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Cellular population dynamics shape the
route to human pluripotency

Francesco Panariello 1,14, Onelia Gagliano 2,3,4,14, Camilla Luni 5,6,14,
Antonio Grimaldi1,14, Silvia Angiolillo2,3, Wei Qin2,3,5, Anna Manfredi1,13,
Patrizia Annunziata1,13, Shaked Slovin1, Lorenzo Vaccaro1, Sara Riccardo1,13,
Valentina Bouche1, Manuela Dionisi1, Marcello Salvi1, Sebastian Martewicz 5,
Manli Hu5, Meihua Cui5, Hannah Stuart2,3, Cecilia Laterza 2,3,
Giacomo Baruzzo 7, Geoffrey Schiebinger 8, Barbara Di Camillo 7,9,10,
Davide Cacchiarelli 1,11,12,15 & Nicola Elvassore 2,3,4,5,15

Human cellular reprogramming to induced pluripotency is still an inefficient
process, which has hindered studying the role of critical intermediate stages.
Herewe take advantage of high efficiency reprogramming inmicrofluidics and
temporal multi-omics to identify and resolve distinct sub-populations and
their interactions. We perform secretome analysis and single-cell tran-
scriptomics to show functional extrinsic pathways of protein communication
between reprogramming sub-populations and the re-shaping of a permissive
extracellular environment. We pinpoint the HGF/MET/STAT3 axis as a potent
enhancer of reprogramming, which acts via HGF accumulation within the
confined system of microfluidics, and in conventional dishes needs to be
supplied exogenously to enhance efficiency. Our data suggest that human
cellular reprogramming is a transcription factor-drivenprocess that it is deeply
dependent on extracellular context and cell population determinants.

The discovery of human induced pluripotent stem cells (hiPSCs)1 has
emphasized the function of transcription factors in controlling cell
identity, overlooking the role of cell-extrinsic signals. The repro-
gramming of somatic cells into hiPSCs is paradigmatic of a transcrip-
tion factor-driven change of cell identity in three distinct and well-
defined phases: cells exit a somatic state, transition through a
transgene-dependent promiscuous transcriptional and epigenetic
state, finally establish a self-renewing pluripotent identity. Several

studies have established hallmarks and roadmaps of hiPSC
formation2–6, and new technological advancements, such as single-cell
analyses, further refined our understanding of the reprogramming
process7,8. These works better characterized initial and final stages of
human reprogramming in detail but connected with intermediate
stages via hypothetical andmore uncertain trajectories. Whilst there is
a body of literature describing reprogramming trajectory in mouse9–11,
the fine dynamics of human reprogramming intermediates, which
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constitute the bottleneck of the process, remain largely unexplored
due to the complexity of recognizing and selecting rare phenotypes
that will evolve into a hiPSC fate.

It is thought that individual cells during reprogramming evolve
with a smooth progression under a selective pressure that results
into dominant “elite” clones12–15. It has been recently suggested that
reprogramming of murine cells may also depend on population
dynamics through cell-non-autonomous mechanisms in a context-
dependent manner, i.e. mediated by cell-secreted factors10,16,17. Con-
sistently with this hypothesis, we recently reported that the effi-
ciency of reprogramming of human somatic cells to hiPSCs can be
dramatically improved in a microfluidic confined environment18–20,
which enhances the accumulation of secreted factors21–26 and sus-
tains the acquisition of both primed18,19 and naive human
pluripotency27.

In line with this, we hypothesize that during human cellular
reprogramming, specific subpopulations control fate decisions
towards pluripotency by cell-extrinsic factors. We envision that the
communication between distinct intermediate sub-populations and
their shared extracellular environment lying in-between contributes to
shaping the route to pluripotency.

In this work, we take advantage of reprogramming in micro-
fluidics to have a high efficiency within a confined environment
(Fig. 1a), where secreted signals are accumulated, and distinctive
intermediate sub-populations can be effectively captured and char-
acterized. We perform integrated temporal multi-omic profiling dur-
ing reprogramming to reveal finely regulated dynamics of secreted
proteins accumulating in the extracellular space and a cellular het-
erogeneity arising during intermediate stages of reprogramming. We
investigate how these complex population dynamics aremodulatedby
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Fig. 1 | Development of a temporal multi-omic approach to study human cell
reprogramming inmicrofluidics. a Schematics of the in-scale conventional (Well)
and microfluidic (µF) setup (top), and comparison of reprogramming efficiency
therein (bottom). Two-sidedWilcoxon’s test was used to assess differences among
the conditions. n = 8 for Well and n = 15 for µF (***P =0.0001593). b Experimental
design for -omics experimental data collection during reprogramming in micro-
fluidics (Methods). scRNA-seqdatawerecollectedby stoppingparallel experiments
at day 0, 3 and every 48h. Proteomic data were obtained by tandem mass spec-
trometry analysis of conditioned media along the same reprogramming experi-
ments. For accurate relative quantification between time points peptides were
labeled by TMT. c Left: immunostaining of a single microfluidic channel at day 14
for pluripotencymarkers (NANOG and TRA-1-60). Middle and right: Morphological
(right) and transcriptional (middle) changes occurring during reprogramming,

sampled at day 0 (D0), day 5 (D5), day 9 (D9) and day 13 (D13). The percentage of
cells expressing a particular gene marker in a certain time-point is reported. CPM:
counts per million. d Left: dimensionality reduction plots for scRNA-seq (FLE) and
Proteomic (PCA) data. Sequencing data is shown as the distribution of transcrip-
tional patterns for single cells across sampled time-points. Proteomic data is shown
as the distribution of the proteomic pattern for sampled conditionedmediumover
a 48-hour period. Right: absolute number of differential features for each -omics
data, both up- (Up - red) and down-regulated (Down - blue). Each value refers to the
differential analysis between subsequent time-points. Peaks of deregulation are
highlighted (arrows). eMedian z-score of the 155 proteins found up-regulated from
day 5 (D5) to day 7 (D7) in proteomic data. Trends have been evaluated along the
time-course for both -omics data.
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extrinsic signals and how this facilitates the prompt acquisition of
pluripotency.

