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Modelling the Surface Roughness of 
Steel after Laser hardening by using 2D 
Visibility Network, Convolutional neural 
Networks and Genetic Programming 
 
The surface characterization of materials after Robot Laser Hardening 
(RLH) is a technically demanding procedure. RLH is commonly used to 
harden parts, especially when subject to wear. By changing their surface 
properties, this treatment can offer several benefits such as lower costs for 
additional machining, no use of cooling agents or chemicals, high 
flexibility, local hardening, minimal deformation, high accuracy, and 
automated and integrated process in the production process. However, the 
surface roughness strongly depends on the heat treatment and parameters 
used in the process. This article used a network theory approach (i.e., the 
visibility network in 2D space) to analyze the surface roughness of tool 
steel EN100083-1 upon RLH. Specifically, two intelligent methods were 
merged in this investigation. Firstly, a genetic algorithm was applied to 
derive a relationship between the parameters of the robot laser cell and 
topological surface properties. Furthermore, convolutional neural 
networks allowed the assessment of surface roughness based on 2D 
photographic images. 
 
Keywords: Robot Laser Hardening (RLH); Roughness, Genetic Algorithm; 
2D Visibility Network; Convolutional Neural Networks. 

 
 

1. INTRODUCTION  
 

Laser Hardening is a surface heat treatment that can 
significantly increase the hardness of steel parts [1]. 
This is essential, for instance, when high wear resistance 
is required to provide proper functional properties. 
Unlike the well-known thermal hardening processes, 
such as volumetric quenching, high-frequency currents, 
electric heating, quenching from the melt, and other 
methods, laser hardening is not a volumetric but a local, 
surface process, which excludes changes in both the 
macro and micro-geometry of the workpieces. 

It is a very cost-effective and extremely fast 
hardening procedure, especially convenient for large 
parts made by metal forming technology. In this case, it 
allows the precise hardening of the outermost layers 
irradiating limited portions on the surface. While the 
laser beam highly localizes the heat on the surface, the 
core remains in its original state: the less heat is 
generated, the less distortion occurs in part [2].  

Under the laser beam, martensite is created: a very 
hard and fine metal structure responsible for improving 
the material hardness. Using laser hardening, it is 
possible to locally harden the laser-irradiated area, 
handling irregular and three-dimensional workpieces 
and avoiding unnecessary rework and missed work [3]. 

When a robot moves the laser beam, the process is 

called Robot Laser Hardening (or RLH). This process 
offers additional advantages (accuracy, speed, energy 
efficiency, etc.) over other traditional heat treatments 
emerging. It was verified by one of the authors, e.g., 
that RLH can increase material hardening at a depth of 
0.8-1.5 mm, significantly improving wear resistance and 
service life with an extra cost not exceeding 15-20% [4].  

Fig. 1 shows a robot laser cell for metal hardening, 
as available in the laboratory for experiments. Using 
this equipment, it was possible to harden metal 
specimens in the present investigation according to 
different process parameters. 

 
Fig. 1: Robot laser cell for hardening. 

RLH is carried out without melting the surface, thus 
eliminating a modification in roughness and the need for 
subsequent machining (e.g., grinding, polishing, etc.). 
Furthermore, the possibility of hardening and modifying 
surfaces in the case of a wide range of materials with a 
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significant increase in their performance characteristics 
allows, in many cases replacing expensive, complex-
alloyed materials often used to ensure the necessary 
wear resistance of surfaces with simpler, cheaper, and 
more affordable ones, giving (additionally) them the 
desired performance characteristics.  

The thermal cycle proposed by the RLH is the 
fastest compared to the thermal cycles of every other 
existing hardening method. These conditions provide a 
high rate of heating and cooling of the treated surface 
areas, as a result of which certain effects are achieved, 
such as high surface hardness, high dispersion, and 
uniformity of the structure, a decrease in the friction 
coefficient, an increase in the bearing capacity of the 
surface layers. In addition, no problems are noticed with 
the bond strength (adhesion) of the hardened layer with 
the bulk of the part, which is typical, for instance, for 
spraying technology.  

