
Quantum Annealing Learning Search
Implementations

Andrea Bonomi?, Thomas De Min?, Enrico Zardini?†,
Enrico Blanzieri?‡, Valter Cavecchia§, Davide Pastorello?‡

? Department of Information Engineering and Computer Science
University of Trento

via Sommarive 9, 38123 Povo, Trento, Italy

† enrico.zardini@unitn.it

‡ Trento Institute for Fundamental Physics and Applications
via Sommarive 14, 38123 Povo, Trento, Italy

§ Institute of Materials for Electronics and Magnetism (CNR)
via alla Cascata 56/c, 38123 Povo, Trento, Italy

Abstract

This paper presents the details and testing of two implementations (in C++ and Python) of
the hybrid quantum-classical algorithm Quantum Annealing Learning Search (QALS) on a D-
Wave quantum annealer. QALS was proposed in 2019 as a novel technique to solve general
QUBO problems that cannot be directly represented into the hardware architecture of a D-
Wave machine. Repeated calls to the quantum machine within a classical iterative structure
and a related convergence proof originate a learning mechanism to find an encoding of a given
problem into the quantum architecture. The present work considers the Number Partitioning
Problem (NPP) and the Travelling Salesman Problem (TSP) for the testing of QALS. The
results turn out to be quite unexpected, with QALS not being able to perform as well as the
other considered methods, especially in NPP, where classical methods outperform quantum
annealing in general. Nevertheless, looking at the TSP tests, QALS has fulfilled its primary
goal, i.e., processing QUBO problems not directly mappable to the QPU topology.

Keywords: Quantum Annealing, Quantum-Classical Hybrid Algorithm, Binary Optimization,
Quantum Software, Empirical Evaluation

1 Introduction

Quantum annealing [1] is an optimization technique based on the physical property of quantum
systems of reaching with high probability the global energy minimum even when the energy profile
is complex and rich of local minima. When the energy profile is set to be a representation of
a computational problem of interest, the measurement outcome represents the solution of the
problem. The approach has been popularised by the Burnaby-based company D-Wave, which builds
quantum annealers and puts them on the market of hardware and computational services. The D-
Wave systems exploits the physical realisation of an Ising Model to solve Quadratic Unconstrained
Binary Optimisation (QUBO) problems. The topology of the physically-realised Ising model is not
complete and different layouts (Chimera and Pegasus) have been proposed in the current versions
of the D-Wave machines. Notably, these commercial machines reach a number of qubits in the order

1

ar
X

iv
:2

21
2.

11
13

2v
1

 [
cs

.E
T

]
 2

1
D

ec
 2

02
2

Quantum Annealing Learning Search Implementations

of thousands (2048 for Chimera and 5700 for Pegasus), far bigger than general-purpose machines,
which have currently a number of qubits in the order of hundreds. This led to the expectation that
the application of quantum annealers could in principle, for specific problems, provide solutions
that outperform classical counterparts with a growing scientific literature of promising applications
(see [2] for a recent example).

In general, the practical application of quantum computing leads naturally to the proposition of
Hybrid Quantum Classical approaches. On the one hand, the motivation is the relative immaturity
of quantum computing architectures in the so-called NISQ era [3] and hybrid approaches can
effectively overcome some limitations of the current quantum computing machines. On the other
hand, it is reasonable to assume that the interaction between classical and quantum parts of an
algorithm can better exploit the advantages of both paradigms. In particular, hybrid quantum-
classical approaches have been proposed for both general-purpose quantum machines [4], and for
quantum annealing architectures [5].

The paradigm of hybrid quantum-classical computing was applied by Pastorello and Blanzieri
[6], who proposed a schema called Quantum Annealing Learning Search (QALS) based on: i) a
classical external annealing loop and ii) the inclusion of a tabu mechanism in the energy profile
in order to overcome the limitation in terms of topology of the current quantum annealers. A
complete-topology QUBO is iteratively and randomly mapped to the available physical topology
and the tabu information is additively integrated into the energy profile. The authors, by reducing
to a result on general tabu search, presented an argument for the asymptotic convergence of the
external annealing loop (i). However, the work did not include an empirical evaluation of QALS.
More recently, and in the more general setting of adiabatic quantum computing, an analogous
schema was produced [7] and the asymptotic convergence empirically verified with a simulation.
Still, the tabu-based schema (ii) was not applied to real problems on a real quantum computing
architecture, consideration that motivates the present work.

In this paper, we present two implementations of QALS for the quantum annealer and test them
on two different problems. The first implementation is in C++ with the purpose of increasing the
performance of the classical part, the second one is in Python in order to have a smooth interface
with the D-Wave machine we used. The implementations were tested on the Number Partitioning
Problem (NPP) that has a direct QUBO representation [8] and on the Travelling Salesman Problem
(TSP) that requires to represent also penalties in the corresponding QUBO formulation. Results
and performances are compared against classical competitors and the hybrid solution provided by
D-Wave. The results show that the proposed method permits to tackle bigger problems w.r.t. the
standard hybrid solution.

The paper is organised as follows. Sections 2 and 3 present the background and QALS, respec-
tively. Section 4 describes the implementations and Section 5 discusses NPP, TSP, and the results.
Finally, we draw some conclusions in Section 6.

2 Background

Quantum annealing (QA) is a type of heuristic search used to solve optimization problems [1]. The
solution of a given problem corresponds to the so-called ground state of a quantum system with
total energy described by a problem Hamiltonian H on the Hilbert space where the considered
quantum system is described. The annealing procedure is implemented by a time evolution of the
quantum system towards the ground state (i.e. the less energetic physical state) of the problem
Hamiltonian.

QA can be physically realized considering a quantum spin glass that is a network of qubits
arranged on the vertices of a graph 〈V,E〉, with |V | = n, whose edges E represent the couplings
among the qubits. The total energy of such a system is represented by the Hamiltonian H(Θ) of

2

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

the quantum spin glass,

H(Θ) =
∑
i∈V

θiσ
(i)
z +

∑
(i,j)∈E

θijσ
(i)
z σ(j)z . (1)

H(Θ) is an operator on the n-qubit Hilbert space H = (C2)⊗n where σ
(i)
z acts as the Pauli matrix

σz =

[
1 0
0 −1

]
on the ith tensor factor and as the 2×2 identity matrix on the other tensor factors. The coefficient
matrix Θ is the symmetric square n× n matrix of the real coefficients of E, called weights, defined
as

Θij :=


θi, i = j,
θij , (i, j) ∈ E,
0, (i, j) 6∈ E.

(2)

The coefficient θi physically corresponds to the local field on the ith qubit and θij to the coupling
between the qubits i and j.

The Pauli matrix σz has two eigenvalues corresponding to the binary states of the qubit, {−1, 1},
and thus, the system (1) has the spectrum of eigenvalues corresponding to all possible values of the
cost function given by the energy of the well-known Ising model :

E(Θ, z) =
∑
i∈V

θizi +
∑

(i,j)∈E

θijzizj , z = (z1, ..., zn) ∈ {−1, 1}|V |. (3)

In practice, the annealing procedure drives the system into the ground state of H(Θ) corresponding
to the spin configuration encoding the solution:

z∗ = arg min
z∈{−1,1}|V |

E(Θ, z). (4)

Given a problem, the annealer is initialized by a suitable choice of the weights Θ and the binary
variables zi ∈ {−1, 1} are physically realized by the outcomes of measurements on the qubits located
in the vertices V . In order to solve a general optimization problem by QA, one needs to obtain
the correct encoding of the objective function in terms of the cost function (3), which is hard in
general.

2.1 QUBO model

Quadratic Unconstrained Binary Optimization (QUBO) problems are NP-hard problems tradi-
tionally used in computer science. A general QUBO problem is defined by the minimization of a
function f : {0, 1}n → R of the form:

f(x) =
n∑
i=1

Qiixi +
∑
i<j

Qijxixj , (5)

where Qi and Qij are real coefficients that can be arranged into an n × n upper-triangular real
matrix Q. Therefore, a QUBO problem can be represented as:

min
x∈{0,1}n

xTQx. (6)

The QUBO model (6) covers a remarkable range of applications in combinatorial optimization:
optimization problems on graphs, facility location problems, resource allocation problems, clus-
tering problems, set partitioning problems, various forms of assignment problems, sequencing and
ordering problems [8].

3

Quantum Annealing Learning Search Implementations

Figure 1: Pegasus topology (source link).

2.2 D-Wave Pegasus topology

In order to apply quantum annealing, it is necessary to embed (minor embed, in the D-Wave
glossary) the QUBO matrix in the topology of a Quantum Processing Unit (QPU) such as D-Wave
Pegasus. Basically, the problem variables must be mapped to QPU qubits; further details can be
found here [9, 10].

