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Abstract
In the context of quantum-inspired machine learning, remarkable
mathematical tools for solving classification problems are given by
some methods of quantum state discrimination. In this respect,
quantum-inspired classifiers based on nearest centroid and Helstrom
discrimination have been efficiently implemented on classical comput-
ers. We present a local approach combining the kNN algorithm to
some quantum-inspired classifiers. We also compare the performance
with respect to well-known classifiers applied to benchmark datasets.

Keywords: quantum state discrimination, k-nearest neighbors, machine
learning.
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Introduction
Quantum-inspired machine learning is a recent branch of machine learning
based on the application of the mathematical formalism of quantum mechan-
ics to devise novel schemes of information storing and processing for classical
computers. Some quantum-inspired binary classification algorithms has been
characterized from a geometric perspective and tested in a recent work [1] com-
paring the performances to those of well-known classical methods. This work
is devoted to study some quantum-inspired classification algorithms, based on
quantum state discrimination, within a local approach in the sense of a notion
of locality in the feature domain w.r.t. a metric function. Thus, the approach
does not rely to any notion of quantum non-locality or local hidden variable
theories but refers to the locality in the feature space by selection of a neigh-
borhood of a test point to be classified. More specifically, we reconsider the
quantum-inspired algorithms based on Helstrom discrimination following an
approach close to that proposed by Blanzieri and Melgani [2] where an unla-
beled data instance is classified by finding its k nearest training points before
running a support vector machine (SVM) over the considered k training points.
The local approach turns out to be a resource in improving the accuracy in
classification considering the SVM, this partially motivates the investigation
of the present paper since the quantum-inspired Helstrom classifier can be
interpreted as a SVM with linear kernel [3].

The considered quantum-inspired classifiers are structured on the encoding
of the feature vectors into density operators and on techniques for estimating
the distinguishability of quantum states like the Helstrom state discrimina-
tion and the Pretty-Good measurement (PGM). Moreover, we consider the
quantum encoding in terms of Bloch vectors in order to take advantage from
geometric properties of quantum states which saves space and time resources
enabling the efficiency of these methods also on classical machines. Once rep-
resented data into different quantum encodings, corresponding to different
feature maps, we run the classification algorithms within the local approach
selecting the k nearest neighbors to execute the models. In the experimental
part, we present a comparison of the performances of the local quantum-
inspired classifiers against well-known classical algorithms in order to show
that the local approach can be a valuable tool for increasing the performances
of this kind of classifiers. A seminal research on a particular local approach
based on the Voronoi tessellation of the training set to a quantum-inspired
classifier defined by PGM is presented in [4].

In Section 1, we review the notion of quantum encoding of data vectors into
density operators and the quantum-inspired classification based on the well-
known machinery of quantum state discrimination [5–7]. Section 2 is focused on
the encoding of feature vectors into Bloch vectors as a useful geometric tool to
obtain a data representation that scales efficiently increasing the dimension of
the feature space. In Section 3, we introduce the k-nearest neighbors algorithm
(kNN) as a procedure to restrict the training set to the nearest points around
the considered test points enabling the local execution of the quantum-inspired
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classifiers. In section 4, there are the concluding remarks about the efficiency of
local quantum-inspired classifiers and the related future developments towards
innovative techniques in machine learning.

1 Quantum-inspired classification
The first building block of quantum-inspired classification is the quantum
encoding (as well as in quantum computing), that is any procedure to encode
classical information (e.g., a list of symbols) into quantum states. In this paper,
we consider encodings of data vectors into density matrices on a Hilbert space
H whose dimension depends on the dimension of the input space, in particu-
lar we use different quantum encodings to implement different feature maps
for data representation. Density matrices, or density operators, are the math-
ematical objects used to describe the physical states of quantum systems. A
density matrix on H is a positive semidefinite operator ρ such that trρ = 1.
Pure states are all the density matrices of the form ρ = |ψ〉 〈ψ|, with ‖ ψ ‖= 1,
which are the rank-1 projectors that can be directly identified with unit vec-
tors up to a phase factor (according to the Dirac notation: |ψ〉 is a normalized
vector, 〈ψ|φ〉 is the inner product and |ψ〉 〈φ| is the outer product). Let ρ be
a density operator on a d-dimensional Hilbert space (identified to Cd), it can
be written in the following form:

ρ =
1

d

(
Id +

√
d(d− 1)

2

d2−1∑
j=1

b
(ρ)
j σj

)
, (1)

where {σj}j=1,...,d2−1 are the standard generators of the special unitary group
SU(d), also called generalized Pauli matrices, and Id is the d × d identity
matrix. The vector b(ρ) = (b

(ρ)
1 , . . . , b

(ρ)
d2−1), with b(ρ)j =

√
d

2(d−1) tr(ρ σj) ∈ R,
is the Bloch vector associated to ρ which lies within the hypersphere of radius
1 in Rd2−1. For d = 2, the qubit case, the density matrices are in bijective
correspondence to the points of the unit ball in R3 where the pure states are
in one-to-one correspondence with the points of the spherical surface, the so-
called Bloch sphere. For d > 2, the points contained in the unit hypersphere
of Rd2−1 are not in bijective correspondence with density matrices on Cd such
as in the case of a single qubit, so the Bloch vectors do not form a ball but a
complicated convex body. However, any vector within the closed ball of radius
2
d gives rise to a density operator [8]. We apply the Bloch representation of
density matrices as an efficient quantum encoding as clarify below.

Complex vectors of dimension n can be encoded into density matrices of a
(n+ 1)-dimensional Hilbert space H in the following way:

Cn 3 x 7→ |x〉 =
1√

‖ x ‖2 +1

(
n−1∑
α=0

xα |α〉+ |n〉

)
∈ H, (2)
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where {|α〉}α=0,...,n is the computational basis of H, identified as the standard
basis of Cn+1. The map defined in (2), called amplitude encoding, encodes x
into the pure state ρx = |x〉 〈x| where the additional component of |x〉 stores
the norm of x. Nevertheless the quantum encoding x 7→ ρx can be realized in
terms of the Bloch vectors x 7→ b(ρx) saving space resources. The improvement
of memory occupation within the Bloch representation is evident when we take
multiple tensor products ρ⊗· · ·⊗ρ of a density matrix ρ constructing a feature
map to enlarge the dimension of the representation space [1].

Quantum-inspired classifiers that we consider in the present work are based
on quantum encoding of data vectors into density matrices, calculations of
centroids, and various criteria of quantum state distinguishability such as:
the Helstrom state discrimination [9, 10], the Pretty-Good measurement [6]
(PGM), and the geometric construction of a minimum-error measurement [7]
that we call geometric Helstrom discrimination. Let us briefly introduce the
notion of quantum state discrimination. Given a set of arbitrary quantum
states with respective a priori probabilities R = {(ρ1, p1), ..., (ρN , pN )}, in gen-
eral there is no a measurement process that discriminates the states without
errors. More formally, there does not exist a POVM, i.e. a collection E =
{Ei}i=1,...,N of positive semidefinite operators such that

∑N
i=1Ei = I, satisfy-

ing the following property: tr(Eiρj) = 0 when i 6= j for all i, j = 1, ..., N . The
probability of a successful state discrimination of the states in R performing
the measurement E is:

PE(R) =

N∑
i=1

pitr(Eiρi). (3)

A complete characterization, due to C.W. Helstrom [5], of the optimal measure-
ment Eopt that maximizes the probability (3) for R = {(ρ1, p1), (ρ2, p2)} can be
done as follows. Eopt can be constructed as follows. Let Λ : = p1ρ1−p2ρ2 be the
Helstrom observable whose positive and negative eigenvalues are, respectively,
collected in the sets D+ and D−. Consider the two orthogonal projectors:

P± :=
∑
λ∈D±

Pλ, (4)

where Pλ projects onto the eigenspace of λ. The measurement Eopt : =
{P+, P−} maximizes the probability (3) that attains the Helstrom bound :

hb(ρ1, ρ2) = p1tr(P+ρ1) + p2tr(P−ρ2). (5)