Finally, the modern RLH equipment offers the 
chance of hardening surfaces of any complexity and 
geometry, with direct effects on productivity. The 
evident high productivity of this technology is due to 
the automation of the RLH process and the elimination 
of the need for heat treatment of the entire part: only 
local areas subject to wear are treated. Using a local 
treatment and a small amount of heat, as permitted by 
RLH, minimizes the thermal deformation while quick 
cooling enables a robust microstructure [5].  

The present paper aims to analyze and predict the 
topographical property and roughness of RLH 
specimens. With the scope, visibility graphs were used.  

A graph is a mathematical object that has proved 
helpful in many theoretical and applicative situations 
[6]. One way graphs are commonly represented in a 2D 
plane, or a 3D space is the so-called visibility repr–
esentation, where nodes represent disjunctive objects, 
and a connection exists between them when one "sees" 
the other. A visibility graph (or network) is a graph of 
inter-visible locations, typically for a set of points and 
obstacles in the Euclidean plane. A visibility graph is a 
kind of graph where each edge incident to a vertex 
shows the direction of the other visible vertices.  

In the present analysis, visibility graphs are adopted 
to transform RLH surfaces into schemes, while several 
parameters, specifically created with the scope to 
classify graphs, are used to detect these schemes, 
transforming them into numbers and factors. Then, two 
intelligent systems (IS) were considered and compared 
as advanced tools for data mining. 

An IS can be considered a sophisticated algorithm 
able to solve complex tasks, even without all the needed 
information, thanks to unpredictable operational modes, 
more like a form of artificial intelligence than a rational 
evaluation [7].  

The use of IS is consolidated as a way for material 
properties prediction, including several investigations 
proposed by authors in the years. For instance, in [8], a 
neural network was used to calculate the tensile strength 
of aluminum-silicon carbide starting from acoustic 
emission rise angle data. At the same time, in [9], the 
prediction was focused on the tensile behavior of cast 
alloys and performed by a pattern recognition analysis. 
Regarding the hardness and roughness, both [10] and 

[11], together with the already mentioned [4], can 
represent a preliminary analysis able to confirm the 
goodness of IS methods in performing evaluations and 
predictions.  

With that scope, it is useful to recall a few common 
surface roughness concepts. The roughness refers to the 
surface micro-geometry and is considered in small areas 
(up to several square millimeters). It can be considered a 
combination of surface irregularities with relatively 
small steps, highlighted using the base length.  

In this paper, differently from the previous ones, a 
new approach to intelligent recognition of surface 
roughness based on graph theory and intelligent systems 
(IS) was developed and used to investigate its 
dependence on RLH process parameters [10]. 
Specifically, concerning the extremely long list of IS, 
due to previous positive experiences, we preferred: 

- Convolutional neural networks (CNNs) represent a 
special typology of artificial neural networks (ANN), 
based on translation-invariant local feature detectors 
or filters, which share their adaptable parameters 
(weights) [12, 13]. In these networks, a convolution 
layer is often followed by a pooling layer, which 
compresses information, usually by maximizing or 
averaging rectangular areas of pixels, thus 
effectively reducing large amounts of image data. 
Convolution and pooling layers can be reapplied 
several times to further reduce data consistency. The 
output of the last layer (output) predicts target 
variables, in our case, the surface roughness. 

- Genetic programming (GP) is one of the most 
efficient and universal methods for solving 
problems developers use to face [14-16], such as 
symbolic regression, data mining, design 
optimization [17], and research of the behavior of 
developing populations (emergent behavior) in 
biological communities. GP belongs to a class of 
methods known as evolutionary algorithms since 
they are based on the concepts of natural selection 
and evolution (as evident in [18]).   

 
2. MATERIALS AND METHODS  

 
2.1 Materials preparation  

 
In this paper, we present a new approach for modeling 
the surface roughness of materials by using a 2D 
visibility network, convolutional neural networks, and 
genetic programming.  

The hardening process was performed by standard 
tool steel EN 100083 − 1 using the robot laser cell, 
RV60-40 (Reis Robotics Company), with a power of 
1500 W with modification on 

- speed in the range v ∈  [2, 5] mm/s  
- the temperature in the range T ∈  [1000, 1400] °C.  