Pegasus is the successor of Chimera and presents 5700 qubits. In this topology, qubits are
oriented vertically or horizontally and the similarly aligned qubits are also shifted (look at Figure 1).
In detail, there are three types of couplers [11]:

• internal couplers: connect pairs of orthogonal qubits (each qubit is linked to 12 other qubits
by means of internal couplers);

• external couplers: connect vertical (horizontal) qubits to vertical (horizontal) adjacent qubits;

• odd couplers: connect similarly aligned pairs of qubits.

2.3 Embedding Composite

D-Wave provides several tools for pre and post-processing to be used in conjunction with samplers.
Among them, there is the tool named Embedding Composite [12], which automatically minor-
embeds the given problem into the topology of the chosen QPU. In particular, a new minor-
embedding is calculated each time the sampling method is called.

2.4 D-Wave Hybrid

As an alternative to simulated and quantum annealing, D-Wave provides the so-called Hybrid
annealing, a framework that allows running multiple solvers in parallel, either classical or not. In
particular, a branch could be represented by a classical technique such as a Tabu Search or by a
workflow of the form decomposer - sampler - composer. As concerns the latter, the decomposer splits
the given problem into subproblems, which are solved by the sampler and whose local solutions are
recomposed by the composer. The sampler could be simulated annealing, quantum annealing, but
also another classical method or something more complex (such as parallel solvers). In this work,

4

https://docs.dwavesys.com/docs/latest/c_gs_4.html

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

the default hybrid configuration provided by D-Wave has been used; details about the Python class
used and the default solver parameters/properties are available here [13, 14, 15].

3 Quantum Annealing Learning Search (QALS)

Quantum Annealing Learning Search (QALS) is a guided meta-heuristic approach designed specif-
ically to solve optimization problems that cannot be directly represented into the architecture of
a quantum annealer. The idea of the approach suggested in [6] and further generalized in [7] is to
initialize the QA by adding the so-called tabu matrix S to the weight matrix Θ. The contribution
of S is to penalize already visited solutions preventing a redundant search in the solution space.
Let us assume we have a set of k solutions {zj}j=1,...,k to penalize. The matrix S is constructed as
the sum of outer products of the solutions to be penalized:

S =
k∑
j=1

(zjz
T
j − I + diag zj), (7)

where I is the identity matrix of size n, and diagzj is a diagonal matrix from the vector zj . By
construction, the tabu matrix S introduces energetic penalties on the solutions {zj}j=1,...,k in the
spectrum of the Hamiltonian H(Θ + S), which is the energy function z 7→ E(Θ + S, z).

The QALS scheme is based on an iterative procedure of candidate solutions generation by
QA and probabilistic acceptance/rejection. The rejected solutions are used to update the tabu
matrix S and new candidate solutions are generated perturbing the weights as described below.
Suboptimal acceptance is allowed and the perturbation of weights is proportional to a decreasing
temperature parameter; so, the classical part of the hybrid algorithm presents a simulated annealing
(SA) structure.

The tabu strategy and the evolving representation of a general QUBO problem of QALS into
the annealer can be summarized as follows: the matrix Q representing the objective quadratic form
fQ is piecewise mapped into the annealer architecture in the sense that only some elements of the
QUBO matrix are selected by P at each iteration; at the same time, Q is deformed by means of the
tabu matrix to energetically penalize the spin configurations corresponding to the solutions that
are far from the optimum. More precisely, let us define the mapping µ that is employed to solve
QUBO problems:

µ[fQ] := E(P TQP ◦ A, Pz), (8)

where P is a permutation matrix of order n and P T its transpose, A is the adjacency matrix of the
graph describing the hardware topology of the quantum annealer and ◦ is the Hadamard product.
Thus, the action of µ is realized by mapping some elements of Q, selected by P , into the weights.
The tabu-implementing encoding of Q into the annealer induced by the permutation matrix P
turns out to be:

µ[fQ](z) = E(P T (Q+ λS)P ◦ A, Pz), (9)

where the scaling factor λ regulates the contribution of the tabu matrix S, which is initialized to
zero.

The QALS scheme to solve general QUBO problems is presented in Algorithm 1. The tabu-
implementing encodings are generated with permutations according to formulas (8) and (9). To
this end, we call an additional function P 7→ g(P, p) that modifies a permutation by considering for
shuffling each element with probability p. In practice, the function g produces the permutations
that induce the encodings of the objective function into the annealer architecture (Algorithm 1,
lines 5 and 23). The mappings of the problem parameters to the annealer weights take into account

5

Quantum Annealing Learning Search Implementations

Data: Matrix Q of order n encoding a QUBO problem, annealer adjacency matrix A of order n
Input: Energy function of the annealer E(Θ, z), permutation modification function g(P, p), solution

modification function h(z), minimum probability 0 < pδ < 0.5 of permutation modification,
probability decreasing rate η > 0, candidate perturbation probability q > 0, number N of iterations
at constant p, initial balancing factor λ0 > 0, number of annealer runs k ≥ 1, termination
parameters imax, Nmax, dmin

Result: z∗ vector with n elements in {−1, 1} solution of the QUBO problem
1 function fQ(x):
2 return xTQx ;
3 P ← In;
4 p← 1;
5 P1 ← g(P, 1);P2 ← g(P, 1); // generate two permutation matrices perturbing the identity

6 Θ1 ← PT1 QP1 ◦ A; Θ2 ← PT2 QP2 ◦ A; // weights initialization
7 run the annealer k times with weights Θ1 and Θ2

8 z1 ← PT1 ârgminz(E(Θ1, z)); z2 ← PT2 ârgminz(E(Θ2, z)); // estimate energy argmin, PT1 and PT2 map back
the variables

9 f1 ← fQ(z1); f2 ← fQ(z2) ; // evaluate fQ
// use the best to initialize z∗ and P ∗; use the worst to initialize z′

10 if f1 < f2 then
11 z∗ ← z1; f∗ ← f1; P ∗ ← P1 z′ ← z2;
12 else
13 z∗ ← z2 ; f∗ ← f2; P ∗ ← P2; z′ ← z1;
14 end
15 if f1 6= f2 then S ← z′ ⊗ z′ − In + diag(z′); // use z′ to initialize the tabu matrix S
16 else S ← 0; // otherwise set all the elements of S to zero
17 e← 0; d← 0; i← 0; λ← λ0;
18 repeat
19 Q′ ← Q+ λS; // scale and add the tabu matrix
20 if N divides i then
21 p← p− (p− pδ)η;
22 end
23 P ← g(P ∗, p); // modify permutation P ∗

24 Θ′ ← PTQ′P ◦ A; // weights initialization
25 run the annealer k times with weights Θ′

26 z′ ← PT ârgminz(E(Θ′, z)); // estimate energy argmin, PT maps back the variables
27 with probability q z′ ← h(z′, p); // possibly perturb the candidate
28 if z′ 6= z∗ then
29 f ′ ← fQ(z′); // evaluate fQ
30 if f ′ < f∗ then
31 swap(z′, z∗); f∗ ← f ′; P ∗ ← P ; e← 0; d← 0; // z′ is better
32 S ← S + z′ ⊗ z′ − In + diag(z′); // use z′ to update the tabu matrix S

33 else
34 d← d+ 1;

35 with probability (p− pδ)(f
′−f∗) swap(z′, z∗); f∗ ← f ′; P ∗ ← P ; e← 0 ;

36 end
37 update the balancing factor λ with λ ≤ λ0;

38 else
39 e← e+ 1;
40 end
41 i← i+ 1;

42 until i = imax or (e+ d ≥ Nmax and d < dmin);
43 return z∗;

Algorithm 1: Quantum Annealing Learning Search for QUBO problems.

6

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

the actual annealer topology represented by the graph matrix A (Algorithm 1, lines 6 and 24).
The permutations are also used to remap the solutions found by the annealer to the initial space
of solutions of the problem (Algorithm 1, lines 8 and 26) and to represent the best map µ∗.

As concerns the action of g, if p = 1, the resulting permutation is purely random; with 0 < p < 1,
the permutation resembles partially the initial one; if p = 0, the output permutation would coincide
with the input one. However, this last circumstance does not occur because the probability of an
element to be shuffled decreases periodically to the value 0 < pδ < 0.5 with rate η (Algorithm 1,
lines 20-22).

The matrix Q of the QUBO problem interacts additively with the tabu matrix S scaled by a
balancing factor λ (Algorithm 1, line 19) in order to guide the search of the solution by quantum
annealing with an energy profile consistent with (9). A crucial effect of this summation is that,
in its iterative part, the algorithm does not search anymore just for solutions of subproblems as
done instead in the initialization phase. In fact, S contains information about the bad candidates
(Algorithm 1, lines 15 and 32) whose objective function values are greater than f∗. Moreover, the
balancing factor λ, initially set to λ0, is decreased during the search (Algorithm 1, line 37); the
goal of λ is to avoid the action of the tabu matrix S obscuring the information about fQ carried
by Q. In general, λ is a decreasing function of the number of bad candidates penalized by S. The
candidate solution found by the annealer (Algorithm 1, line 26) is then perturbed with probability
q (Algorithm 1, line 27) by the function h(z′, p) (this function flips any entry of z′ with probability
p) in order to guarantee the convergence [6].