Results
Development of a temporal multi-omic approach to study
human cell reprogramming in microfluidics
In order to dissect cellular heterogeneity arising during human
somatic cell reprogramming and the role of the surrounding micro-
environment, we combined high-efficiency reprogramming (Fig. 1a)
with high-throughput single-cell RNA (scRNA-seq) and tandem mass
spectrometry (LC-MS/MS) on conditioned media (Fig. 1b). High-
efficiency reprogramming of human fibroblasts was achieved in
microfluidics (uF) with daily transfections of non-modified messenger
RNAs (mRNAs) encoding for POU5F1 (OCT4), SOX2, KLF4,MYC, LIN28,
NANOG 18,19 (Methods).With respect to non-uFmethods, this approach
generates a more efficient reprogramming, with a considerably and
significantly higher number of pluripotent colonies retrieved at the
end of the process (Fig. 1a). The analysis of the secretome was per-
formed on conditioned media pooled from microfluidic channels
every 2 days (Fig. 1b bottom)18,21,22. To maximise the effectiveness of
identifying the endogenous secreted proteins we used a chemically
defined medium based on E6 medium with the addition of FGF219

which has been shown to preserve the high efficiency of microfluidic
reprogramming (Supplementary Fig. 1a) while enabling high-
resolution and accurate detection of cell-secreted proteins (Supple-
mentary Fig. 1B–D and Methods). We quantified 4542 proteins, the
majority identified in 3 replicates (81%) and theothers identified inonly
2 replicates. Protein labeling by tandemmass tags (TMTs)28 allowed us
to obtain a relative quantification of each protein along the process
(Supplementary Fig. 1A). On the other hand, cells recovered for scRNA-
seq were collected before the first transfection (D0), 3 days after
transfection (D3) and then every 2 days (D5-D15—Fig. 1b top). We
generated sequencing libraries from independent captures for at least
two replicates per time-point, collecting altogether more than 40,000
single-cell transcriptomes. After the evaluation of the sequencing
quality, cell filtering, down-sampling and feature filtering, the final
datasets consisted of 20,000 high-quality single-cell transcriptome for
a total of 12,932 features detected (Supplementary Fig. 1E, F and
Methods). We have already reported that morphological changes
associated with conventional human cell reprogramming are recapi-
tulated in our microfluidic systems19: we observe quick mesenchymal
to epithelial transition (MET - before day 5) and epithelial cells clus-
tering and hiPSCs colony formation as soon as day 9 (Fig. 1c left and
right). Additionally, we correlated gene expression variation of known
markers to these changes, observing a bimodal, progressive loss of
fibroblast markers expression (ANPEP, SNAI2) and the opposite trend
for developmental patterning genes (FOXH1 and LEFTY2), that we2 and
others3 previously identified. (Fig. 1c middle). The expression of these
genes anticipated the onset of canonical pluripotency-related genes
(POU5F1 and NANOG - Fig. 1c middle). Interestingly, although expres-
sed by fewer cells (20% atD9), also pre-implantation genes (DPPA3 and
ALPPL2) showed a transient activation during intermediate stages,
decreasing when epiblast pluripotency (lower NANOG and higher
POU5F1) is reached, as we have already described2 (Fig. 1c middle and
Supplementary Fig. 1H).

To test the hypothesis that both cellular and extracellular
dynamics are interconnected, we reduced data dimensionality. scRNA-
seq data dimensionality was reduced using non-linear algorithms,
namely force layout embedding (FLE). The resulting diagram (Fig. 1d
top left) illustrates the profile of each cell as a point in a Euclidean
spacewhere cells are grouped based on their transcriptional similarity.
Interestingly, the graph shows high homogeneity of the fibroblasts
population at day 0 (D0) and higher heterogeneity thereafter, with
cells placed in the space according to their sampling day. Secretome
data dimensionality was reduced via a principal component analysis

that showed samples following a reprogramming temporal trajectory,
in agreement with sequencing data, with high reproducibility between
replicates (Fig. 1d bottom left). We finally compared the differential
features of each dataset along the time (Fig. 1d top right). As expected,
during the transition from D0 to D3, gene expression was the most
influenced by the transfection of reprogramming factors, as evidenced
by the high number of differentially expressed genes. From D3 on,
transcriptional changes start todecrease until D7,where they reach the
minimum magnitude. Finally, we observed at D7-D9 and D11-D13, two
more transcriptional waves in line with the onset of developmental
transitions and final acquisition of pluripotency.

Notably, in between the two first transcriptional waves (from D5
to D7), we observed a great increase in the number of secreted pro-
teins (Fig. 1d bottom right). We reason that the initial massive changes
in gene expression might induce the specification of a set of secreted
molecules that becomes manifest in the medium at D7 (Fig. 1e).

The massive number of secreted proteins at D5-D7 pointed us to
investigate the quality of secreted proteins and cell population
dynamics occurring in such a peculiar window of time.

Embryonic ECM accumulates during reprogramming
We specifically selected 555 proteins known to be secreted (Supple-
mentary Data 1) to get rid of intracellular proteins potentially released
by dead cells.We classified the identified categories into the twobroad
groups of extracellular matrix (ECM)- and soluble signal-related func-
tional annotations (Fig. 2a and Supplementary Dataset 2). Many ECM-
related categories were highly significant, including ECM deposition,
degradation and remodeling, and both integrin- and non-integrin-
mediated cell-ECM interactions (Fig. 2a left). A previous RNAi screen
also identified the critical role of cell adhesion in human reprogram-
ming, highlighting the role of intercellular factors needed for filament
assembly, branching, and disassembly5.