Surface characterization, performed by profilometry 
techniques, yields information on the roughness. 
Specifically, according to the scheme in Fig. 2, the 
surface roughness was conveniently characterized 
considering the surface profile (Z(x)) with respect to an 
arithmetic/baseline by the following parameters:  

- Ra, as average deviation on a typical length (lr), 
- Rz, as the maximum height of the profile roughness,  
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- Rp, as maximum profile peak height, 
- Rv, as maximum profile valley depth.  

 
Fig. 2: Surface roughness and main parameter. 

Fig. 3 depicts the surface roughness material of RLH 
with 2 mm/s at 1400 °C. On the right-hand side, an arrow 
shows the direction of traveling of the laser beam. On the 
left, we can see a profile graph of the roughness of the 
robot laser hardened specimen with 2 mm/s at 1400 °C. 
Ra_0 represents the initial roughness before hardening, 
and Ra represents roughness after the RLH treatment. 

 
Fig. 3: RLH surface roughness with 2 mm/s at 1400 °C. 

 

2.2 Methodology 
 

We use the network theory, especially the concepts 
related to the visibility network, with the scope to 
analyze the surface roughness. The nodes of a visibility 
graph correspond to geometric components, such as 
vertices or edges. An edge of the graph connects two 
nodes if the components can "see" each other, perhaps 
under some restricted form of visibility. Two nodes of a 
2D graph with values (xa, ya) and (xb, yb) will have 
visibility and consequently will become two connected 
nodes of the associated graph, if any other data (xc, yc) 
placed between them fulfil [19]: 

yc < yb+(ya-yb)×(xc-xb)/(xa-xb)  (1) 

Fig. 4 represents an example of a visibility graph in 
2D space. Red color lines indicate connections between 
the points that have visibility. The green line (virtual) 
represents the situation where inequality in equation (1) 
is not gathered. 

 
Fig. 4: Example of a visibility graph in 2D space. 

First, we find coordinates (x,y) of the surface 
roughness of the RLH specimen from the graph in Fig. 
3. Then, we use the algorithm for visibility networks in 
2D space. After this, we modify the network from a 
linear network to a 2D network – a 2D surface network. 

The last step is calculating the topological properties of 
the surface network. For calculating the topological 
properties, we use the Pajek program (as done in [20]).  
We calculated and used the three topological properties: 
1) triadic census type 16 – 21C; 2) Average Degree; 3) 
All Degree Centralization. 

For mathematical modeling, we use genetic prog-
ramming (GP) to find the relationship between para-
meters of robot laser cells and topological properties of 
visibility networks of surface roughness of hardened 
materials. Fig. 5 shows an example of the application of 
the GP method. On the left side, we can see the GP tree, 
and on the right side is the tree's mathematical equation.  
Specifically, we use the following GP attributes, which 
proved to provide the best results in terms of prediction 
of the RLH specimen's roughness:  

- size of the population of organisms: 500 
- maximum number of generations: 100 
- reproduction probability: 0.5 
- crossover probability: 0.7 
- maximum permissible depth in the creation of the 

population: 7 
- maximum permissible depth after the operation of 

crossover of two organisms: 10 
- smallest permissible depth of organisms in 

generating new organisms: 2  
- tournament size used for selection of organisms: 6. 

 
Fig. 5: An example of genetic programming. 

It is reasonable to assume that the speed and tempe–
rature of laser hardening strongly impact roughness [21]. 
We were interested in checking if the specimens' images 
would contribute to the evaluation of surface roughness 
and confirm the assumption mentioned above.  

Specifically, Fig. 6 represents the five-step proce–
dure applied with the scope to determine the topological 
properties of RLH surfaces: starting from images taken 
from RLH specimens, we used the visibility net–work 
method to convert them into 2D graphs and to evaluate 
their topological properties (i.e., triadic census type…).  

Then, topological data was used with respect to two 
different methods: without or directly integrating images. 

In the first case, an ordinary multilayer perceptron was 
applied to predict roughness from two inputs: speed and 
temperature. In the second case, a convolutional neural 
network (CNN) was applied, as shown in Fig. 7. The CNN 
was trained by combining the process para–meters 
(temperature and speed) with information from the digital 
micrograph analysis. During the training phase, CNN 
weights were set to reduce the prediction error. Due to the 
fact that images present complex information to be 
stratified and classified, CNNs typically include multiple 
convolution layers, followed by pooling operations to 
gradually reduce the amount of data [22]. This directly 
opens the way to the concepts of deep learning. 
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Fig. 6: Process of calculating topological properties of surface roughness of RLH specimens. 