At line 35 of Algorithm 1, a suboptimal solution is accepted with probability (p − pδ)(f
′−f∗).

By direct comparison with the common rule of acceptation in simulated annealing, namely (p −
pδ)

(f ′−f∗) = e−
(f ′−f∗)

T , it is possible to provide an interpretation of p by observing that (p− pδ) =
e−1/T . Namely, in terms of simulated annealing, the parameter p is related to the temperature by
T = −ln−1[p− pδ], so T → 0 as p→ pδ.

The cycle of Algorithm 1 ends due to convergence or when the maximum number of iterations
is reached. Line 17 of Algorithm 1 defines three counters for controlling the end of the cycle: e
counts the number of consecutive times that the current best solution is generated (Algorithm 1,
line 39); d counts the number of times the current best solution and the new solution differ and
the current one is better (Algorithm 1, line 34); finally, the variable i simply counts the number
of iterations. These counters are compared against input parameters in the termination condition
(Algorithm 1, line 42).

4 Implementations

We developed two implementations of QALS, one in C++ and the other in Python. Both required
systematic testing and some optimizations with respect to the original, mainly mathematical, for-
mulation of QALS (the pseudocode, valid for both of them, is available in Algorithm 2). This
section presents such general improvements and the details of each implementation.

To test the correct functioning of the algorithm, a quantum annealer is required, but the
available machine time at our disposal was very short. Hence, in order to avoid the usage of the
quantum annealer while verifying the correctness of the implementations, the call to the annealer
was replaced with an exhaustive search on the same equation that D-Wave minimizes: E(Θ, z) =∑

i∈V θizi +
∑

(i,j)∈E θijzizj . By doing this, it was possible to understand if the development was
going in the right way. Obviously, by minimizing the equation above, we were not simulating the
behaviour of a quantum annealer since it is a probabilistic machine.

At the end of the correctness tests, we immediately noticed that the execution was very slow.
The cause was the computation of the product of three matrices: the transpose P T of the permu-
tation matrix P , the QUBO matrix Q and the permutation matrix P . Indeed, the product P TQP
[6] is very expensive and inefficient in terms of computation; the time required to compute it could

7

Quantum Annealing Learning Search Implementations

Data: Matrix Q of order n encoding a QUBO problem, annealer adjacency matrix A of order n
Input: Energy function of the annealer E(Θ,z), permutation modification function g(P, p), minimum

probability pδ of permutation modification, probability decreasing rate η, tabu inversion probability
q, number N of iterations at constant p, scaling factor λ0, number of annealer runs k, termination
parameters imax, Nmax, dmin

Result: z∗ vector with n elements in {0, 1} solution of the QUBO problem
1 function fQ(Q,x):
2 return xTQx ;
3 m = 0n;
4 for i← 0 to n do
5 m[i]← i;
6 end
7 p← 1;
8 Θ1,m1 ← g(Q,A,m, p);
9 Θ2,m2 ← g(Q,A,m, p);

10 z1 ← mapback(annealer(Θ1, k),m1);
11 z2 ← mapback(annealer(Θ2, k),m2);
12 f1 ← fQ(Q,z1); f2 ← fQ(Q,z2);
13 if f1 < f2 then
14 z∗ ← z1; f∗ ← f1; m∗ ← m1 z′ ← z2;
15 else
16 z∗ ← z2 ; f∗ ← f2; m∗ ← m2; z′ ← z1;
17 end
18 if f1 6= f2 then
19 S ← z′ ⊗ z′ − In + diag(z′);
20 else
21 S ← 0n×n;
22 end
23 e← 0; d← 0; i← 0; λ← λ0;
24 repeat
25 Q′ ← Q+ λS;
26 if N divides i then
27 p← p− η(p− pδ);
28 end
29 Θ′,m← g(Q′,A,m∗, p);
30 z′ ← mapback(annealer(Θ′, k),m);
31 with probability q: z′ → h(z′, p);
32 if z′ 6= z∗ then
33 f ′ ← fQ(Q,z′);
34 if f ′ < f∗ then
35 swap(z′,z∗); f∗ ← f ′; m∗ ← m; e← 0; d← 0;
36 S ← S + z′ ⊗ z′ − In + diag(z′);

37 else
38 d← d+ 1;

39 with probability (p− pδ)(f
′−f∗): swap(z′,z∗); f∗ ← f ′; m∗ ← m; e← 0 ;

40 end

41 λ← min
{
λ0,

λ0
2+i−e

}
;

42 else
43 e← e+ 1;
44 end
45 i← i+ 1;

46 until i = imax or (e+ d ≥ Nmax and d < dmin);
47 return z∗;

Algorithm 2: Implementation of Quantum Annealing Tabu Search for QUBO problems.

8

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

take up to 100 seconds. Since the permutation matrix P is a permuted identity matrix and is very
sparse, a sparse matrix representation was first chosen for it. In this way, it is possible to take into
account only the non-zero values, storing triplets of (row, column, value). The execution time for
this computation was reduced to ≈ 1.5 seconds, but there was still room for improvement.

To solve this efficiency problem, the representation of P and the way of permuting the matrix
Q were changed. In detail, P was replaced with a permutation vector perm, which represents the
matrix P ; let Pi be the ith row in P . Here is an example:

P =


0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

 perm = [2, 0, 3, 4, 1]

perm[0] = 2→ P0 has the value 1 in column 2

perm[1] = 0→ P1 has the value 1 in column 0

perm[2] = 3→ P2 has the value 1 in column 3

perm[3] = 4→ P3 has the value 1 in column 4

perm[4] = 1→ P4 has the value 1 in column 1

The computational complexity of the permutation of P is O(n2). Instead, the permutation of perm
has a complexity of O(n log n), which is given by O(n) accesses to the map m, each one with a
complexity of O(log n). By exploiting a hashmap, the time complexity could be reduced further to
O(n) on average.

After changing the representation of P , we investigated how to permute only the elements
necessary for the mapping into the D-Wave topology. Let us consider an example matrix Q a, a
permutation matrix P and its equivalent permutation vector perm:

Q =


1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

 P =


0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

 perm = [3, 0, 4, 1, 2]

The resulting matrix after the permutation (P TQP) is the following:

M =


7 9 10 6 8
17 19 20 16 18
22 24 25 21 23
2 4 5 1 3
12 14 15 11 13


Then, let us see where each entry has moved after the permutation. The purpose is to find the
element mij without generating M . In practice, the indexes of the values i and j in the permutation
vector perm should be used to select the correct entry in the Q matrix. For instance, to select the
value for the entry m1,2, the indexes of the values ”1” and ”2” in the permutation vector must be
found:

aNote: Q in this case is not a QUBO matrix, but just an example matrix.

9

Quantum Annealing Learning Search Implementations

• ”1” has index ”3”;

• ”2” has index ”4”.

The first index identifies the row, while the second one identifies the column. It is now possible to
find the entry m1,2 by looking at the entry q3,4, which is equal to 20.

Searching the index of a given value in the permutation vector has complexity O(n); to generate
the matrix Θ, O(n) searches are needed, because the D-Wave’s Pegasus topology A has O(n)
edges b [11]. Thus, the overall complexity is O(n2). However, since the objective is to find the
index of several values, the best approach consists in inverting indexes and values. This operation
can be done by running a O(n) algorithm once at the beginning. The resulting complexity for the
search operation becomes O(1):

perm = [2, 0, 3, 4, 1] inverse = [1, 4, 0, 2, 3]

Let us look at the inverse vector for the previous example:

inverse[0] = 1→ perm[1] has the value 1 in column 0

inverse[1] = 4→ perm[4] has the value 1 in column 1

inverse[2] = 0→ perm[0] has the value 1 in column 2

inverse[3] = 2→ perm[2] has the value 1 in column 3

inverse[4] = 3→ perm[3] has the value 1 in column 4

Once the QALS algorithm [6] has obtained an estimate of the solution from the quantum
annealer, the variables in that solution must be mapped back to the original space of the problem
(without permutation). Since the way of representing P has changed, it is no longer possible
to use P T z. Nevertheless, by exploiting the just described inverted permutation vector inverse,
the original values can be obtained as z back[i] ← z[inverse[i]]. The pseudocode is provided in
Algorithm 3.

Input: Solution vector z, permutation vector perm
Result: perm−1(z)

1 inverse← compute inverse(perm); % computes the inverse of perm
2 z back ← new int[n];
3 for i← 0 to n− 1 do
4 z back[i]← z[inverse[i]]; % z back[i] takes the value contained in z[inverse[i]], so that the

values are mapped back to the original unpermuted space
5 end
6 return z back;

Algorithm 3: Map back variables (map back(z, perm) function).