Helstrom quantum state discrimination can be used to implement a
quantum-inspired binary classifier with promising performances [10]. Let
{(x1, y1), ..., (xM , yM )} be a training set with xi ∈ Cn, yi ∈ {1, 2} ∀i =
1, ...,M . Assume to encode the data points into quantum states by means of
Cn 3 x 7→ ρx ∈ S(H), one can construct the quantum centroids ρ1 and ρ2 of
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the two classes C1,2 = {xi : yi = 1, 2}:

ρ1,2 =
1

|C1,2|
∑

x∈C1,2

ρx (6)

Let {P+, P−} be the Helstrom measurement defined by the set R =
{(ρ1, p1), (ρ2, p2)}, where the probabilities attached to the centroids are p1,2 =
|C1,2|
|C1|+|C2| . The Helstrom classifier applies the optimal measurement for the dis-
crimination of the two quantum centroids to assign the label y to a new data
instance x, encoded into the state ρx, as follows:

y(x) =

{
1 if tr(P+ρx) ≥ tr(P−ρx)
2 otherwise (7)

A strategy to increase the accuracy in classification is given by the construction
of the tensor product of q copies of the quantum centroids ρ⊗q1,2 enlarg-
ing the Hilbert space where data are encoded. The corresponding Helstrom
measurement is {P⊗q+ , P⊗q− }, and the Helstrom bound satisfies [10]:

hb(ρ
⊗q
1 , ρ⊗q2 ) ≤ hb

(
ρ
⊗(q+1)
1 , ρ

⊗(q+1)
2

)
∀q ∈ N. (8)

Increasing the dimension of the Hilbert space of the quantum encoding, one
increases the Helstrom bound obtaining a more accurate classifier. The cor-
responding computational cost is evident; however, in the next section, we
observe that in the case of real input vectors, the space can be enlarged saving
time and space by means of the encoding into Bloch vectors.

A method of quantum state discrimination for distinguishing more than
two states {(ρ1, p1), ..., (ρN , pN )} is the square-root measurement, also known
as Pretty-Good measurement (PGM), defined by:

Ei = piρ
− 1

2 ρiρ
− 1

2 , (9)

where ρ =
∑

i piρi, PGM is the optimal minimum-error when states satisfy
certain symmetry properties [6]. Clearly to distinguish between n centroids we
need a measurement with at most n outcomes. It is sometimes optimal to avoid
measurement and simply guess that the state is the a priori most likely state.

The optimal POVM {Ei}i for minimum-error state discrimination overR =
{(ρ1, p1), ..., (ρN , pN )} satisfies the following necessary and sufficient Helstrom
conditions [7]:

Γ− piρi ≥ 0 ∀i = 1, . . . , N, (10)
where the Hermitian operator, also known as Lagrange operator, is defined by
Γ :=

∑
i piρiEi. It is also useful to consider the following properties which can

be obtained from the above conditions:

Ej(pjρj − piρi)Ei = 0 ∀i, j. (11)
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For each i the operator Γ − piρi can have two, one, or no zero eigenvalues,
corresponding to the zero operator, a rank-one operator, and a positive-
definite operator, respectively. In the first case, we use the measurement
{Ei = I, Ei 6=j = 0} for some i where pi ≥ pj ∀j, i.e. the state belongs to the a
priori most likely class. In the second case, if Ei 6= 0, it is a weighted projector
onto the corresponding eigenstate. In the latter case, it follows that Ei = 0 for
every optimal measurement.

Given the following Bloch representations:

Γ =
1

d

(
a Id+

√
d(d− 1)

2

d2−1∑
j=1

bjσj

)
, ρi =

1

d

(
Id+

√
d(d− 1)

2

d2−1∑
j=1

b
(i)
j σj

)
,

(12)
in order to determine the Lagrange operator in Cd we need d2 independent
linear constraints:

2pi

(
a− b̂

(i)
· b− pi

2
(1− |b̂

(i)
|2)
)

= a2 − |b|2. (13)

A measurement with more than d2 outcomes can always be decomposed as a
probabilistic mixture of measurements with at most d2 outcomes. Therefore, if
the number of classes is greater than or equal to d2 and we get d2 linearly inde-
pendent equations, we construct the Lagrange operator and derive the optimal
measurements. From the geometric point of view, we obtain the unit vectors

corresponding to the rank-1 projectors Ei = 1
d

(
Id +

√
d(d−1)