 
Fig. 7: Convolutional neural network. In the first approach (without images), the global average pooling layer is not connected 
to fully connected layers, while it is connected in the second approach (with pictures). 

The Spearman correlation coefficient (ρ) verified the 
relationship between the variables. Also called linear 
correlation coefficient, this statistical index highlights a 
linear relationship between variables. It can be used to 
provide a statistical measure of the strength of a 
monotonal link between data pairs. This coefficient can 
also be applied to rank the existing relationship between 
different series of indicators (e.g., in [9]). We used the 
Spearman correlation coefficient (ρ) to weigh and 
compare the existing correlations between measures and 
predictions regarding both IS.  

The non-dimensional ρ can present values ∈ [-1, 1], 
and closer the connection to one, the stronger the 
monotonic connection is, as:  

 
ρ = 0.00    no correlation  
0.01 <ρ <0.19  slight correlation  
0.20 <ρ <0.39  low / weak correlation 
0.40 <ρ <0.59  medium / moderate correlation  
0.60 <ρ <0.79  high / strong correlation  
0.80 <ρ <1.00  very high /very strong correlation 
 

3. RESULTS 
 

With respect to N. 21 specimens under investigation, 
namely, from S1 to S21, Table 1 summarizes the RLH 
process parameters impacting roughness (as temperature 

and speed), together with the topological parameters as 
detected by the analysis.  
Specifically, regarding the:  

- process parameters: P1 and P2 represent, respect–
tively, the temperature [°C] and speed [mm/s] of the 
laser beam during the RLH process, while Ra is the 
measured roughness [nm].  

- Topological properties: X1 represents the triadic 
census type 16 – 21, X2 is the Average Degree, and 
X3 is the number of extremes.  

Entering in detail about specimens and experiments,  
- S21 represents the specimen before the process of 

RLH and can be used as the basis for all 
considerations.  

- Specimens from S1 to S8 were hardened with v ∈ 
[2-5] mm/s and T∈[1000-1400] °C: such parameters 
were chosen according to conventional applications 
of RLH.  

- In specimens from S9 to S16, the hardening process 
was repeated with the same parameters to investigate 
the effect of a double treatment.  

- Among these specimens, the S13 exhibits the highest 
roughness (2350 nm) rather due to the very high 
temperature and low speed of processing  

- Specimens from S17-S21 faced an on-the-spot RLH 
process: the laser beam's speed was zero. 

 



FME Transactions VOL. 50, No 3, 2022 ▪ 397
 

Table 1. RLH process parameters, roughness (Ra), and topological properties. 

Sample Process parameters Roughness Topological properties 
P1 (°C) P2 (mm/s) Ra (nm) X1 X2 X3 

S1 1000 2 201 486562 6.68 120823 
S2 1000 3 171 419143 6.31 125787 
S3 1000 4 109 426718 6.36 123943 
S4 1000 5 76 435387 6.40 124833 
S5 1400 2 1320 421225 6.32 124626 
S6 1400 3 992 379602 6.08 131540 
S7 1400 4 553 419628 6.32 126962 
S8 1400 5 652 374160 6.05 130799 
S9 1000 2 337 425656 6.40 123393 

S10 1000 3 307 448399 6.46 126395 
S11 1000 4 444 420703 6.32 124296 
S12 1000 5 270 435387 6.40 123829 
S13 1400 2 2350 486206 6.58 128143 
S14 1400 3 1900 587747 7.03 122500 
S15 1400 4 661 419975 6.37 120818 
S16 1400 5 759 584852 7.12 116812 
S17 800 0 183 377479 6.06 133031 
S18 1400 0 1330 381919 6.07 130974 
S19 2000 0 1740 374666 6.05 131043 
S20 950 0 502 728408 7.92 95090 
S21 850 0 166 176414 10.8 106916 

 
This collection of data was used for performing the 

analysis and prediction of roughness.  
In Table 2, a comparison between the actual and pre–

dicted roughness is presented. Specifically, Ra provides 
the value of roughness as measures (Y), while GP and 
CNN are estimations obtained from genetic programming 
and convolutional neural network models, respectively.  