4.1 C++ implementation

Lack of APIs
At the time of writing, D-Wave provides only Python APIs. Therefore, a C++ program can not
directly interface with D-Wave’s QPUs. In particular, it is not possible to obtain the current
QPU topology, submit problems and get the corresponding results. To solve these problems, two
approaches have been taken into account.

bn is the number of nodes of the Pegasus’ sub-graph taken into consideration.

10

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

The first approach consists in embedding a Python function in C++ [16]. This could be done
by including the Python.h header and, after the creation of all required PyObjects, executing the
Python function containing the calls to the quantum annealer. Nevertheless, the QALS algorithm
is run on the Leap IDE, which does not provide the required Python.h header.

In the second approach (the one that has been used), at the startup, the C++ executable
generates a Python child process by means of a fork operation. Its purposes is to provide the
parent process with the QPU’s topology and to submit each problem to the QPU’s solver. In
detail, the Python process first retrieves the annealer’s topology and sends it to the C++ process
via an anonymous pipe. This operation must be done since the quantum annealer could have
inactive nodes, which must be taken into consideration during the execution (embedding). After
receiving the topology, the parent process starts sending problems to the child one. In particular,
for each entry in the matrix Θ, the parent process sends the row index, the column index and the
value; at the end, it sends a message containing a ”#” character to inform the receiver that all
entries of the matrix have been sent. Meanwhile, the child process continuously reads the input
pipe, storing the information in a dictionary. At the reception of the ”#” character, it submits the
problem to the QPU, retrieves the solution and sends it back to the C++ process. Eventually, it
starts reading the input pipe again.

The pseudocode of two functions, i.e., init child and send to annealer, used to implement the
last presented approach is shown in Algorithm 4 and 5. In particular, the init child function is
in charge of creating the array of arguments to be passed to the Python process (using dup2),
redirecting the standard input and output to pipes, and replacing the executable code with the
Python one. READ (=0) and WRITE (=1) correspond to positions in the fd array and identify

Input: Number of measurements for each problem k (num reads)
1 args← {”python”, ”solver.py”, to string(k)};
2 dup2(fd[READ], STDIN FILENO);% replace the standard input with an anonymous pipe
3 dup2(fd[WRITE + 2], STDOUT FILENO);% replace the standard output with an anonymous pipe
4 close pipes(fd);
5 execvp(args[0], args); % replace the child’s executable code

Algorithm 4: Initialization of the Python child process (init child(k) function).

Input: Weights Θ (θedge refers to the weight associated to the edge edge)
Result: Vector with minimum estimated energy z

1 % iterate over all edges, including pairs in the form (i, i);
2 foreach edge in Θ do
3 row ← edge.u(); % store vertex u
4 col← edge.v(); % store vertex v
5 val← θedge; % store weight associated to edge (u, v)
6 write(fd[WRITE], row); % send row index
7 write(fd[WRITE], col); % send column index
8 write(fd[WRITE], val); % send value

9 end
10 write(fd[WRITE], ”#”) % notify end of transmission
11 for i← 0 to n− 1 do
12 z[i]← read(fd[READ + 2]);
13 end
14 return z;

Algorithm 5: Send Θ to the Python process and retrieve the estimated solution z
(send to annealer(Θ) function).

11

Quantum Annealing Learning Search Implementations

which side of the pipe to use. Specifically, fd[READ] is reserved for child reading, fd[WRITE] for
parent writing, fd[READ + 2] for parent reading, and fd[WRITE + 2] for child writing. Instead,
send to annealer sends each row - column - value triplet to the Python process and retrieves the
solution from the pipe.

In order to determine how long the exchange of messages takes, we measured the time elapsed
between the first message sent by the C++ process and the last message received by the same
process, without actually calling the quantum annealer (the response is sent by the Python process).
The transmission took ≈ 1 second using 5000 variables, which is almost the Pegasus architecture
limit. It is not too much, but it might cancel the benefit of using C ++ instead of Python.

Random numbers generation
Looking at Algorithm 1, it turns out that QALS [6] relies on shuffling the map m to find the best
solution. To permute the map m, the following algorithm (Algorithm 6) has been used:

Input: Map m (mx is the value of m for key x)
Result: Permuted map m

1 shuffled← map();
2 keys← new int[n];
3 foreach k in m.keys do
4 keys.append(k); % create a vector of keys
5 end
6 shuffle vector(keys); % shuffle the vector of keys
7 it← keys.begin(); % iterator
8 for pair in m do
9 shuffledpair.key ← m∗it;

10 it.next();

11 end

Algorithm 6: Shuffle map (shuffle(m) function).

The cornerstone of the algorithm is the shuffle of the map’s keys. To properly work, the ideal
shuffle algorithm for the keys vector should be able to produce all the n! permutations of keys. We
decided to use the Fisher-Yates shuffle algorithm, which produces unbiased permutations, i.e., all
permutations have the same probability.

The selected shuffle algorithm requires a random number generator; we initially decided to
use C++ rand(). However, looking at the produced permutations, it turns out that the modulo
operation (used to restrict the generated numbers to the required range) does not yield numbers
with equal probability. Let us consider the example provided in [17]. The function rand() returns
a number between 0 and RAND MAX. If we want to generate a random number between 0 and 2,
rand()%3 will not necessarily produce each of the three values with equal probability. For instance,
let us assume that RAND MAX = 10, then:

• if rand() returns 0 or a multiple of 3, then rand()%3 = 0 and P (0) = 4
11 ;

• if rand() returns 1, 4, 7 or 10, then rand()%3 = 1 and P (1) = 4
11 ;

• if rand() returns 2, 5 or 8, then rand()%3 = 2 and P (2) = 3
11 .

In practice, the numbers between 0 and 2 do not have equal probability.
Another problem was the length of the period of the random number generator. Let us consider a

deck of 52 cards; to create all the possible permutations, which are 52!, a period that is at least equal
to 52! is required. The period of rand() is typically 232, but it depends on the implementations.

12

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Since the algorithm presented in [6] has to permute vectors with more than 5000 variables, rand()
was not a reasonable choice.

A possible solution is to exploit the quantum annealer to generate random numbers. Since D-
Wave’s quantum annealer is a ”trusted” quantum machine, if the weights are properly initialized,
then the generated numbers are certainly random as they are produced by a quantum process. The
idea is to submit one or more problems in which each qubit has the same probability to collapse to
either 0 or 1. The quantum annealer will return an array of boolean values, which can be interpreted
as one or more integer values (by splitting zero or more times the binary string representing the
array). Here is the pseudocode for this approach:

Input: Amount of bits reserved per number k
Result: Vector of random integers nums

1 Θ← { }; % Python dictionary
2 for i← 0 to n− 1 do
3 Θ[i][i]← 0; % initialize the diagonal with all zeros
4 end
5 z ← sample qubo(Θ); % run the annealer with Θ
6 z ← z.first.sample.values(); % solution vector z ∈ {0, 1}n
7 nums← to decimal(z, k); % extract bn/kc decimal numbers, each one from 0 to 2k − 1
8 return nums;

Algorithm 7: Generation of random numbers by quantum annealing (gen(k) function).

In detail, line 3 initializes the dictionary Θ with 0 values on the diagonal. Since all energy values
are 0, any vector z minimizes Eq. (3). Therefore, the quantum annealer will return any of the 2n

possible states with equal probability [18]. This method generates bn/kc integer numbers at each
call, where n is the number of qubits used and k is the amount of bits per number. For example, if
5000 qubits are used to generate numbers from 0 to 127, one call will produce 714 integers (given
by b5000/7c) in ≈ 0.3 seconds. It may seem good, but the cost is exaggerate:

• at each iteration of QALS, a vector whose size can reach ≈ 5436 c must be permuted. Thus,
at most ≈ 5436 random numbers need to be generated at each iteration; this could be done
using n = 5436 and k = 13. In a single run, Algorithm 7 would produce 418 numbers with the
considered parameters; therefore, to generate 5436 integers, it should be executed 13 times;

• each run of Algorithm 7 requires around 0.3 seconds (on average). As a consequence, the
overhead for each iteration of QALS would be around 3.9 seconds.

In practice, the quantum annealer would be called 13 times more than usual, reducing the amount
of possible experiments or, in other perspective, increasing the cost. Obviously, it is not a feasible
approach.

In the end, we chose the Mersenne Twister, which uses a period of 219937 − 1. This does not
guarantee quality in random numbers generation but certainly allows for longer sequences than
rand()’s period. In [19], the authors claim that the Mersenne Twister creates 64-bit floating
point random numbers faster than the hardware-implemented Intel Secure Key. Although it is not
sufficient to produce all possible sequences, it is the best compromise we found between efficiency
and coverage of the space of permutations.

4.2 Python implementation

Embedding
Embedding the QUBO matrix in the Pegasus topology is, at least in theory, straightforward: we

c5436 is the number of available qubits at the time of writing.