2

∑d2−1
j=1 n

(i)
j σj

)
where n(i) = b̂(i)−ab

|b̂(i)−ab|
∈ Rd2−1 giving the POVM of the measurement. It is

also possible to further partition the classes in order to increase the number of
centroids and of the corresponding equations. The classification is carried out
in this way: An unlabelled point x̂ is associated with the first label y such that
b(x̂) · n(y) = maxi b(x̂) · n(i), where d = d

√
length(x) + 2e. Such a geometric

construction of the minimum-error state discrimination will be considered for
the local approach to quantum-inspired classification tested below.

2 Bloch representation and centroid calculation
In quantum-inspired machine learning, the encoding of data instances into
Bloch vectors of density operators turns out to be a useful geometric tool to
reduce memory consumption in defining feature maps into higher dimensional
spaces [4]. Let us consider the simplest case of encoding data vectors in R2 to
density operators on C2 by means of the Bloch representation of qubit states:

R2 3 (x1, x2) 7→ η(x1,x2) =
1

2

(
I2 +

3∑
j=1

bjσj

)
, (14)
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where the Bloch vector of the density operator η(x1,x2) is given by b =
1√

x2
1+x

2
2+1

(x1, x2, 1) ∈ R3. Assuming data are divided into classes, the cen-

troids of the classes can be calculated as the means of the Bloch vectors
encoding data vectors. Thus, the centroids are points inside the Bloch sphere
of a qubit then correspond to density operators.

Within the quantum encoding (2), a real vector x ∈ Rd−1 is encoded into
a projection operator ρx = |x〉 〈x|, on a d-dimensional Hilbert space where
d ≥ 2. For simplicity, we consider again an input vector (x1, x2) ∈ R2 and the
corresponding projection operator ρ(x1,x2) on C3 given applying the encoding
(2):

ρ(x1,x2) =
1

x21 + x22 + 1

 x21 x1x2 x1
x1x2 x22 x2
x1 x2 1

 . (15)

The explicit calculation shows that the Bloch vector of ρ(x1,x2) has null
components:

b(x1,x2) =
1

1 + x21 + x22

(
2x1x2, 2x1, 2x2, 0, 0, 0, x

2
1 − x22,

x21 + x22 − 2√
3

)
. (16)

Instead of using the matrix (15) with nine real elements to represent ρ(x1,x2),
memory occupation can be improved by storing ρ(x1,x2) only in terms of the
non-zero components of the Bloch vector. In general, the technique of removing
the components that are zero or are repeated several times (whose positions
in the Bloch vector are known a priori) allows reducing the space and the
calculation time considering only the significant values that allow to carry out
the classification.

Generally speaking, defining a quantum encoding is equivalent to select a
feature map to represent feature vectors into a space of higher dimension. In
this sense, data representation into quantum states can be considered a way
to perform kernel tricks. In the case of the considered quantum encoding R2 3
(x1, x2) 7→ ρ(x1,x2) ∈ S(C3), in view of (16) the nonlinear explicit injective
function ϕ : R2 → R5 to encode data into Bloch vectors can be defined as
follows:

ϕ(x1, x2) :=
1

x21 + x22 + 1

(
2x1x2, 2x1, 2x2, x

2
1 − x22,

x21 + x22 − 2√
3

)
. (17)

From a geometric point of view, the mapped feature vectors are points on
the surface of a hyper-hemisphere. The centroids of the classes, calculated as
the means of these feature vectors, are points inside the hypersphere that, in
general, do not have an inverse image in terms of a density operators, however
they can be rescaled to a Bloch vector as discussed below.