In our data, we found an overall increasing trend of ECM-related
protein accumulation, with different ECM components exhibiting
distinct dynamics (Fig. 2b). These dynamic changes started already at
days 3-4 (SPP1, COL4A1/2, SPARC), in some cases at days 5-6 (LAMC1),
or even later (COL18A1). We wondered whether the observed global
changes somehow resembled embryodevelopment stages. To address
this question, we selected the ECM proteins in our data that were
previously reported to be expressed at mRNA level at different stages
of human embryo development29. The concentration dynamics of
these proteins in our system showed the progressive establishment of
an ECM that recapitulates the one deposited at the stage of the late
inner cellmass (Fig. 2b, Supplementary Data 3). In conclusion, our data
support the idea that during reprogramming, not only fibroblasts are
converted to a primed pluripotent phenotype, but also the extra-
cellular context is shaped accordingly.

Dynamics of extrinsic regulatory signals during reprogramming
Our secreted proteins were enriched in several other processes,
demonstrating that this extracellular environment is rich in regulatory
signals. Figure 2a (right) shows a selection of signalling pathways
enriched within the Reactomedatabase (see Supplementary Data 2 for
full results). Among receptor tyrosine kinasepathways, PDGF andWNT
have already been shown to be implicated in embryodevelopment and
reprogramming30,31. We also identified the MET pathway as a link
between cell-cell communication via soluble environment, and cell-
ECM interaction via PTK2 (also known as FAK) adhesion.Moreover, the
regulation of insulin-like growth factor (IGF) pathway through IGF
binding proteins (IGFBPs) was significantly enriched, in line with pre-
vious studies32.

Looking at the temporal profiles of enriched signalling pathway
proteins and ligands (Fig. 2c, Supplementary Data 4), we found a
progressive accumulation of proteins that were previously shown to
play a role in mouse cell-non-autonomous reprogramming regulation:
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some senescence-associated secreted proteins (SASP), such as CXCL1
(also known as Gro-α), CXCL8, CCL2, IL633; YAP-target CCN1, also
known asCYR6134; inflammatory cytokines, such as IL6/11/19, CSF1/2/3,
LIF17. We found that JAK-STAT pathway, downstream of interleukin
signalling, was also significantly differentially expressed at tran-
scriptomic level between freshly-derived microfluidic hiPSC colonies

and the same colonies after 3-passage expansion in conventional
wells18 (Supplementary Fig. 2A).

We conclude that secreted proteins follow precise dynamics
during reprogramming and encompass a number of potential reg-
ulators of autocrine/paracrine signalling, including those involved in
ECM-mediated and soluble communication.
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Resolving cell population heterogeneity during reprogramming
As single-cell -omics succeeded in detecting heterogeneity arising dur-
inghumancell reprogramming,weapplied anunsupervised community
detection algorithm35 to our scRNA-seq data identifying 12 cell clusters.
We then took advantage of our formerly defined reprogramming-
associated gene signatures2 to annotate them (Fig. 3a, b). 7 clusters
showed high expression of somatic genes (“Somatic-Related” clusters,
SR), whereas 4 clusters were highly enriched by the developmental
signature (“Developmental-Related” clusters, DR). Finally, a residual
cluster was not enriched by either of those signatures and it was char-
acterized by a lower number of detected genes and total UMI counts,
thus we named it “NA” and excluded it from further analyses (Fig. 3c, d
and Supplementary Fig. 3A, B). As expected, SR clusters included non-
transfected fibroblasts (SR1) and cells captured at earlier days (SR2-5),
while DR clusters were enriched by cells collected at later time points
(fromD9 toD15) andhighly cycling (Fig. 3c). However,more than 97%of
SR6 and SR7 cells were sampled from day 11 (Fig. 3c) and were char-
acterized by low but detectable expression of embryonic genes (e.g.
POU5F1, LEFTY2) and were negative for NANOG, indicating reshaping of
fibroblast identity but at the same time inefficient acquisition of plur-
ipotency. Furthermore, these cells are in the G0/G1 phase of the cell
cycle, thus confirming their somatic nature and suggesting peculiar
identity in the reprogramming timeline (Fig. 3c). Despite their

developmental features, DR4 cells also did not express NANOG, while
showing high and very specific transcriptional levels of mesendoderm
genes (e.g. CER1, EOMES), suggesting a possible similarity with a differ-
entiating stage. DR clusters display higher expression of embryonic-
related signatures29, thus they appear to contain the productively
reprogramming cells (Supplementary Fig. 3C). However,the role of the
SRclusters is less clear (Fig. 3d left). To address the roleof SRclusterswe
perform Gene Set Enrichment Analysis (GSEA) using the secreted pro-
teins previously identified (Fig. 3d right in bold) and some gene sig-
natures thatwere foundenriched in the proteomic analysis (Fig. 3d right
andSupplementaryData 5). Surprisingly, the secretedproteins detected
by mass spectrometry appear to be transcribed by the cells in the SR
clusters, except for SR3 that might not be involved in the secretory
phenotype. These results highlight the presence of an unproductive
somatic fate, whose role is to express and secrete those factors that we
found to be shaping the extracellular environment during reprogram-
mingand thathavebeen found tocharacterize later stagesof embryonic
development.

Signalling contributions from different cellular subpopulations
Among all the gene sets analyzed, Matrisome36 and Late pluripotency2

associated genes were found to best describe the phenotype of D13-15
endpoints (Fig. 4a). Therefore, we decided to computationally
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investigate the routes linking such states to the somatic start-point by
applying Waddington Optimal Transport (WOT)10 (Fig. 4b and Supple-
mentary Fig. 4A). Results showed a common path until day 5 (D5), after
which cells started to exhibit different trajectories (Fig. 4b, Supple-
mentary Fig. 4B). We validated these findings through an unsupervised
pseudotime-based approach using Monocle337,38, which not only con-
firmed the bifurcation at day 7 (D7) leading to endpoints inside SR7
matrisomal and DR3 pluripotent clusters, but also introduced two
additional outcomes inside DR4 and SR2, respectively (Fig. 4b and
Supplementary 4C). While the mesendodermal nature of DR4 was
previously assessed, we focused on the characterization of SR2. GSEA
using common pathways (Methods) revealed the enrichment for terms
related to signalling molecules (Supplementary Data 6), therefore, we
hypothesized that this cluster might be implicated in the secretion of
the ligands detected in the medium. Indeed, most of them were sig-
nificantly enriched, with SASP having the highest enrichment score
(Fig. 4c and Supplementary Fig. 4D). We found SASP genes are highly
expressed and specific of this cluster (Supplementary Data 7), such as
cytokines (CXCL1, IL1B, CXCL8), metalloproteases (MMP1, MMP3), HGF
and its activators, PLAU and PLAUR (Fig. 4d, e). Notably, almost all of
them were detected by LC-MS/MS with some (CXCL1, CXCL8, CCL2,
SPP1, PLAU) being the first to be accumulated in the medium (Fig. 2c).