13

Quantum Annealing Learning Search Implementations

have just to assign a node ∈ V to each index of the QUBO matrix, where V is the list of nodes
in the topology, and map the entries accordingly. However, the graph is not complete and some
qubits are not available (97% of the total number of qubits is actually available). D-Wave, aware
of the problem, provides a function that lists all the working qubits and edges; for instance, the
function returns only 5436 qubits for the Pegasus topology. In practice, it is possible to embed the
QUBO matrix in the topology using a custom algorithm or the EmbeddingComposite class, which
is part of the D-Wave’s APIs. However, EmbeddingComposite has an intrinsic limit: it works for
QUBO matrices of size up to 196 × 196. Therefore, a custom algorithm was the best choice for
us. The structure of the algorithm we have used, whose pseudocode is shown in Algorithm 8, is
the following:

1. it initializes an empty dictionary using the required number of working nodes as keys;

2. it associates each key (working node) with the list of nodes that are the endpoint of a working
edge outgoing from the considered node (the nodes in the lists must be keys of the same
dictionary);

3. it creates a support dictionary that maps each node to an index of the QUBO matrix;

4. it embeds the QUBO matrix by looping on each node (that corresponds to a row of the
matrix) and its adjacency nodes (that correspond to the columns of the matrix).

It is worth mentioning that this custom algorithm has been implemented in Python and used also
in the C++ implementation.

Input: Sampler sampler, QUBO problem Q, dimension of QUBO problem n
Result: Embedded QUBO problem mapped

1 actives← dict();
2 foreach node ∈ sampler.nodelist do
3 actives[node]← list();
4 if actives.keys().size() == n then
5 break;
6 end

7 end
8 foreach edge ∈ sampler.edges do
9 if edge.node1 ∈ actives.keys() and edge.node2 ∈ actives.keys() then

10 actives[edge.node1].append(edge.node2);
11 actives[edge.node2].append(edge.node1);

12 end

13 end
14 supportn ← dict();
15 i← 0;
16 foreach node ∈ actives.keys().ordered() do
17 support[node] = i;
18 i← i+ 1;

19 end
20 mappedn×n ← 0;
21 foreach node ∈ actives.keys() do
22 foreach adjnode ∈ actives[node] do
23 mapped[node][adjnode] = Q[support[node]][support[adjnode]];
24 end

25 end
26 return mapped;

Algorithm 8: Embedding the problem in the sampler topology.

14

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Input: Dictionary representing the embedding of the problem in the topology Θ, sampler sampler,
number of reads k

Result: List of {0, 1}n
1 response = sampler.sample qubo(Θ, num reads = k);
2 return response.first.sample.values();

Algorithm 9: Communication with the annealer (problem submission).

Communication with the annealer
D-Wave provides several samplers to solve problems. In particular, the samplers share the method
signatures; the difference lies in the internal implementations. As regards the algorithm used to
submit problems to the annealer (Algorithm 9), it is very simple, but it is necessary to highlight
some aspects:

1. Θ must be provided as a dictionary, otherwise the sampler will not process the submitted
QUBO problem;

2. k represents the number of annealer reads (as in Algorithm 2). It is optional for simulated
and quantum annealing, whereas Hybrid does not support it.

5 Experimental Results

Two problems have been selected to test the performance of QALS:

• the Number Partitioning Problem (NPP);

• the Travelling Salesman Problem (TSP).

In all NPP tests, the results for the approaches that make use of the quantum annealer have been
obtained with a single (or rarely double) run. Indeed, the time available on the quantum annealer
was too little to perform more of them. Instead, in TSP, we have performed multiple runs due to
the less QPU usage per run.

QALS parameters legend

• pδ is the minimum probability of permutation modification;

• η is the probability decreasing rate;

• q is the candidate perturbation probability;

• N is the number of iterations at constant probability;

• λ0 is the initial balancing factor for the tabu matrix;

• k is the number of annealer measurements for each problem submitted to it;

• Nmax is the maximum number of consecutive times that QALS can find the previous solution
or a solution that is not better than f∗ before stopping;

• dmin represents a further condition on the number of times that QALS can find a solution
worse than f∗ (it must be less than dmin) before stopping.

15

Quantum Annealing Learning Search Implementations

5.1 Number Partitioning Problem (NPP)

Definition
The Number Partitioning Problem (NPP) consists in splitting a set of numbers into two subsets
such that the difference between the sum of the values in the first subset and the sum of the values
in the second subset is minimum. The QUBO formulation of NPP presented here and used in the
experiments has been taken from [20]. In detail, consider a set of numbers S = {s1, s2, ..., sn}.
If si is assigned to the first subset, xi = 1; otherwise, xi = 0. Then, the sum of the values in the
first subset is given by sum1 =

∑n
i=1 sixi, whereas the sum of the values in the second subset is

equal to sum2 =
∑n

i=1 si −
∑n

i=1 sixi. Let c be equal to
∑n

i=1 si, thus the difference between the
two sums is:

diff =
n∑
i=1

si − 2
n∑
i=1

sixi = c− 2
n∑
i=1

sixi (10)

Instead of directly minimizing the difference, let us minimize its value squared, which can be written
as follows:

diff 2 =

{
c− 2

n∑
i=1

sixi

}2

= c2 + 4xtQx (11)

Here, Q is the QUBO matrix, whose entries are given by:

Qii = si (si − c) Qij = Qji = sisj (12)

By dropping the constants (c2 and 4), the QUBO optimization problem can be defined as:

QUBO : min y = xtQx (13)

Algorithm 10 provides the pseuodocode for the computation of the entries of the QUBO matrix.

Input: Set of numbers s
Result: Matrix Q representing the QUBO formulation of the NPP problem defined by s

1 n← s.size();
2 c← sum(s); % sum over numbers in s
3 Q← new int[n][n];
4 for i← 0 to n− 1 do
5 for j ← 0 to n− 1 do
6 if i 6= j then
7 p← s[i] · s[j];
8 Q[i][j]← p;
9 Q[j][i]← p;

10 else
11 Q[i][i]← s[i] · (s[i]− c);
12 end

13 end

14 end
15 return Q;

Algorithm 10: Translation of NPP into QUBO.

16

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Example
Consider the following set of eight numbers:

S = [8, 21, 6, 7, 16, 9, 10, 27]

It follows that c2 = 10816 and the equivalent QUBO problem is min y = xtQx with:

Q =



−768 168 48 56 128 72 80 216
168 −1743 126 147 336 189 210 567
48 126 −588 42 96 54 60 162
56 147 42 −679 112 63 70 189
128 336 96 112 −1408 144 160 432
72 189 54 63 144 −855 90 243
80 210 60 70 160 90 −940 270
216 567 162 189 432 243 270 −2079


The solution to the QUBO problem is x = (1,1,1,1,0,0,1,0), for which y = -2704 and:

diff 2 = c2 + 4xtQx = 10816 + 4 · (−2704) = 10816− 10816 = 0

Classical algorithms for NPP
Since NPP is a NP-hard problem, no efficient algorithm to solve it has been found yet. Instead,
several heuristics have been proposed, such as the greedy heuristic, which consists in sorting the
numbers in descending order and adding each of them to the set whose value is the smaller so
far, or the Karmarkar-Karp (KK) one [21]. The latter is the basis of an exact (and exponential
time) algorithm originally proposed in [22] and tested in [23], i.e., the Complete Karmarkar-Karp
algorithm (CKK).

In detail, CKK performs a depth-first search of a binary tree in which the left branch corresponds
to replacing the two largest numbers at the current level with the absolute value of their difference
(i.e., the numbers are placed in different subsets), whereas the right branch corresponds to replacing
them with their sum (i.e., they are placed in the same subset). However, the subset in which each
number goes is not fixed during the search. Indeed, the resulting subsets are retrieved only at
the end of the search by running a linear time procedure. The complexity of the algorithm is
exponential in the worst case; nevertheless, the search stops if a perfect partition is found, i.e.,
the last remaining number, which represents the difference between the two subsets, is equal to
either 0 or 1. Moreover, if the current largest number is greater than the sum of all the others, the
branching for that sub-tree can be stopped (in this case, all the other numbers can be placed in
the same subset). Eventually, with four numbers or less, only the left branch should be taken into
account since the KK heuristic, which corresponds to the left branch action, is exact in this case.

In this work, the implementation of CKK provided by [23] has been used for comparison in the
experiments.

Experimental procedure
The runs have been launched on the Leap cloud from the command line. Moreover, they have
been executed one at a time due to some issues in terms of computational time, which grows with
multiple parallel computations.

