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Abstract—This proposal introduces the quantum implemen-
tation of a binary classifier based on cosine similarity between
data vectors. The proposed quantum algorithm presents time
complexity that is logarithmic in the product of the training set
cardinality and the dimension of the vectors. It is based just on
a suitable state preparation like the retrieval from a QRAM, a
SWAP test circuit, and a measurement process on a single qubit.
An implementation on an IBM quantum processor is presented.

Index Terms—Quantum algorithms, quantum machine learn-
ing, binary classification, cosine similarity.

QUANTUM machine learning is a rapidly emerging re-
search area where quantum computing techniques are

applied to machine learning tasks in order to pursue a com-
putational speedup in performances. Within the supervised
learning scenario, some interesting quantum classification al-
gorithms have been proposed in recent years [1]–[3]. Here is a
quantum algorithm that implements a model, based on cosine
similarity, for binary classification of data vectors.

Let X = {xi, yi}i=0,...,N−1, with xi ∈ Rd and yi ∈ {−1, 1}
∀i ∈ {0, ..., N −1}, be a training set of N data instances with
two-valued labels that are represented in a real feature space of
dimension d. Let x ∈ Rd be a new data instance to be classified
as either 1 or −1. The considered classification model for the
quantum implementation is defined as follows:

y(x) := sgn

(
N−1∑
i=0

yi cos(xi, x)

)
, (1)

where cosine similarity is defined by:

cos(x, y) :=
x · y

‖ x ‖‖ y ‖
x, y ∈ Rd. (2)

A typical example where cosine similarity is adopted for
classification and clustering is text analysis [4]–[6]. In the
model (1), any training vector contributes to the prediction
of the new label and such a contribution is weighted by the
cosine similarity with the new instance. On the one hand, time
complexity of the classical calculation of the new label is
O(Nd). On the other hand, assuming d = 2n for n ∈ N
without loss of generality, the data vector xi ∈ Rd can be
encoded in the amplitudes of a quantum state of n qubits:

|xi〉 =
1

‖ xi ‖

d−1∑
j=0

xij |j〉 ∈ Hn, (3)

where |j〉 is an orthonormal basis of the n-qubit Hilbert space
Hn ' (C2)⊗n and xij is the jth component of xi. Within
the amplitude encoding, the correspondence cos(x, y) = 〈x|y〉
holds. One of the key feature of quantum machine learning
is the efficient retrieval of data encoded into quantum states,
e.g. a quantum random access memory (QRAM) allows to
retrieve data in parallel. Assuming that the real components
{xij}j=0,...,d−1 of xi are stored in an array of memory
cells as floating point numbers and the norm ‖ xi ‖ is
given separately, the retrieval of the state (3) can be done
in O(log d) steps according to the bucket brigade architecture
[7]. Consider also a logN -qubit register, with Hilbert space
Hindex ' (C2)⊗ logN , to encode the indexes of training data
vectors and construct the state:

|X〉 = 1√
N

N−1∑
i=0

|i〉|xi〉|bi〉 ∈ Hindex ⊗ Hn ⊗ Hl, (4)

where Hl is the Hilbert space of a single qubit used for
encoding the values of the labels with bi = 1−yi

2 ∈ {0, 1},
then |bi〉 is an eigenstate of the Pauli matrix σz with eigenvalue
yi. Moreover, in the same registers construct the state:

|ψx〉 =
1√
N

N−1∑
i=0

|i〉|x〉|−〉 ∈ Hindex ⊗ Hn ⊗ Hl, (5)

where the label qubit is in the state |−〉 = 1√
2
(|0〉−|1〉), so the

new data vector x is represented in a quantum superposition
of the two possible classes. Now consider an ancillary qubit,
called qubit a, and prepare the state:

1√
2
(|X〉|0〉+ |ψx〉|1〉) ∈ Hindex ⊗ Hn ⊗ Hl ⊗ Ha, (6)

that can be retrieved from the QRAM in time O(log(Nd)).
Now perform the SWAP test [8] between a second ancillary
qubit, called qubit b, prepared in |+〉 = 1√

2
(|0〉+ |1〉) and the

qubit a, moreover consider another qubit, say c, prepared in
|0〉 to control the Fredkin gate (i.e. the controlled swap gate):

c H • H

b ×

a ×

(7)