In order to improve the accuracy of the classification, one can increase
the dimension of the representation space providing k copies of the quantum
states, in terms of a tensor product, encoding data instances and centroids
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into "redundant" density matrices ρ⊗q. According to the quantum formal-
ism, multiple copies of the states are described in a tensor product Hilbert
space with a strong impact in terms of computational resources because
of the exponential growth of the dimension. However the Bloch encoding
allows an efficient implementation of feature maps: consider two copies of
the density operator ρ(x1,x2) defined in (15) and calculate the Bloch vector
of ρ(x1,x2) ⊗ ρ(x1,x2), by removing null and repeated entries from the Bloch
vector we obtain the following injective function for data encoding:

ϕ(x1, x2) :=
1

(x21 + x22 + 1)2

(
2x31x2, 2x

3
1, 2x

2
1x

2
2, 2x

2
1x2, 2x

2
1, 2x1x

3
2, 2x1x

2
2, 2x1x2, 2x1, 2x

3
2,

2x22, 2x2, x
2
1(x1 − x2)(x1 + x2),

x21(x21 + x22 − 2)√
3

,
x21(x21 − 2x22 + 1)√

6
,

x41 − 4x42 + x21(2x22 + 1)√
10

,
x21 + x41 − 5x22 + 2x21x

2
2 + x42√

15
,
x41 + x22 + x42 + x21(2x22 − 5)√

21
,

x41 − 6x22 + x42 + 2x21(x22 + 1)

2
√

7
,

1

6
(x21 + x22 − 2)(x21 + x22 + 4)

)
. (18)

In (18), we consider only 20 values instead of 81 matrix elements of ρ(x1,x2) ⊗
ρ(x1,x2), 51 values instead of 729 for ρ(x1,x2) ⊗ ρ(x1,x2) ⊗ ρ(x1,x2) and so on.
Therefore, the Bloch representation allows an efficient storing of redundant
density matrices ρ⊗q.

Let us consider a training set divided into the classes C1, ..., CM , assume
we have any training point x encoded into the Bloch vector b(x) of a pure state
on Cd. The calculation of the centroid of the class Ci, within this quantum
encoding, must take into account that the mean of the Bloch vectors b(i) :=
1
|Ci|

∑
x∈Ci

b(x) does not represent a density operator in general. In fact, for

d > 2 the points contained in the unit hypersphere of Rd2−1 are not in bijective
correspondence with density matrices on Cd. However, since any vector within
the closed ball of radius 2

d gives rise to a density operator, a centroid can be
defined in terms of a meaningful Bloch vector by a rescaling:

b̂
(i)

:=
2

d|Ci|
∑
x∈Ci

b(x). (19)

In the following, we choose b̂
(i)

as the definition of centroid in order to rep-
resent the centroids as density matrices in order to perform a meaningful
quantum state discrimination.

3 Local quantum-inspired classifiers
In this section, we introduce the local approach to quantum-inspired classi-
fication. More precisely, we consider the execution of the classifiers based on
quantum state discrimination described in section 1 after a selection of the k
training points that are closest to a considered unclassified instance.
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The k-nearest neighbors algorithm [11] (kNN) is a really simple classifica-
tion algorithm, and consists of the following steps:

1. the computation of the chosen distance metric between the test element
and all training data points;

2. the extraction of the k elements closest to the test instance;
3. the assignment of the class label through a majority voting based on the

labels of the k nearest neighbors.

In the following, we apply the kNN for the extraction of the closets elements
to the test point then the classification is performed by a quantum-inspired
algorithm instead of majority voting. On the one hand, given a test point, the
kNN can be executed over the data vectors in the input space, e.g. considering
the Euclidean distance, then the k neighbors can be encoded into density
matrices and used for a quantum-inspired classification. On the other hand,
the entire dataset can be encoded into density matrices and the kNN selects
the k neighbors evaluating an operator distance among quantum states. In the
latter case, we consider the Bures distance that is a quantum generalization
of the Fisher information, it is defined by:

dB(ρ1, ρ2) =

√
2
(

1−
√
F(ρ1, ρ2)

)
, (20)

where the fidelity between density operators is given by F(ρ1, ρ2) =(
tr
√√

ρ1ρ2
√
ρ1
)2. Let us note that the fidelity reduces to F(ρ1, ρ2) =

〈ψ1|ρ2|ψ1〉 when ρ1 = |ψ1〉 〈ψ1|. Therefore the Bures distance between the
pure state ρ1 and the arbitrary state ρ2 can be expressed in term of the Bloch
representation as follows:

dB(ρ1, ρ2) =

√√√√2

(
1−

√
1

d

(
1 + (d− 1)b(1) · b(2)

))
≡ DB

(
b(1),b(2)

)
,

(21)
where b(1) and b(2) are the Bloch vectors of ρ1 and ρ2 respectively and d is the
dimension of the Hilbert space of the quantum encoding. The special form of
the Bures distance, expressed in terms of Bloch vectors as in (21), is relevant
for our purpose because data vectors are encoded into pure states and the
quantum centroids are calculated as Bloch vectors of mixed states in general.