Results
The following values have been used for QALS parameters in all runs:

17

Quantum Annealing Learning Search Implementations

Table 1: Values used for QALS parameters in all NPP tests.

pδ η q N λ0 k Nmax dmin
0.1 0.01 0.2 10 1.5 10 100 70

Concerning the annealing parameters, such as the annealing time and schedule, the default values
have been used for QALS (the system used is Advantage 1.1) [14]; instead, Hybrid autonomously
manages these properties. Actually, all NPP results have been obtained using the C++ imple-
mentation, whereas the Python implementation has been exploited to check them. The results are
shown in Table 2. In particular, Range represents the upper limit of the number generation interval
([1, Range]), thus, the maximum possible si value in the experiment; for instance, if Dimension
is 500 and Range is 100, a vector of 500 integer numbers in the range [1, 100] is used. Instead, Sets
Difference corresponds to the difference between the two resulting sets.

NPP results discussion
The QALS algorithm did not perform as well as expected. Indeed, Hybrid turned out to be better
in terms of results and faster in terms of computational time. Moreover, the classical algorithm used
for comparison proved to be very fast and always returned the best solution for the given set S. In
general, classical algorithms for the Number Partitioning Problem are efficient even if the problem is
NP-Hard. The performance of QALS could probably improve by considering a much higher number
of annealer measurements (k � 10). Indeed, the D-Wave quantum annealer is subjected to noise
and temperature effects, and larger output samples would increase the probability of obtaining a
solution close to the optimum. Nevertheless, the time at our disposal was too little to consider
higher k values.

Table 2: Tests performed on the Number Partitioning Problem.

Dimension Approach Range Sets Difference Time(s) # Iterations

500

QALS
100

93 2172 4000
Hybrid 1 6 -

Classical 1 0.003 -
QALS

1000
292 2157 4000

Hybrid 4 9 -
Classical 0 0.005 -
QALS

10000
2640 2151 4000

Hybrid 36 12 -
Classical 0 0.004 -
QALS

1000000
475860 1992 4000

Hybrid 2340912 14 -
Classical 0 0.005 -

1200

QALS
1000

185 1327 2000
Hybrid 1 23 -

Classical 1 0.015 -
QALS

10000
6337 1304 2000

Hybrid 225 23 -
Classical 1 0.017 -
QALS

100000
145982 1270 2000

Hybrid 186624 23 -
Classical 0 0.024 -
QALS

1000000
303833 1267 2000

Hybrid 781440 23 -
Classical 0 0.019 -

18

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Table 2 (Continued): Tests performed on the Number Partitioning Problem.

Dimension Approach Range Sets Difference Time(s) # Iterations

2500

QALS
1000

3108 2442 2000
Hybrid 0 62 -

Classical 0 0.072
QALS

10000
11681 2666 2000

Hybrid 25 54 -
Classical 1 0.090 -
QALS

100000
160676 2354 2000

Hybrid 6240 64 -
Classical 1 0.089 -
QALS

1000000
2731518 2341 2000

Hybrid 1151232 65 -
Classical 1 0.093 -

5436

QALS
1000

6209 9414 2000
Hybrid 1 260 -

Classical 1 0.318 -
QALS

10000
528 9413 2000

Hybrid 16 267 -
Classical 0 0.437 -
QALS

100000
4010004 9168 2000

Hybrid 12112 263 -
Classical 0 0.464 -
QALS

1000000
5497085 9507 2000

Hybrid 24576 260 -
Classical 0 0.479 -

5.2 Travelling Salesman Problem (TSP)

Definition
The Travelling Salesman Problem, also known as TSP, consists in finding the shortest route through
n cities, given the list of cities and their pairwise distances (each city is not necessarily directly
connected to all the others). In detail, the route must visit each city exactly once and must return
to the origin city. Hence, TSP can be seen also as the problem of finding, for a graph G = (V , E),
the Hamiltonian cycle such that the sum of the weights of the edges in the cycle is minimum. This
last perspective is particularly relevant since, as presented in [24], there exists a QUBO formulation
for it. Specifically, the problem Hamiltonian for TSP is the following:

H = HA +HB

HA = A
n∑
i=1

1−
n∑
j=1

xi,j

2

+A
n∑
j=1

(
1−

n∑
i=1

xi,j

)2

+A
∑

(uv)/∈E

n∑
j=1

xu,jxv,j+1

HB = B
∑

(uv)∈E

Wuv

n∑
j=1

xu,jxv,j+1 (14)

where xi,j is 1 if the node (city) i is in position j in the cycle (route), 0 otherwise, xv,n+1 = xv,1,
and A and B are positive constants (A,B > 0). Here, HA encodes the constraints of the problem,
i.e., each node appears exactly once in the cycle (first term), there is only one node in each position
of the cycle (second term), and the order of nodes in the cycle is valid (third term). Instead, HB

encodes the minimization of the cycle total weight (route length); indeed, Wu,v is the weight of
the (u, v) edge. Finally, in order to make not favourable to violate the constraints, the following
relationship must be satisfied: 0 < B(max(Wuv)) < A. In the experiments, B was set to 1 and A
was set to n×max(Wuv).

19

Quantum Annealing Learning Search Implementations

Input: Distance matrix D
Result: Matrix Q representing the QUBO formulation of the TSP problem defined by D

1 n← size(D, 0); % number of rows of D (square matrix)
2 Q← new int[n2][n2];
3 all zeros(Q);
4 A← n ·max coeff(D); % penalty set according to [24]
5 B ← 1; % multiplier set according to [24]
6 Q← add cost objective(Q,D,B);
7 Q← add time constraints(Q,A);
8 Q← add position constraints(Q,A);
9 return Q;

Algorithm 11: Translation of TSP into QUBO [25].

Input: QUBO matrix Q, distance matrix D, multiplier B
Result: Matrix Q including the cost objective

1 n← size(D, 0); % number of rows of D (square matrix)
2 for t← 0 to n− 1 do
3 for i← 0 to n− 1 do
4 for j ← 0 to n− 1 do
5 r ← t · n+ i;
6 c← (t+ 1) mod n2 + j;
7 Q[r][c]← B ·D[i][j];

8 end

9 end

10 end
11 return Q;

Algorithm 12: add cost objective function (computation of HB coefficients).

Input: QUBO matrix Q, constraint penalty A
Result: Matrix Q including time constraints

1 n← size(D, 0); % number of rows of D (square matrix)
2 for t← 0 to n− 1 do
3 for i← 0 to n− 1 do
4 r ← t · n+ i;
5 Q[r][r]← Q[r][r]−A;
6 for j ← 0 to n− 1 do
7 if i 6= j then
8 c← t · n+ j;
9 Q[r][c]← 2 ·A;

10 end

11 end

12 end

13 end
14 return Q;

Algorithm 13: add time constraints function (computation of part of HA coefficients).

20

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Input: QUBO Matrix Q, constraint penalty A
Result: Matrix Q including position constraints

1 n← size(D, 0); % number of rows of D (square matrix)
2 for i← 0 to n− 1 do
3 for t1← 0 to n− 1 do
4 r ← t1 · n+ i;
5 Q[r][r]← Q[r][r]−A;
6 for t2← 0 to n− 1 do
7 if t1 6= t2 then
8 c← t2 · n+ i;
9 Q[r][c]← 2 ·A;

10 end

11 end

12 end

13 end
14 return Q;

Algorithm 14: add position constraints function (computation of part of HA coefficients).

Given the problem Hamiltonian H, the variables xi,j must be renumbered in order to build the
QUBO matrix Q. In detail, the following renumbering was applied here:

(x1,1, x1,2, ... x1,n, x2,1 ... xn,n)→ (x1, ... xn2) (15)

At this point, the entry Qij of Q for i, j ∈ {1, ...n2} is just the coefficient of xixj in H.
The pseudocode for the computation of the entries of the QUBO matrix is provided in Algo-

rithms 11-12-13-14.

Experimental procedure
As for the Number Partitioning Problem, all runs have been launched on the Leap cloud from the
command line and have been executed one at a time. The main reason is the same, but there is
another one here: Hybrid would fail if launched in parallel with other Hybrid processes.

Results
The following values have been used for QALS parameters in all runs:

Table 3: Values used for QALS parameters in all TSP tests.

pδ η q N λ0 k Nmax dmin
0.1 0.2 0.2 5 1.5 5 100 70

In order to make a fair comparison, the same number of annealer measurements (k = 5) has been
used for Embedding Composite. Regarding the annealing parameters (like the annealing time
and schedule), the default values have been used for both Embedding Composite and QALS (the
system used is Advantage 1.1) [14]; as mentioned previously, Hybrid autonomously manages these
properties. The results for Hybrid, Embedding Composite and QALS have been obtained mainly
using the Python implementation, exploiting the C++ implementation to check them; instead,
Brute Force has been executed using a C++ implementation. All results are reported in Table 4.
In detail, µµµ is the average TSP cost across runs, σσσ is the corresponding standard deviation, and the
average time is reported in seconds. The TSP cost has been computed as the length of the route
(sum of the weights of the edges in the cycle) in the original problem space. Eventually, it is worth
highlighting that, in all these experiments, the Wu,v edge weights (city distances) are real numbers
in the range [0, 10].