In conclusion, we were able to define human somatic repro-
gramming as a process consisting of twomajor outcomes, matrisomal

and pluripotent, deriving from the same starting cells which bifurcate
around day 7 (D7). Moreover, among matrisomal somatic cells, we
identified and characterized an early sub-population of cells which
contributes to the expression and secretion of SASP-related signalling
molecules.

Reprogramming fates interact through different ligand-
receptor pairs
To rationally understand whether somatic subpopulations arising
during reprogramming are actively involved in the population cross-
talk with productive reprogramming intermediates, we developed a
ligand-receptor interaction analysis from the cells laying on the
somatic trajectory towards the reprogramming ones (Fig. 5a). Using
the previously identified secreted proteins (Fig. 1) that fall in the list of
experimentally validated ligand-receptor couples39, we restricted the
number of putative interactors involved in subpopulation crosstalk to
a set of 82 pairs (Supplementary Fig. 5A, Supplementary Data 8 and
Methods). We were able to identify a standardized interaction score
(sIS) by leveraging the gene expression trends of ligands along the
matrisome route and of receptors along the path to pluripotency
(Methods).

The results showed that almost every ligand-receptor pair had a
significant sIS in at least one time-point (Supplementary Fig. 5B and
Supplementary Data 9). Moreover, when looking at the couples with

Fig. 4 | Trajectory inference reveals different fates during reprogramming.
a Matrisome and Late pluripotency enrichment scores shown along the FLE map.
bMonocle3 (black line) andWOT (colored dots) trajectory inferences are displayed
on the FLE graph. Arrows point to the starting point (blue) and 4 end points (red) of
the inferred trajectories. A representative scheme of the trajectories is shown on
the top-right. c Enrichment Score graph relative to the GSEA of SR2 cluster for
senescence-associated secreted proteins geneset (SASP)60–63. Black lines on the x

axis represent a match between the ranked list and the geneset analyzed. NES,
Normalized enrichment score. FDR, False Discovery Rate. d Venn diagram repre-
senting the intersection between SASP geneset and SR2 cluster marker genes and
their relative gene expression, shown in a (e) heatmap of Z-scored normalized
counts, averaged by clusters. Genes with (*) have been detected in secretome
analysis.
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the greatest scores, we observed many ligands involved in signalling
cascades which are already known to be associated with pluripotency
maintenance, such as Wnt, Tgfβ and Inhb signalling31,40,41 (Fig. 5b).
These results were overall confirmed by a complementary unbiased
approach, based on an alternative interaction score computed as a
function of the absolute ligand and receptor expression levels and
their log2 fold change with respect to the average expression level
across all time points (Supplementary Fig. 5C, Supplementary Data 10
and Methods).

Among these interactors, 8 ligands were related to SASP, of these
4 were soluble and highly dynamic in both transcriptomic and pro-
teomic data: SPP1, INHBA,NRG1 andHGF (Fig. 5c). As INHBA is a known
pluripotency regulator40, and SPP1 is the major HGF-regulated gene42,
we focused our analyses on HGF and NRG1.

The HGF-MET interaction occurred at early time-points of the
reprogramming (Fig. 5d) with HGF expressed by cluster SR2 and SR5
and its receptor MET expressed by cluster DR1. Both HGF and MET
were highly expressed in the early intermediate stages and decreased
in the later time points, suggesting a role in the reprogramming
intermediates. Thus, we explored whether the same HGF-MET
dynamics was present in a conventional (i.e., Petri dish) human
reprogramming approach7 and not strictly related to the microfluidic
environment. scRNA-seq data exploration, using authors-defined
clusters7, showed that the cluster noRepro1, enriched for SR sig-
natures (Supplementary Fig. 5D), expressed high levels of HGF
(Fig. 5e), whereas MET expression was observed in the mixed inter-
mediate cluster, overlooked by the authors (Fig. 5e). Remarkably, the

analysis of RNAseq data from reprogramming of secondary human
fibroblasts cultured on mouse embryonic fibroblast feeder (MEF)2,
showed the expression of HGF only from MEFs while MET was upre-
gulated in human cells undergoing reprogramming at day 8 (OSKM
-Fig. 5f left). Therefore, we performed reprogramming experiments
with depletion or addition ofMEFs and observed a drastic reduction in
the ability of generating pluripotent colonieswhen cultured in absence
of feeder cells (Fig. 5f right), suggesting a pivotal role of HGF-MET
interaction in sustaining pluripotency. These results showed a com-
mon behaviour of HGF vs MET expression in the early phase of the
reprogramming, being expressed by matrisome producing/support-
ing cells and reprogramming intermediates respectively, regardless of
reprogramming approach and culture system. On the other hand, the
NRG1-ERBB3 interaction showed higher sIS between clusters along the
same developmental trajectory in a sequential fashion: NRG1 is
expressed by DR clusters at earlier stages (until D9), while its receptor,
Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3), is expressed by late DR
clusters (starting from D7) (Fig. 5g). The same information can be
retrieved from Liu et al., 20207 and Cacchiarelli et al., 20152, observing
the sequential expression of NRG1 then ERBB3 only along the repro-
gramming intermediates, with NRG1 decreasing halfway during
reprogramming route, ERBB3 increasing from halfway, and a central
timeframe of co-presence (Fig. 3h, i). Therefore, as NRG1-ERBB3
expression occurs only along the reprogramming trajectory, we did
not get significant results when comparing MEFs versus human
reprogramming intermediates from our human secondary system
(Supplementary Fig. 5E)2.
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Altogether, these findings suggest a crosstalk between cell sub-
populations, with an active role of non-pluripotent cells in supporting
the route of other cells to pluripotency. We demonstrated that such
non-pluripotent cells can be part of the same (i.e. NRG1 and ERBB3
both expressed during DR trajectory to pluripotency) or different
trajectories (i.e. HGF ligand expressed by SR trajectory towards
matrisome vs MET receptor expressed by DR trajectory towards
pluripotency).