Percentual errors are also reported per each measure, 
with average errors of -42% (i.e., underestimation) and 
20% (i.e., overestimation) in the case of, respectively, 
GP and CNN. It is immediately evident that, except in 
some points where the errors are very high, there is a 
good general correspondence between the measures and 
the predictions. 
Table 2. Actual and predicted (by genetic programming and 
convolutional neural network models) values of roughness.   

S Y GP CNN err%
GP err%

CNN  
S1 201.0 190.2 310.60 -5% 55%
S2 171.0 175.8 190.05 3% 11%
S3 109.0 100.9 200.53 -7% 84%
S4 76.0 80.6 315.32 6% 315%
S5 1320.0 233.3 1221.44 -82% -7%
S6 992.0 202.1 1021.39 -80% 3%
S7 553.0 57.4 683.58 -90% 24%
S8 652.0 93.1 539.16 -86% -17%
S9 337.0 313.3 231.40 -7% -31%

S10 307.0 257.3 213.14 -16% -31%
S11 444.0 324.7 191.03 -27% -57%
S12 270.0 80.6 240.58 -70% -11%
S13 2350.0 181.3 1175.04 -92% -50%
S14 1900.0 1726.6 1340.49 -9% -29%
S15 661.0 222.9 742.89 -66% 12%
S16 759.0 410.2 681.45 -46% -10%
S17 183.0 200.0 148.44 9% -19%
S18 1330.0 189.3 1396.80 -86% 5%
S19 1740.0 193.3 1776.57 -89% 2%
S20 502.0 265.5 518.99 -47% 3%
S21 166.0 158.0 441.77 -5%0 171%

In the case of the GP model, the relation between 
roughness (Ra in Table 2) and Topological properties 
(X1, X2, X3 in Table 1) is given by Eq. 2 (where Ra is 
named as Y): 

 

(2)

 
In Fig. 8, values from Table 2 are also graphically 

displayed, highlighting a clear match in most situations. 
Specifically, Y represents the measured data while red 
and green points represent predictions from GP and 
CNN. Finally, in Fig. 9, it is possible to find examples 
of micrographs (for specimens S1 to S4, three images 
each) used as additional inputs to reinforce CNN's 
predictions. These specimens are different because they 
are treated by an RLH process characterized by the 
same source temperature (1000 °C) but different speeds 
(2, 3, 4, and 5 mm/s).  



398 ▪ VOL. 50, No 3, 2022 FME Transactions
 

 
 

 
Fig. 8: Measured (Y) and predicted surface roughness, according to Genetic Programming (GP) and Convolutional Neural 
Network (CNN). 

 

 
Fig. 9: Micrographs of specimens characterized by a speed treatment of 2 (S1), 3 (S2), 3 (S3), and 5 mm/s (S4) (at 1000 °C).

4. DISCUSSION  
 
The surface roughness of an RLH hardened material 
significantly influences the macroscopic contact angle 
measurement on its flat surface, with significant effects 
in terms of industrial applications. E.g., it affects the 

tribological behavior of surfaces. The surface roughness 
can quickly increase friction and inefficiencies.  
Our objective was to investigate how the RLH process 
(i.e., speed and temperature) affects surface roughness 
and can be optimized. With such a scope, three tools 
were merged: 
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 Visibility network analysis 
 
It would be worthwhile to analyze the graph of roughness 
surface with the network theory, especially visibility net–
work in 2D space. It can be shown that the method of visi–
bility graph is very useful for researching the surface 
roughness of materials after the RLH process. Some rem–
arks: specimen S20 has the highest topological pr–operty 
triadic census type 16 – 21; specimen S21 has higher 
topological property Average Degree and speci–men; S17 
has a higher topological property number of extremes; 
specimen S21 has the lowest topological pro–perty triadic 
census type 16 – 21; specimen S8 has the lowest 
topological property Average Degree, and speci–men S20 
has the lowest topological property number of extremes. 
 
