknesses’ degree is given by 
ε = 0.1595) which is not rejected for the upper Esscher bound pricing measure. On the other hand, the first period confirms the not rejection of the 
standard absence of arbitrage opportunity, assured by the dominance of the Q-distribution and by the very low values of ε.
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Fig. 13. MSCI EAFE and CECE EURO INDEX: Archimedean copula pdf for Clayton (3.62), Frank (12.58) and Gumbel (3.00). Evidences from 
the first period.

Fig. 14. MSCI EAFE and CECE EURO INDEX: Archimedean copula pdf or Clayton (1.33), Frank (5.62) and Gumbel (2.17) copula. Evidences 
from the second period.

Fig. 15. MSCI EAFE and CECE EURO INDEX: Esscher transform corridors for Clayton (3.62), Frank (12.58) and Gumbel (3.00) copula. Evidence 
from the first period.

data. Lower and upper tail dependence parameters are also reported in Table 4; the impact of tail dependence (lower 
in the first period and upper in the second one) seems to prevail in the choice of the best copula family.

Yet Archimedean copulas seem to have in general a good performance (GOF are generally very similar in both 
periods); we observe that even if the properties of tail dependences of Archimedean copulas impact the differences 
on the ranges of Esscher corridors, their shapes seem very similar. The second period is characterized by irregular 
corridors due to a greater calibrated fuzziness in this period; nevertheless, we tested a weaker absence of arbitrage 
assumption which is not rejected just by the upper Esscher transform appointed as a good pricing measure (as a result 
of a quasi arbitrage pricing). Different choices inside the corridor will have a lower confidence not to be rejected and 
a greater mean discrepancy.
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Fig. 16. MSCI EAFE and CECE EURO INDEX: Esscher transform corridors for Clayton (1.33), Frank (5.62) and Gumbel (2.17) copula. Evidences 
from the second period.

Table 4
Goodness of fit evaluation of the Archimedean dependence struc-
ture: CECE EURO and MSCI EAFE INDEX. Tail dependence 
evidence in the first and second periods.

FRANK CLAYTON GUMBEL

RMSE
first period 0.0169 0.0149 0.0168
second period 0.0532 0.0537 0.0518

AIC
first period 5293.1 3641.5 3903.9
second period 1503.7 1944.8 1143.0

BIC
first period 5295.7 3638.9 3906.5
second period 1505.9 1947.0 1145.2

Tail Dependence
first period 0 λL = 0.8257 λU = 0.7402
second period 0 λL = 0.5938 λU = 0.6237

5. Conclusion

This paper’s goal is to show how fuzzy Esscher transforms can help address invariance issues related to financial 
pricing and contingent-claims pricing in the context of uncertain and incomplete markets. Having in mind a pricing 
problem involving the market M characterized by a multidimensional set of n exponential Lévy random variables 
S, we investigate the effects of a change of measure on the dependence structure. In the case of standard Esscher 
transforms we recover the invariance properties proved in [41]; however, they do not seem flexible enough to capture 
effects empirically recovered as the U-shape feature of the change of measure function discussed by Carr et al. [8]. 
This failure in consistency with the market can be overcome allowing for not only mean-monotone transformations 
modeled in terms of fuzzy Esscher transforms, which enables us to generalize the invariance result introducing a 
weaker concept of invariance. Therefore the consistency with market data justifies the interest in our research and the 
innovative proposal of the paper.

Through the (fuzzy) change of probability measure approach, we illustrate the advantage of considering Fuzzy 
Esscher transforms for the generalization of the invariance property to ambiguous and incomplete markets settings, 
thus introducing a new variant of the invariance property. A fuzzy Esscher transform permits us to formalize the 
implications of a pricing problem under enlarged ambiguous filtration corresponding to the information related to 
unobservable variables, giving support to the lack of completeness through the definition of a corridor of Esscher 
transforms which translates the blurriness of the market itself. Esscher bounds are related to the concept of quasi-
invariance, which we call ε-measure invariance, and which is based on the discrepancy to the maximum copula used 
to measure the distance between distributions. A weaker request concerning the monotony of the change of measure 
transforms could justify the empirical evidence and motivate the pricing under the assumption of quasi absence of 
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arbitrage opportunities based on the concept of ε-measure invariance. The proposed empirical experiments based 
on market data concerning two different periods allow us to show how to properly calibrate a fuzzy system taking 
advantage of the flexibility of the fuzzy Esscher transform, and seems to suggest an ε-measure invariance is indeed 
market-coherent.

Finally, we believe this paper contributes to the modelization of fuzzy tools in financial research whose future 
directions would be able to make a bridge between the analytical rigor of financial mathematics and the new frontiers, 
related to markets with no full disclosure of information about products and prices, where such a piece of blurry 
information causes uncertain and ambiguous feeling among market’s agents, where some information is inaccessible, 
unreliable or misunderstood due to bias in estimation, big data or too small dataset issues, hence able to match a world 
which is everything but perfect.
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