HGF-MET crosstalk functionally sustains the acquisition of
pluripotency through STAT3
Considering the results from the ligand-receptor analyses, we then
asked whether the HGF-MET interaction has a functional role in the
progression of intermediate states towards pluripotency.

HGF is a growth factor involved in many cell functions and it is
mostly secreted by mesenchymal cells, while acting on epithelial
ones43. In our reprogramming, it is biologically active as its activator
complex PLAU/PLAUR was also found in the secreted med-
ium (Fig. 2c).

On the other hand, MET is a tyrosine kinase receptor activated by
its ligand HGF. This binding induces MET catalytic activity and results
in downstream initiation of multiple pathways, including STAT3 direct
phosphorylation or via Janus kinase 1 (JAK1 - Fig. 6a). This activation
axis is shared with other two ligands (i.e. LIF and IL6), known to be
involved in murine pluripotency (Fig. 6a)16,44.

To test the STAT3 pathway involvement in our reprogramming
setup, we investigated its activation throughout the reprogramming
process in microfluidics.

Fig. 6 | Perturbation of STAT3 pathway components affect the efficiency of
reprogramming. a A schematic representation of HGF/c-MET/STAT3 signalling
pathway (Created with BioRender.com). b STAT3 target expression correlates with
MET transcription. In the FLE graph, green dots represent cells with positive
enrichment scores for STAT3 target genes (Methods). Bigger circles summarize
averaged HGF (left) and MET (right) gene expression in identified clusters. Sig-
nificant inter-cluster HGF-MET interactions are displayed (arrows). Arrow thickness
relates to the strength of the interaction. c Top, representative images of expres-
sion of nuclear STAT3 and c-MET during reprogramming performed in micro-
fluidics at day 6. Bottom, correlation between the expression intensity of nuclear
STAT3, c-MET, and cell size obtained from experimental data shown on top. Data
fromn = 61 cells (n = 3 independent experiments).d Left, reprogramming efficiency
inmicrofluidicsmeasured as the relative area occupiedbyNANOG+ colonies in cells
upon inhibition of c-Met and JAK1 kinases using small molecules at day 12, com-
pared to the ones treatedwith the vehicle (n = 6 for vehicle, n = 12 for JAKi and n = 7
for c-METi); ANOVA followed by two-sided Dunnett’s multiple comparisons test
was used to assess differences among the conditions (JAKi − 95% CI [0.5645,1.039],
*** FDR=0.0001; cMETi – 95% CI [0.548, 1.076], *** FDR =0.0001). Right, repre-
sentative quantification pictures in microfluidic channels assessed by immunos-
taining of NANOG. e Left, reprogramming efficiency in microfluidics upon knock-
downof STAT3using siRNAs at day 12 (n = 8 for scramble siRNA,n = 11 for siSTAT3);

two-sided unpaired t-test wasused to assess differences among the conditions (95%
CI [0.7511,1.154], ***P <0.0001). Right, representative quantification pictures in
microfluidic channels assessed by immunostaining of NANOG. f Bottom, repro-
gramming efficiency in standard 24-well plates upon addition of HGF, IL-6 and
soluble IL6 receptor (sIL6R), or NRG1 at day 9 (n = 14 for control, n = 19 for HGF,
n = 5 for IL6 + sIL6R, n = 16 for NRG1); ANOVA followed by two-sided Dunnett’s
multiple comparisons test was used to assess differences among the conditions
(HGF − 95% CI [−1.693, −0.6466], *** FDR =0.0001; IL6 + sILR – 95% CI [−1.744,
−0.1955], **FDR =0.0083; NRG1 – 95% CI [−1.319, −0.2312], ** FDR=0.0021). Top,
representative quantification pictures in standard 24-well plates assessed by
immunostaining of NANOG and TRA-1-60. g Bottom, reprogramming efficiency in
standard 24-well plates upon temporallymodulate addition ofHGF, IL6 and soluble
IL6 receptor (sIL6R), andNRG1 at day 9 (n = 14 for control,n = 6 forHGF in the early
phase and NRG1 in the late phase, n = 4 for HGF + IL6 + sIL6R in the early phase and
NRG1 in the late phase, n = 4 for HGF + IL6 and sIL6R +NRG1 for the entire process);
ANOVA followed by two-sided Dunnett’s multiple comparisons test was used to
assess differences among the conditions (E HGF + L NRG1 − 95% CI [−1.705,
−0.2549], ** FDR=0.0038; E HGF/IL6 + sILR + L NRG1 – 95% CI [−2.698, −1.013],
*** FDR=0.0001; ALL – 95% CI [−3.746, −2.061], *** FDR =0.0001). Top, repre-
sentative quantification pictures in standard 24-well plates assessed by immunos-
taining of NANOG and TRA-1-60.
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First, HGF and MET were differentially expressed by SR (higher
HGF) and DR (higherMET) clusters and came up as early interactors in
a cluster-based interaction analysis (circles and arrows in Fig. 6b).
Furthermore, STAT3 nuclear target transcriptional enrichment45

revealed their activation from day 5, along the reprogramming route
(green dotted cells in Fig. 6b), in agreement with MET signalling
activity. Finally, at the protein level, we observed STAT3 nuclear
localization (indicative of STAT3 activation) during intermediate days
(D4, D7) and at the end of the process (D12 - Supplementary Fig. 6A).