21

Quantum Annealing Learning Search Implementations

Table 4: Tests performed on the Travelling Salesman Problem.

TSP Size QUBO Size Approach µµµ σσσ Avg. Time (s) # Runs

10 100

Brute Force 35.20 0 48 10
Hybrid 36.94 1.16 13.78 3

E.C. with S.R. 55.13 3.22 94.66 10
QALS with S.R. 49.95 3.02 64.83 10

12 144

Brute Force 26.21 0 56.8 3
Hybrid 33.43 1.26 14.86 10

E.C. with S.R. 52.91 6.5 132.96 10
QALS with S.R. 54.77 4.53 265.3 10

14 196

Brute Force 33.94 0 10630 3
Hybrid 49.48 1.99 15.7 3

E.C. with S.R. 67.50 9.87 465 3
QALS with S.R. 74.58 7.87 180 10

32 1024

Brute Force - - - -
Hybrid 124.72 3.45 24.98 3

E.C. with S.R. - - - -
QALS with S.R. 157.99 10.23 588 10

64 4096

Brute Force - - - -
Hybrid 288.87 5.82 23.25 3

E.C. with S.R. - - - -
QALS with S.R. 336.94 17.9 3570 10

72 5184

Brute Force - - - -
Hybrid 331.24 16.39 37.36 3

E.C. with S.R. - - - -
QALS with S.R. 387.00 21.25 2528 3

74 5476

Brute Force - - - -
Hybrid 344.19 2.8 38.65 3

E.C. with S.R. - - - -
QALS with S.R. - - - -

E.C. = Embedding Composite S.R. = Solution Refinement

Solution refinement
The solutions found by QALS and Embedding Composite without refinement have never satis-
fied the HA constraints, as opposed to the ones generated by Hybrid. In particular, Embedding
Composite has no guarantees to find the best solution or to find a solution that satisfies the given
constraints. Regarding QALS, since only a subpart of the entire problem (including the encoding
of the constraints) is mapped to the annealer at each iteration, the constraints are usually not fully
encoded in the topology and, as a consequence, turn out to be satisfied only if the optimal solution
is found or in a few other cases d. In practice, both Embedding Composite and QALS have never
produced valid TSP solutions, hence their results without refinement have not been reported here.

A TSP solution in QUBO formulation is represented by an integer sequence of length n2, where
n is the number of nodes (cities); the solution can be also seen as n sub-sequences of n locations
each. In order to be a valid solution, each sub-sequence must contain n − 1 0s and exactly one
1; moreover, the position of the value 1 inside the i-th sub-sequence must be unique w.r.t. all
sub-sequences. For instance, this is a valid solution for three cities:

x1 = [0, 1, 0, 1, 0, 0, 0, 0, 1]

whereas this is not:
x2 = [1, 1, 0, 1, 0, 0, 0, 0, 0]

dThese statements are based on the empirical results obtained.

22

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

In order to reduce a QUBO TSP solution to a classical TSP one, each sub-sequence is seen as an
integer number corresponding to the position of the value 1. For example, the classical version of
x1 is:

s1 = [1, 0, 2]

Instead, it is not possible to reduce x2 to a valid classical TSP solution unless it is refined, i.e.,
modified a bit.

To turn a non valid QUBO TSP solution into a valid classical TSP one while maintaining as
intact as possible the original solution, the following steps have been applied. Let x be the annealer’s
solution vector, f : Bn → Nk be a function that returns a vector of size k containing the position
of all values different from 0 in xi (with xi being the i-th sub-vector of length n in x), A be the set
{0, ..., n− 1}. First, a solution vector of length n is initialized with -1 values, i.e., s ∈ {−1}n. Let
R be a vector of sets, where each set Ri = {f(xi)} contains the possible solutions (nodes) for the
i-th sub-sequence (based on the annealer’s solution vector); then, si = Ri[0] ⇐⇒ sizeof(Ri) = 1.
Let us define the set of unavailable nodes K.

Definition 1 An unavailable node is a node that represents the solution for a certain cycle position
(i.e., there is no other 1 value in the corresponding sub-sequence) or a node marked as such after
randomly picking it from the available ones. In the following example, node 0 is unavailable.

x2 = [1, 1, 0, 1, 0, 0, 0, 0, 0]

In practice, K = {si | si 6= −1, i ∈ {0, ..., n − 1}}. At this point, let Di be Ri \ K. The
next step consists in computing Di for the first i in {0, ..., n − 1} such that sizeof(Ri) > 1. If
sizeof(Di) > 0, a random value d ∈ Di is chosen and the following operations are performed:
si = d and K = {K ∪ d}, i.e., the chosen available value is assigned to the considered position of
the solution vector and the set of unavailable nodes is updated accordingly. The procedure is then
repeated for all subsequent i values satisfying the condition on the size of Ri.
After these operations, a vector idxi is created for each node i in {0, ..., n − 1}. In particular,
j ∈ idxi ⇐⇒ sj = i (here, j ∈ {0, ..., n− 1}); hence, idxi includes all the solution vector positions
whose corresponding value is i (up to here, there can be duplicates). If sizeof(idxi) > 1 for some
i, idxi is shuffled and all sj such that j ∈ idxi and idxi.indexof(j) > 0 are re-set to -1. Basically,
for each idxi, the value i is kept by the sj corresponding to the first index after the shuffling. By
doing this, duplicate nodes in the cycle are removed.
Once all values in s have been made unique or equal to −1, let us define L = A \K. In detail, L
contains all the nodes that have not yet been assigned to a position in the cycle. Then, for each i
in {0, ..., n−1} such that si = −1, a random value l ∈ L is chosen and the set of remaining nodes is
updated accordingly, i.e., si = l and L = L\ l. At the end of this procedure, all the empty positions
have an assigned value, i.e., si 6= −1 ∀ i ∈ {0, ..., n− 1}, and the solution is valid.

The refinement procedure does not affect the original solution if it is already valid; if the solution
is not valid, the algorithm does not affect the nodes whose position is already unique in the cycle.

TSP results discussion
Starting from the smallest problem (with n = 10), QALS has performed better than Embedding
Composite but not as good as Hybrid, which has found a solution that is very close to the global
minimum, or the Brute Force approach, which has (obviously) found the global minimum solution.
Instead, with n = 12, Embedding Composite has turned out to be better. Regarding n = 14,
which is the biggest dimension that Embedding Composite is able to manage, the approach just
mentioned has produced again better solutions w.r.t. QALS. As concerns n between 32 and 72,
only QALS and Hybrid work, with Hybrid being always faster and better than QALS. Finally, only
Hybrid supports problem with n = 74. A careful reader might spot that this should not be possible
because the size of the QUBO problem exceeds the number of available qubits. Probably, if a graph

23

Quantum Annealing Learning Search Implementations

is not complete (none of ours is complete), Hybrid ignores the non-connected edges saving a lot
of unused qubits. It is also worth remarking that Hybrid’s good results are mostly related to the
nature of the method, which runs multiple solvers in parallel. Eventually, the performance of both
Embedding Composite and QALS could probably improve by considering a far higher number of
annealer measurements (k � 5). Indeed, as explained in the NPP results discussion paragraph, the
annealer is subjected to noise and temperature effects, and larger output samples would increase
the probability of obtaining a solution close to the optimum. Nevertheless, the time available to us
was, again, too little to consider higher k values.

6 Conclusion

In this paper we presented two implementations of Quantum Annealing Learning Search, a quantum-
classical algorithm proposed recently for solving QUBO problems, and their tests on two optimi-
sation problems (Number Partitioning Problem and Travelling Salesman Problem). The original
proposal of QALS included an argument on its asymptotic convergence and promised to treat
QUBO problems that are not directly mappable to the machine topology. This research provides
the empirical testing needed in order to assess QALS’s practical applicability. The two imple-
mentations are in C++ and Python, respectively and they run on the D-Wave machine. The two
problems addressed in the tests have complementary characteristics: NPP is naturally representable
as a QUBO problem, whereas TSP requires the setting of penalties to encode the constraints. As
a baseline, we compared the results with the Hybrid procedure available in the D-wave suite.

The implementation in C++ has the advantage of having better performance in the classical part
but pays the price of the coupling with the D-Wave APIs, which are currently available in Python
only; for this very reason, the Python implementation proves to be competitive. The development
of both codes required specific implementation choices with respect to the original pseudocode of
QALS. In particular, the implementations include more efficient data structures and specific choices
for the classical pseudorandom number generation in C++. We argue that the availability of C++
interfaces to the D-Wave machines, once present and now apparently discontinued, would make the
development of efficient hybrid algorithms easier.

The results obtained on NPP show that quantum annealing, in general, and QALS, in particular,
are not of any practical use in this case. In fact, the classical exact algorithm used for NPP
outperforms both QALS and Hybrid, and the problem can be considered practically solved by
the available classical exact solution. In our opinion, NPP, despite its natural representability as
a QUBO problem, is not the kind of problem on which we can expect an advantage using the
quantum architecture. Hybrid includes classical methods, so we argue that it works well on this
particular problem because it exploits the classical efficiency.