In Algorihtm 1, the locality is imposed by running the kNN on the input
space finding the training vectors that are closest to the test point, then there
is the quantum encoding into pure states and a quantum-inspired classifier
(Helstrom, PGM, geometric Helstrom) is locally executed over the restricted
training set. In Algorithm 2, the test point and all the training points are
encoded into Bloch vectors of pure states then a kNN is run w.r.t. the Bures
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distance to find the nearest neighbors in the space of the quantum representa-
tion, then a quantum-inspired classifier is executed with the training instances
corresponding to the closest quantum states.

Algorithm 1 Local quantum-inspired classification based on kNN in the input
space before the quantum encoding. The classifier can be: Helstrom, PGM,
geometric Helstrom.
Require: Dataset X of labelled instances, unlabelled point x̂
Ensure: Label of x̂

find the k nearest neighbors x1, ...,xk to x̂ in X w.r.t. the Euclidean distance
encode x̂ into a pure state ρx̂
for j = 1, ..., k do

encode xj into a pure state ρxj

end for
run the quantum-inspired classifier with training points encoded into
{ρxj}j=1,...,k.

Algorithm 2 Local quantum-inspired classification based on kNN in the Bloch
representation after the quantum encoding. The classifier can be: Helstrom,
PGM, geometric Helstrom.
Require: Dataset X of labelled instances, unlabelled point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the k nearest neighbors to b(x̂) in {b(x)}x∈X w.r.t. the distance DB
run the quantum-inspired classifier over the k nearest neighbors.

A local quantum-inspired classifier can be defined without quantum state
discrimination but considering a nearest mean classification like the following:
after the quantum encoding we perform a kNN selection and calculate the
centroid of each class considering only the nearest neighbors to the test point,
finally we assign the label according to the nearest centroid as schematized in
Algorithm 3.

4 Conclusions
The present paper is focused on some methods of quantum-inspired machine
learning, in particular classification algorithms based on quantum state
discrimination. We adopted a geometric formulation in defining quantum
encodings of classical data in terms of Bloch vectors of density operators as in
the previous work [1]. The novel contribution of the present paper is the local
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Algorithm 3 Local quantum-inspired nearest mean classifier.
Require: Training set X divided into n classes Ci, unlabelled point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the neighborhood K = {b(x1), ...,b(xk)} of b(x̂) w.r.t. the distance DB
for i = 1, ..., n do

construct the centroid b̂
(i)

= 2
d|Ck

i |
∑

x∈Ck
i
b(x) where Cki := {x ∈ Ci : b(x) ∈

K}
end for
find the closest centroid b̂

(l)
to b(x̂) w.r.t. the distance DB

return label of the class Cl

Algorithm 4 Quantum-inspired nearest mean local classifier.
Require: n classes Ci of training points, unlabelled point x̂
Ensure: Label y of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ Ci do

encode x into a Bloch vector b(x) of a pure state
end for
construct the centroids b̂

(i)
= 2

d|Ci|
∑

x∈Ci
b(x) for i = 1, . . . , n

construct means of (all or h = 2?) (
(n
k

)
for k = 1, . . . , h) combinations

b̂
(1)
, . . . , b̂

(n)
, 12 (b̂

(1)
+ b̂

(2)
), . . . , 1h (b̂

(1)
+ . . .+ b̂

(h)
)

for combination do
find the k-nearest neighbors b(x) and construct the local centroids b̂

(j)
l ;

end for
return label of the nearest local centroid (or after the pretty good measurement)

approach adopted to execute the classifier not over the entire training set but
in a neighborhood of the test point selected by a kNN. In a future paper, we
will present and discuss some empirical results for evaluating the impact of
locality in quantum-inspired classification comparing the performances of the
proposed algorithms to classical methods over benchmarks datasets.
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