To give further evidence, we then investigated the localization of
MET and STAT3 at day 6. We found that cells of smaller size (under-
going the mesenchymal-to-epithelial transition) show the highest
intensity of both c-MET and nuclear STAT3 (Fig. 6c). Finally, we sepa-
rately inhibited two kinases along the STAT3 axis, MET and JAK1, using
small molecules and assessed reprogramming efficiency by immu-
nostaining analysis of NANOG at day 12. Consistent with our hypoth-
esis, we observed a significant loss of reprogramming efficiency upon
inhibition of STAT3 (Fig. 6d). These data were confirmed by a direct
knock-down of STAT3 mRNA using specific siRNA, that efficiently
reduced both STAT3 nuclear localization in all cells at day 6 (Supple-
mentary Fig. 6B) and reprogramming efficiency at day 12 (Fig. 6e).

Lastly, we testedwhether the addition of signallingmolecules was
capable of further improving reprogramming yield in conventional
culture systems that are otherwise far less efficient than microfluidic
systems (Fig. 1a). For this purpose, we selected molecules that were
found dynamically in the secretome analysis or involved in cell-cell
interactions (e.g. HGF, IL6 andNRG1). In conventional culture (i.e. Petri
dishes),we sawa significant increase of about 2-fold in reprogramming
efficiency in terms of relative TRA-1-60+/NANOG+ area when medium
was supplementedwith eitherHGF, IL6 and its soluble receptor (sIL6R)
to activate STAT3 signaling16, and NRG1 throughout the reprogram-
ming process (Fig. 6f). Consistent with the idea that multiple signals
are involved in the first phase of reprogramming and the second phase
of hiPSCs stabilization, secretomeand single-cell RNA sequencing data
showed more accumulation of HGF and IL6 in early phases of the
reprogramming process, while NRG1 came out at later stages. To
mimic this timing, we added HGF alone or with IL6/sIL6R in the first
half, and NRG1 in the second half. This resulted in a further increase in
the reprogramming efficiency up to three folds (Fig. 6g). However,
when supplementing the medium with HGF, IL-6, sIL-6R and NRG1
together, we were able to reach the highest efficiency (i.e. 5-fold over
controls), thus suggesting that the combination of specific signalling
pathways further boosts hiPSCs formation (Fig. 6g).

Discussion
Our integrative approach of secretome and single-cell transcriptomic
analyses revealed a previously unappreciated crosstalk between sub-
populations during the intermediate stages of human reprogramming.
Whilst population heterogeneity was also described in recent papers,
both in mouse9–11 and human4,7,8, these works reported the formation
of distinctive cell clusters and diversification of pluripotent trajec-
tories, viewing the unproductive/refractory subpopulations as a
“problem” or limitation in the process. Instead, here we highlight the
crucial role of reprogramming intermediates and the positive con-
tribution of non-pluripotent clusters as actively supporting and shap-
ing the route of the reprogramming cells towards a hiPSC identity.

The efficiency of human somatic cell reprogramming heavily
relies on the successful transient accessibility and overcoming of
specific intermediate stages but, given the generally low reprogram-
ming efficiency, these stages have been hard to identify. Few strategies
were previously adopted to capture human intermediate
reprogramming-committed subpopulations such as cell sorting3,4 and
secondary reprogramming systems2.

Supported by the microfluidic culture system, we took a step
further through the unbiased identification of the reprogramming

subpopulation trajectories and interactions based on an integrative
secreted proteome and scRNA-seq analysis. The former identified a
number of secreted cytokines, growth factors and ECM-related pro-
teins actually present in the extracellular space during reprogramming
and contributing to establish an environmental signaling resembling
the early embryo basal lamina. scRNA-seq identified two main trajec-
tories during reprogramming, with one almost exclusively responsible
for secretory activity and one committed to reprogram. It was prob-
ably the reduced secretory activity of nascent hiPSCs or their low
abundance that led previous works to overlook the role of the extra-
cellular environment, failing to recognize nascent hiPSCs as a secre-
tome target4. Recently, a few works suggested the potential for cross-
population signalling inmouse reprogramming9–11 including the roleof
SASP and senescence33, but until now the molecular mechanisms and
rationale behind human non-cell autonomous signaling remained
unclear.

In this study, scRNA-seq could identify the putative subpopulation
interaction dynamics during microfluidic reprogramming. In parti-
cular, the identification of the two distinctive trajectories, somatic
secretory and reprogramming, was instrumental for scoring the
putative ligand-receptor association responsible for the unidirectional
support of the developmental trajectory towards pluripotency.
Secretome analysis, performed here for the first time, could further
reduce thedimensionality of the interactions, restricting themto those
whose soluble ligandwas actually detected as secreted at protein level.
Only four ligands passed these restrictive selection criteria: INHBA,
SPP1, NRG1 and HGF. INHBA was previously described40, SPP1 is
downstreamof the HGF pathway42, thus we focused onNRG1 andHGF,
not previously implicated as reprogramming regulators. Interestingly,
NRG1 signalling occurred within the reprogramming trajectory, while
HGF involved population cross-talk from the secretory somatic to the
reprogramming trajectory.

HGF is part of SASP, however it was not measured in Mosteiro
et al., 201633 who instead identified IL6 in mouse cell reprogramming.
Both HGF and IL6 signaling have STAT3 as a common effector,
although via different receptors46, and other works reported a positive
correlation between STAT3 activity and in vivo reprogramming
efficiency16,47. In our human reprogramming systems2,19, IL6 was pre-
sent both at transcriptional andproteomic level, howeverwe could not
detect its receptor, IL6R, in any subpopulation at any stage. Indeed, we
were able to enhance reprogramming efficiency with IL6 only upon
providing a soluble form of IL6R. The axis HGF/MET/STAT3 was first
reported in cancer stemness and promotes the expression of plur-
ipotent genes46. HGF-MET was demonstrated to take part in a
mesenchymal-epithelial cross-talk48.