 Genetic programming analysis 
 
The genetic programming (GP) was used to model the 
surface roughness Ra with topological property triadic 
census type 16 – 21, Average Degree, and several 
extremes of visibility graph of surface roughness Ra. 
The genetic programming model yields a deviation of 
42,21% compared to the measured data. Hence, the 
parameter number of extremes of the surface roughness 
visibility graph has a higher impact on the model.  

The in-house GP system was run 100 times in order 
to develop 100 different predictions according to the 
different parameters used in the robot laser cell. Each 
run lasted approximately two and a half hours on an I7 
Intel processor and 8 GB of RAM. An in-house genetic 
programming system, coded in AutoLISP, which is 
integrated into AutoCAD, was used to obtain 100 
independent models for predicting electric energy 
consumption during the EAF operation.  

For the model fitness, the average square of 
deviation from the monitored data was selected. It is 
defined as (3): 

Δ=ΣΔi
2/n  (3) 

where n is the size of the monitored data, and i is the 
square of deviation of a single sample data.  

The deviation of a single sample data produced by 
an individual organism is simply (4): 

Δi=Ei-Gi  (4) 

where Ei and Gi are the actual and the predicted scrap 
fractions (which depend only on surface defects), 
respectively. 
 
 Convolutional neural network analysis 
 
The convolutional neural network (CNN) was 
successfully used to predict the surface roughness, 
considering images from the surface. When images 
were also used, the mean squared error dropped from 
0.020 ± 0.002 to 0.014 ± 0.001. This corresponds to the 
root mean squares of 0.141 ± 0.045 vs. 0.118 ± 0.032. 
Using a t-test to compare the means, t = 0.023/0.017 = 
1.35 at 16 degrees of freedom yields the p-value of 0.18, 
which means that the prediction using images is signi–
ficantly better than without images, at least at the given 
significance level.  

For the experiment with the CNN, each specimen had 
three photos, also indicated by a, b, and c (Fig. 9 shows 
only specimens S1 to S4). It can be observed that, while 
the hardening speed increases linearly (S1: 2mm/s, S2: 
3mm/s, S3: 4mm/s, S4: 5mm/s), the roughness of the 
surface Ra decreases: S1: 201nm, S2: 171nm, S3: 109nm, 
S4: 76nm, see Table 1. We hypothesized that a CNN 
would distinguish different levels of roughness from 
photos. The images of specimens were cropped to a 
uniform size of 300×300. Since they were in grayscale, 
only one channel was required. The values were scaled 
from the [0, 255] interval to the [0, 1] interval. Next, a 
two-dimensional convolution layer of filter size 3×3 with 
4 kernels was applied, followed by a two-dimensional 
max-pooling (3×3) to compress the image size. The 
combination of 2D conv-layer and max-poling was 
repeated to achieve further compression. This is followed 
by the third conv-layer and an average pooling layer, 
whose output was flattened to merge with the non-image 
data. The CNNs were trained for 1000 epochs with the 
RMSprop learning algorithm with a learning rate of 
0.001. The mean squared error (MSE) was recorded for 
both evaluated cases: without and with images. For each 
setting, eight different training settings were used: with 
two and three hidden layers, with two different sizes of 
layers (i.e., number of artificial neurons), and with two 
different activation functions of neurons (sigmoid vs. 
relu). The output neuron was used to predict the surface 
roughness. Its activation function was sigmoid in all 
cases. The results are given in Table 3. For each training, 
the result is the mean of 10 runs, with the standard 
deviation. Two of the three images for each parameter set 
(speed, temperature) were used for training and the third 
for testing. Therefore, we also have test results in the 
'image' setting. Note that in the 'no-image' setting, testing 
would give the same results as training, so only training 
results are given.  
Table 3. Roughness prediction errors (the mean squared 
error, MSE) using CNN in both settings: without and images. 