A straightforward calculation shows that after the action of
(7) the probability to obtain the outcome 1 measuring the qubit
c is P(1) = 1

4 (1−〈X|ψx〉) that is directly related to (1), in fact
〈X|ψx〉 = 1

N
√
2

∑N−1
i=0 yi cos(xi, x). Therefore the probability

P(1) is related to the prediction of the label of x, according
to the model (1), by means of:

y(x) = sgn [1− 4P(1)] . (8)

The procedure preparation+test must be repeated several
times for sampling the qubit c to estimate P(1) as the success
probability of a Bernoulli trial. An estimation within an error
ε requires a number of repetitions growing as O(ε−2) as
provided by the binomial proportion confidence interval, so the
overall time complexity of Algorithm 1 is O(ε−2 log (Nd)).

Input: training set X = {xi, yi}i=0,...,N−1, unclassified
instance x.

Result: label y of x.
1 repeat
2 initialize the register Hindex ⊗ Hn ⊗ Hl and an ancillary

qubit a in the state (6);
3 initialize a qubit b in the state |−〉;
4 perform the SWAP test on a and b with control qubit c

prepared in |0〉; % circuit (7)
5 measure qubit c;
6 until desired accuracy on the estimation of P(1);
7 Estimate P(1) as the relative frequency P̂ of outcome 1;
8 if P̂ > 0.25 then
9 return y = −1

10 else
11 return y = 1
12 end

Algorithm 1: Quantum implementation of the model (1).

Example for N = 2 and d = 2: Consider a train-
ing set of two-dimensional data instances given by X =
{(x0, y0), (x1, y1)} where x0 = (1, 0), y0 = 1 and x1 =
(0.718, 0.696), y1 = −1. Let x = (0.884, 0.468) be the
unlabelled data instance to classify. The model (1) predicts
the label of x as a nearest neighbor then it returns y = −1.

Fig. 1. Quantum circuit implementing lines 1-7 of Algorithm 1 in
the IBM Quantum Composer where N = 2, d = 2, with training set
{((1, 0), 1) , ((0.718, 0.696),−1)} and test x = (0.884, 0.468).

In Fig. 1, there is the circuit, represented in the IBM Quantum
Composer, implementing Algorithm 1 for the example just
introduced. The qubits q0, q1, q2 are the ancillas used for the
SWAP test, q3 is the 1-qubit index register, q4 is an additional

ancillary qubit necessary to control the gate RY(0.49π), q5 is
the 1-qubit register for the amplitude encoding of data and q6
is the qubit encoding the labels.

The run of the algorithm on the IBM quantum processor
ibmq 16 melbourne provides 1024 shots for sampling the
qubit q0. The obtained estimation of P(1) is P̂ = 490/1024 '
0.48 then the label assigned to x = (0.884, 0.468) is
y = −1 as expected. Despite the correct classification in
this test, a comparison with the result of the simulator
ibm qasm simulator suggests that the considered quantum
machine is too noisy for a good classification by means of
Algorithm 1. The output statistic of the simulator provides
P̂ = 273/1024 ' 0.27. This result is consistent with the fact
that the unclassified data vector x is close to the intermediate
point between the training vectors. Repeating the experiment
with the same training points and the new unlabelled instance
x = (0.951, 0.309) (whose correct classification is y = 1), the
quantum machine fails. In fact ibmq 16 melbourne returns the
relative frequency P̂ = 338/1024 ' 0.38, so it classifies x as
y = −1. On the same test, the simulator ibm qasm simulator
returns P̂ = 244/1024 ' 0.24 classifying correctly. The
observed lack of accuracy in classification depends on the
low quantum volume1 (QV = 8) of the considered quantum
processor. Matter for future work may be the test on larger
and more reliable hardware (e.g. the IBM quantum machine
ibmq montreal with 27 qubits and QV=128).

The exponential speedup of the presented quantum classifier
is due to the efficient preparation of quantum states in logarith-
mic time and to the classification itself performed in constant
time (that depends on the desired accuracy). Indeed, the choice
of the QRAM is motivated by an explicit estimation of the
overall time complexity but alternative efficient initializations
are allowed to run this quantum classifier.
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