HGF/MET physiological expression during development starts in
the primitive streak where they take part into the so-called branching
morphogenesis49,50. Therefore, it is intriguing to observe in our data
the recapitulation of ECM organization resembling this state51,52, with
HGF secreted within the somatic trajectory, while its receptor, MET,
especially present along the reprogramming one (Supplementary
Fig. 6C, D).

We performed extensive experimental validation both in micro-
fluidics and in conventional culture systems. Our loss of function data
clearly show that MET activation and STAT3 signalling play an impor-
tant role in preserving the efficiency of reprogramming, supporting
the idea that HGF/MET/STAT3 may have a crucial role in the pheno-
typic conversion of developmental subpopulation towards plur-
ipotency. Our gain of function experiments within the conventional
culture system (i.e., Petri dish) support our hypothesis of the role of
miniaturization in concentrating endogenous HGF and show the pos-
sibility of scaling up our findings for wider applicability. Whilst a
positive role of STAT3 signalling has been extensively characterised
during maintenance and induction of mouse naive pluripotency53,
STAT3 signalling pathway is not active in primed human hiPSCs. It is
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therefore particularly striking that we find transient STAT3 activity to
be of benefit during human reprogramming to primed hiPSC identity,
and highlights that we must consider the environmental niche
requirements of the intermediate states, which may differ from those
of the endpoint target identity.

In our work, we followed an unbiased approach that supports the
idea that the route to pluripotency can be broadened by cell-non-
autonomous mechanisms. Paracrine signalling is established by highly
regulated dynamics with multi-factorial contribution. We showed the
useofHGF for gainof functionduring reprogramming in a conventional
culture system, but this efficiency was amenable to further enhance-
ment when multifactorial contributions were used. In particular, we
used IL6 and soluble IL6R for amore effective downstreamactivation of
STAT3.Moreover, we found that NRG1 contribute to enhance efficiency
of hiPSC formation consistently with previous works, which upon
binding ERBB2/ERBB3 receptors activates MAPK/ERK pathway and
showed improved maintenance and passage of hiPSCs54,55.

In conclusion, this work reports an overview of the environment-
mediated subpopulation cross-talk during reprogramming and iden-
tifies some specific critical players. Important implications of our work
are related to in vivo reprogramming, where environmental factors
cannot be controlled but may affect potential applications. Moreover,
strategies to reprogram in vitro fibroblasts from any donor with high
efficiency aredown the roadandunlock thepossibilities of using hiPSC
asmodeling systems for a large number of patients, including their use
as diagnostic tools in predicting patient-specific genotype-phenotype
associations in disease.

Methods
Microfluidic device
In this work, we used a microfluidic device, fabricated by soft litho-
graphy technique and replica molding, previously published by our
group19. Polydimethylsiloxane (PDMS) with a 10:1 base/curing agent
ratio (Dow Corning) was coupled to a borosilicate glass slide
(Menzel–Gläser) through plasma treatment of surfaces.

Briefly, the microfluidic platform consists of 5 independent cul-
ture chambers, with the following dimensions: 18.8mm of length,
1.5mmofwidth, and 0.2mmheight with a 5.6μL volume. The device is
sterilized by autoclaving before use. During experiments the micro-
fluidic chips are placed in a dish, surrounded by a water bath to reduce
medium evaporation.

Cell culture
BJ cells (Miltenyi Biotec, 130-096-726), human newborn skin fibro-
blasts, were cultured with complete Dulbecco’s modified Eagle’s
medium (DMEM, Thermo Fisher, 41965 or 11965), supplemented with
10% fetal bovine serum (FBS, Thermo Fisher, 10270106 or 10099-141).
Cells were maintained at 37 °C in the presence of 5% CO2 and peri-
odically tested for mycoplasma contamination.

Reprogramming in microfluidics
Microfluidic cell cultures were performed as follows. On day 0 human
fibroblastswere seeded in themicrofluidic chambers, at a density of 60
cell/mm2, after a coating with 25μg/mL of cold fibronectin (Sigma
Aldrich). Before placing chips in the incubator, 1ml of PBS 1× was
added to the bottomof the dish, in order tomaintain proper humidity.
From day 1 to day 8, in the morning medium was replaced using
Reprogramming Medium, whereas in the night mmRNAs transfection
wasperformed, as reported inGagliano et al., 201919. Fromday9 today
15, medium change was performed every 12 h using Pluripotency
Medium.

Reprogramming of human fibroblasts to hiPSC colonies
We generated hiPSCs from human foreskin BJ fibroblasts using
microfluidic technology as previously described19. For proteomic

analysis, a total of 10 mRNA transfections were performed using
StemRNA-NM reprogramming kit (Stemgent, 00-0076) and Stem-
MACS mRNA transfection kit (Miltenyi, 130-104-463), in E7 medium,
made from E6medium (Thermo Fisher, A1516401) supplemented with
100ng/mL FGF2 (Peprotech, 100-18B-1000), switched to E8 medium
(Stem Cell Technologies, 05990) from day 11. Whereas, for single-cell
RNA-seq, 8 mRNA transfections were performed in supplemented
Pluriton medium (Stemgent, 00-0070), switched to StemMACS iPS-
Brew XFmedium (Miltenyi Biotec, 130-104-368) from day 9. Validation
experiments were performed either in microfluidics according to
single-cell RNA-seq protocol or in standard 24-well plates according to
manufacturer’s instructions; they were performed under suboptimal
conditions to enhance reprogramming efficiency differences, and
medium was supplemented with HGF 100ng/mL (Peprotech, 100-39),
IL-6 50 ng/mL (Peprotech, 200-06), IL-6r 10 ng/mL (Peprotech, 200-
06R), NRG1 100ng/mL (R&D, 396-HB), during the whole process
duration, according to the specified perturbation conditions using
both Pluriton medium and Nutristem hPSC XF Medium (Biological
Industries, 06-5100-01-1 A) supplemented with 20 ng/mL FGF2. The
loss of function experiments were performed in microfluidics sup-
plementing the medium with Jak Inhibitor I 1uL (Millipore, 420097)
and c-METi 600 uM (Selleck, PF-02341066) from day 1 to day 6. In
STAT3 knock-out experiments, siRNA STAT3 10 uM (Qiagen, 1027416)
orMOCKsiRNA 10uM(Qiagen, 1027284)was added in the transfection
mix from day 1 to day 6. In all cases, the whole process was performed
in a hypoxia incubator (5% O2, 5% CO2) at 37 °C.