Hidden 
layers 

Size of 
layers  

Activation 
function 

Without 
images 

With images 

train / test train test 
2  20, 10 sigmoid 0.023 ± 

0.001 
0.020 ± 
0.002 

0.021 ± 
0.002 

relu 0.023 ± 
0.002 

0.016 ± 
0.002 

0.016 ± 
0.002 

10,5 sigmoid 0.028 ± 
0.001 

0.027 ± 
0.004 

0.029 ± 
0.004 

relu 0.024 ± 
0.003 

0.020 ± 
0.004 

0.021 ± 
0.004 

3 20, 20, 
10 

sigmoid 0.022 ± 
0.001 

0.018 ± 
0.002 

0.020 ± 
0.002 

relu 0.020 ± 
0.002 

0.014 ± 
0.001 

0.014 ± 
0.001 

10,10,5 sigmoid 0.027 ± 
0.001 

0.027 ± 
0.003 

0.028 ± 
0.002 

relu 0.024 ± 
0.004 

0.020 ± 
0.005 

0.021 ± 
0.005 

 
 Mean Values and Variability 
 
In Table 4, the roughness surface of RLH specimens is 
reported as predicted by the GP and CNN in terms of 
mean values and standard deviations. We can see how 
the prediction variability is in line with the initial 



 

400 ▪ VOL. 50, No 3, 2022 FME Transactions
 

variability of measures. Measured data have the average 
Ra of 715 with σ=±62 (0,86%). The prediction methods 
GP and CNN give the average Ra of 715±62 (0,86%), 
269±75 (0,7%), and 646±158 (1%).  
Table 4. Ra prediction in terms of mean values and 
standard deviations. 

Unit Data  GP CNN 
Ra 715±62 

(0,86%) 
269±75 
(0,7%) 

646±158 
(1%) 

 
 Mean Values and Error Estimation 
 
Variabilities and errors are intrinsic to predictions and 
measures. It is possible to determine such aspects 
concerning the estimation of mean values. Specifically, 
Figs. 10 presents data in terms of density functions for 
measures and predictions. Their differences are evident. 

a)  

b)  

c)  
Fig. 10: Data in terms of density function for measures and 
GP and CNN predictions: a) measures; b) GP predictions; 
c) CNN predictions. 

 Correlation analysis 
 
The Spearman coefficient (ρ) was used to correlate 
measures and predictions (Tab. 5). Predictions are 
precise (and models efficient) when a linear correlation 
between them exists, and ρ is close to 1.  

Specifically, GP cannot be considered a valid 
estimator with a ρ = 0.395 that shows a low/weak linear 
correlation between predictions and data. 

On the contrary, with ρ = 0.842, CNN demonstrated 
the ability to provide a very high/strong correlation 
between predictions and measures.  

Fig. 11 reports such information in graphs to exhibit 
the linear correlation offered by CNN (down) against 
the weak correlation of GP (up). 
Table 5. Correlation analysis by Spearman coefficient (ρ). 

Model ρ Correlation 
GP 0.395 low/weak 

CNN 0.842 very high/strong 
 
 Comparison results with previous work 
 
With respect to previous authors' works [as 4, 9-11], a 
new approach to pattern recognition embedding the 

graph theory is proposed here. This approach was 
developed with the precise scope to determine the 
material surface roughness when depending on the 
process parameters of the RLH cell. The proposed 
method allows identifying existing relationships bet–
ween the manufacturing parameters and microstructural 
features as directly detected by micrographs. Similarly, 
with respect to other past studies, methods coming from 
the network theory were used here, but these methods 
are different in their applications. For instance, in [11], 
also referable to the surface characterization of tool 
steel, thermally treated by RLH, the structural 
complexity of materials was determined using fractals 
(instead of graph theory). Moreover, this is the first time 
that topological properties such as triadic census type16 
– 21, average degree, and the number of extremes of the 
visibility network are used to investigate RLH. 

 

 
Fig. 11: A graphical representation of linear correlation for 
GP (up) and CNN (down) predictions. 
 

5. CONCLUSION  
 
In this work, the robot laser hardening (RLH) surface 
treatment was investigated with the scope of predicting 
the roughness with respect to different process para–
meters (i.e., temperature and speed of laser beam). RLH 
is a special surface heat treatment that offers several 
benefits (e.g., it does not require re-machining). This 
technique is applied for hardening precisely defined 
areas like high-stressed radii, areas in molding plates, 
coining steels, cutting edges on draw die punches, and 
lower die. The possibility of automating the process 
makes the ability to predict its results very interesting. 