Instead, the application to TSP shows the practical potential of QALS. The results show that
QALS is able to process problems with a higher size than the Embedding Composite procedure used
to map the problem to the topology; this shows that the goal of the introduction of QALS, namely
treating QUBO problems not directly mappable to the machine topology, has been empirically
fulfilled. However, both QALS and EC do not directly provide a valid solution; indeed, the solution
has to be manipulated in order to become valid for the problem. Again, Hybrid takes full advantage
of the races with classical methods, reaching good results.

We conclude that our implementations of QALS work on TSP and could have practical potential
on hard problems where the QUBO representation is not directly mappable to the topology. We
note that the comparison with respect to Hybrid is a necessary baseline but, given its nature of race
among different algorithms, cannot be an effective competitor for drawing scientific conclusions.
Both implementations are available under the GPLv2 licence [26, 27].

24

A. Bonomi, T. De Min, E. Zardini, E. Blanzieri, V. Cavecchia, and D. Pastorello

Acknowledgements

This work was supported by Q@TN, the joint lab between University of Trento, FBK-Fondazione
Bruno Kessler, INFN-National Institute for Nuclear Physics and CNR-National Research Council.
In addition, the authors gratefully acknowledge the Jülich Supercomputing Center (https://www.
fz-juelich.de/ias/jsc) for funding this project by providing computing time through the Jülich
UNified Infrastructure of Quantum computing (JUNIQ) on the D-Wave quantum annealer.

References

[1] T. Kadowaki and H. Nishimori (Nov 1998), Quantum annealing in the transverse Ising model,
Phys. Rev. E, Vol.58, pp. 5355-5363.

[2] Z. Bian and F. Chudak and W. Macready and A. Roy and R. Sebastiani and S. Varotti
(2020), Solving SAT (and MaxSAT) with a quantum annealer: Foundations, encodings, and
preliminary results, Information and Computation, Vol.275, pp. 104609.

[3] J. Preskill (2018), Quantum Computing in the NISQ era and beyond, Quantum, Vol.2, pp.
79.

[4] J. R. McClean and J. Romero and R. Babbush and A. Aspuru-Guzik (2016), The theory of
variational hybrid quantum-classical algorithms, New Journal of Physics, Vol.18., Num.2, pp.
023023.

[5] R. Ayanzadeh and M. Halem and T. Finin (2020), Reinforcement quantum annealing: A
hybrid quantum learning automata, Scientific Reports, Vol.10, Num.1, pp. 1-11.

[6] D. Pastorello and E. Blanzieri (Aug 2019), Quantum annealing learning search for solving
QUBO problems, Quantum Information Processing, Vol.18, Num.10, pp. 303.

[7] D. Pastorello and E. Blanzieri and V. Cavecchia (2021), Learning adiabatic quantum algo-
rithms over optimization problems, Quantum Machine Intelligence, Vol.3., Num.1, pp. 2.

[8] G. Kochenberger and J. Hao and F. Glover and M. Lewis and Z. Lü and H. Wang and Y.
Wang (2014), The unconstrained binary quadratic programming problem: A survey, Journal
of Combinatorial Optimization, Vol.28, Num.1, pp. 58-81.

[9] D-Wave Systems Inc., Minor embedding, https://docs.dwavesys.com/docs/latest/c_gs_
3.html#minor-embedding [online, last access on 20 October 2021].

[10] D-Wave Systems Inc., Minor embedding example, https://docs.dwavesys.com/docs/

latest/c_gs_7.html#getting-started-embedding [online, last access on 20 October 2021].

[11] D-Wave Systems Inc., Pegasus topology, https://docs.dwavesys.com/docs/latest/c_gs_
4.html#pegasus-graph [online, last access on 24 February 2021].

[12] D-Wave Systems Inc., Embedding Composite, https://docs.ocean.dwavesys.com/en/

stable/docs_system/reference/composites.html#embeddingcomposite [online, last ac-
cess on 20 October 2021].

[13] D-Wave Systems Inc., LeapHybridSampler, https://docs.ocean.dwavesys.com/

en/stable/docs_system/reference/samplers.html#dwave.system.samplers.

LeapHybridSampler [online, last access on 20 October 2021].

25

https://www.fz-juelich.de/ias/jsc
https://www.fz-juelich.de/ias/jsc
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_3.html#minor-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.dwavesys.com/docs/latest/c_gs_7.html#getting-started-embedding
https://docs.dwavesys.com/docs/latest/c_gs_4.html#pegasus-graph
https://docs.dwavesys.com/docs/latest/c_gs_4.html#pegasus-graph
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/composites.html#embeddingcomposite
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/samplers.html#dwave.system.samplers.LeapHybridSampler
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/samplers.html#dwave.system.samplers.LeapHybridSampler
https://docs.ocean.dwavesys.com/en/stable/docs_system/reference/samplers.html#dwave.system.samplers.LeapHybridSampler

Quantum Annealing Learning Search Implementations

[14] D-Wave Systems Inc., D-Wave solver parameters, https://docs.dwavesys.com/docs/

latest/c_solver_parameters.html [online, last access on 20 October 2021].

[15] D-Wave Systems Inc., D-Wave solver properties, https://docs.dwavesys.com/docs/

latest/c_solver_properties.html [online, last access on 20 October 2021].

[16] J. Du (Oct 2005), Embedding Python in C/C++, https://www.codeproject.com/

Articles/11805/Embedding-Python-in-C-C-Part-I [online, last access on 24 February
2021].

[17] Stack Overflow (Mar 2016), C++ rand(), https://stackoverflow.com/questions/

10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-

generator [online, last access on 24 February 2021].

[18] Ridgeback Network Defense Inc. (October 2018), D-Wave random coin flip, https://github.
com/ridgebacknet/dwave-tutorials/blob/master/fun/fun-coin.py [online, last access
on 26 February 2021].

[19] M. Route (2017), Radio-flaring Ultracool Dwarf Population Synthesis, The Astrophysical
Journal, Vol.845, Num.1, pp. 66.

[20] F. Glover and G. Kochenberger and Y. Du (2019), A Tutorial on Formulating and Using
QUBO Models, 1811.11538.

[21] N. Karmarker and R. M. Karp (1983), The Differencing Method of Set Partitioning, Technical
report, EECS Department, University of California, Berkeley (USA).

[22] R. E. Korf (1998), A complete anytime algorithm for number partitioning, Artificial Intelli-
gence, Vol.106, Num.2, pp. 181-203.

[23] J. P. Pedroso and M. Kubo (2010), Heuristics and exact methods for number partitioning,
European Journal of Operational Research, Vol.202, Num.1, pp. 73-81.

[24] A. Lucas (2014), Ising formulations of many NP problems, Frontiers in Physics, Vol.2.

[25] M. Stȩch ly and P. Korponaić (Mar 2018), Quantum TSP, https://github.com/

BOHRTECHNOLOGY/quantum_tsp [online, last access on 27 June 2021].

[26] T. De Min (2021), C++ Quantum Annealing Learning Search, https://github.com/

tdemin16/QALS-cpp.

[27] A. Bonomi (2021), Python Quantum Annealing Learning Search, https://github.com/

bonom/Quantum-Annealing-for-solving-QUBO-Problems.

26

https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_parameters.html
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://docs.dwavesys.com/docs/latest/c_solver_properties.html
https://www.codeproject.com/Articles/11805/Embedding-Python-in-C-C-Part-I
https://www.codeproject.com/Articles/11805/Embedding-Python-in-C-C-Part-I
https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://stackoverflow.com/questions/10984974/why-do-people-say-there-is-modulo-bias-when-using-a-random-number-generator
https://github.com/ridgebacknet/dwave-tutorials/blob/master/fun/fun-coin.py
https://github.com/ridgebacknet/dwave-tutorials/blob/master/fun/fun-coin.py
https://github.com/BOHRTECHNOLOGY/quantum_tsp
https://github.com/BOHRTECHNOLOGY/quantum_tsp
https://github.com/tdemin16/QALS-cpp
https://github.com/tdemin16/QALS-cpp
https://github.com/bonom/Quantum-Annealing-for-solving-QUBO-Problems
https://github.com/bonom/Quantum-Annealing-for-solving-QUBO-Problems

	1 Introduction
	2 Background
	2.1 QUBO model
	2.2 D-Wave Pegasus topology
	2.3 Embedding Composite
	2.4 D-Wave Hybrid

	3 Quantum Annealing Learning Search (QALS)
	4 Implementations
	4.1 C++ implementation
	4.2 Python implementation

	5 Experimental Results
	5.1 Number Partitioning Problem (NPP)
	5.2 Travelling Salesman Problem (TSP)

	6 Conclusion