Micrographs are permitted to distinguish the effect 
of hardening on the surfaces. Specifically, 21 specimens 
(in steel) were manufactured using robot laser cells for 
hardening with respect to different process conditions. 
Using concepts as visibility graphs in 2D space, the 
topographical properties of the roughness after RLH 
were evaluated. Genetic programming (GP) and 
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convolutional neural networks (CNN) were then used 
with the scope to recognize patterns in data. Several 
relations between process parameters and material 
characteristics emerged. A good correlation between 
predictions and measures was evident (in the case of 
CNN), confirming the possibility of using intelligent 
systems to investigate material problems. 

The main findings and outcomes can be 
summarized as follows:  
− a new approach was developed and validated with 

the scope to analyze the effects of RLH on the sur–
face roughness of materials. 

− Laser beam speed and temperature can be conve–
niently selected as process parameters for such a 
scope.  

− An approach based on the visibility network and 
visibility graphs was demonstrated as efficient in the 
surface analysis.  

− The surface roughness graphs were converted to a 
2D surface network permitting extrapolating of their 
topological properties.  

− Intelligent systems, i.e., genetic programming and 
convolutional neural network, were helpful in 
pattern recognition and data mining. 

− Ra prediction was presented in terms of the mean 
values and standard deviations. 

− Measured and predictions can be considered in terms 
of the density function.  

− Spearman linearity was effective in evaluating 
accuracy in predictions. 

 
6. FUTURE WORK 
 
In RLH, a relevant problem, not properly investigated at 
the moment, is related to the fact that it is very hard to 
process geometrically complex parts as sprockets. The 
possibility of predicting the effect of RLH by effective 
intelligent systems (as here investigated) opens the doors 
to developing more complex processes and RLH plants. 

In particular, as the next step, we intend to enlarge the 
current results to a robot laser cell specifically developed 
to solve the problem of hardening sprockets and other 
similar parts. These new systems will be based on the 
ability to use two laser beams during the RLH 
simultaneously: a prism will divide the laser beam in two 
(Fig. 12). It could represent innovative equipment in line 
with the recent process of such a research field [23, 24]. 
In the future, we want to explore how different 
parameters of a laser beam in this ‘tandem process’ can 
affect the properties of the material (roughness), 
investigating general aspects of the new process as:  
− point two laser-beam hardenings, 
− two laser-beam hardening with overlapping, 
− two laser-beam hardening with different angles, 
− point two laser-beam hardening with different 

angles, 
− two laser-beam hardening with overlapping with 

different angles. 
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Fig. 12: Two laser beams in RLH of sprockets. 
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МОДЕЛИРАЊЕ ХРАПАВОСТИ ПОВРШИНЕ 
ЧЕЛИКА НАКОН ЛАСЕРСКОГ КАЉЕЊА 

КОРИШЋЕЊЕМ 2Д МРЕЖЕ ВИДЉИВОСТИ, 
КОНВОЛУЦИОНИХ НЕУРОНСКИХ МРЕЖА И 

ГЕНЕТСКОГ ПРОГРАМИРАЊА 
 

М. Бабич, П. Вангиао, Б. Штер, Д. Маринковић, 
Ц. Фрагасса 

 
Карактеризација површине материјала након 
очвршћавања роботом ласером (РЛХ) је технички 
захтеван поступак. РЛХ се обично користи за 
очвршћавање делова, посебно када су подложни 
хабању. Променом њихових површинских својстава, 
овај третман може понудити неколико предности 
као што су нижи трошкови за додатну машинску 
обраду, без употребе расхладних средстава или 
хемикалија, висока флексибилност, локално 
очвршћавање, минимална деформација, висока 
тачност, аутоматизован и интегрисан процес у 
производном процесу. Међутим, храпавост 
површине у великој мери зависи од термичке обраде 
и параметара који се користе у процесу. У овом 
чланку, приступ теорије мрежа (тј. мрежа 
видљивости у 2Д простору) је коришћен за анализу 
храпавости површине алатног челика ЕН100083-1 на 
РЛХ. Конкретно, две интелигентне методе су 
спојене у овој истрази. Прво, генетски алгоритам је 
примењен да би се извела веза између параметара 
роботске ласерске ћелије и тополошких својстава 
површине. Штавише, конволуционе неуронске 
мреже су омогућиле процену храпавости површине 
на основу 2Д фотографских слика. 

 