Sample preparation for LC-MS/MS
During reprogramming, at every medium change or reprogramming
transfection, medium was collected in three replicates, pooling toge-
ther the conditioned medium from the same 40 channels for each
replicate. The media were stored at −80 °C until prepared for pro-
teomic analysis. After thawing, media from four collections (two con-
secutive days) were pooled together. For example, sample D1-D2 was
conditioned by the cells within themicrofluidic chamber from day 1 to
day 3 mornings. 3 kDa cut-off centrifugation membranes (Amicon
Ultra 0.5mL, Ultracel 3 K, Merck) were used for filter-aided sample
preparation (FASP)56. Proteinswere concentrated by centrifugation for
20min at 4 °C and 14,000 g, then washed twice with a 50mM trie-
thylammonium bicarbonate (TEAB, Thermo Scientific) buffer con-
taining 8M urea (Sigma-Aldrich). Protein content was quantified by
Pierce BCA Protein AssayKit (Thermo Scientific). Each sample proteins
were reduced for 60min at 56 °C with 100mM DTT (Sigma-Aldrich),
and alkylated for 30min at room temperature in the dark with 55mM
iodoacetamide (Sigma-Aldrich). Samples were washed with 50mM
TEAB for three times. An equal amount of protein for each sample was
digestedby trypsin (Promega) at 37 °C for 16 h.Digestedpeptideswere
desalted by C-18 spin column (Pierce) and vacuum dried. Then, label-
ing by 6-plex Tandem Mass Tag (TMT6, ThermoScientific)28 was per-
formed according to manufacturer’s instructions using 50μg of
peptides from each sample. The six-time point samples of each of the
three replicates were pooled, then desalted and vacuum dried.

Mass spectrometry analysis
25 pre-fractions were collected on UPLC (Agilent 1290) with high pH
C18 column (2.1mm×30mm). Before MS analysis, peptides were
resuspended in 10 µL of 0.1% formic acid. Thermo Fusion Mass Spec-
trometer coupled with Thermo EasynLC1000 Liquid Chromatography
was used to get peptides profiles. 90min of LC-MS gradients were
generated by mixing buffer A (0.1% formic acid in water) with buffer B
(0.1% formic acid in 80% ACN in water) by different proportions. Using
NSI as the ion source and Orbitrap as the detector, the mass scan
Range was at 300-1800m/z, and the resolution was set to 120K. The
MS/MS was isolated by Quadrupole and detected by Ion trap, whose
resolution was set to 60K. The activation type was HCD.

Article https://doi.org/10.1038/s41467-023-37270-w

Nature Communications |         (2023) 14:2829 10



Proteomic bioinformatic analysis
Peak list files were searched against UniProt human reference pro-
teome (UP000005640) byMaxQuant (v. 1.6.3.4)57. TMT6modification
and carbamidomethyl on cysteine were set as fixedmodifications. The
oxidation of methionine, acetylation of protein N-terminus, and
phosphorylation (STY) were set as variable modifications. Peptide-
spectrum matches (PSMs) were adjusted to 1% and then assembled
further to a final protein-level false discovery rate (FDR) of 1%. Proteins
not identified in at least 2 replicates in at least one time point were
excluded from further analysis. Common contaminants (keratins and
Bos taurus proteins) were also filtered out, for a final number of 4542
proteins identified. Missing values were imputed by the mean value of
theother two replicates. TMT intensitieswere normalized according to
BCA quantification to obtain a relative quantification proportional to
protein concentration in culture. The distributions of the three repli-
cates of TMT intensities were scaled by their respective medians. A
principal component analysis (PCA)wasperformed inMATLABR2017a
(The Mathworks) using mean-centered TMT intensities. A list of
secreted proteinswasmanually annotated by integrating the following
resources: secreted proteins predicted by MDSEC as reported in Pro-
tein Atlas database58 (http://www.proteinatlas.org), secreted proteins
from Data S1 in Gonzalez et al., 201059; a list of ligands from Gene
Ontology-Molecular Function categories “cytokine activity”, “growth
factor activity”, and “hormone activity”, and senescence-associated
secreted proteins (SASP) annotated from literature60–63. Of the pro-
teins identified in this study, only those secreted according to the
criteria above were further studied, in order to avoid the proteins
possibly derived from cell death. Differentially secreted proteins
between timepairs were assessedwith student t-test, using a threshold
of 5%. Proteins whose concentration wasmaximal only at the first time
point (D1-D2 sample) were excluded from further analysis, as potential
residual proteins from FBS used during fibroblast expansion. Func-
tional enrichment analysis of Reactome pathways was performed
using ReactomePA (v1.36.0)64 Bioconductor package. Reactome hier-
archy was visualized using ClueGO (v2.5.6)65 within Cytoscape
(v3.8.0)66. Genes specific to different human embryonic stages were
derived from a published single-cell RNA-seq study29, of these core
ECM genes were selected based on the annotations in Naba et al.,
201236. Proteins playing a role as ligands were taken from Ramilowski
et al., 201539. Hierarchical clustering with heat map data visualization
was performed in MATLAB R2017a, using Euclidean distance and
complete linkage.

Sample preparation for single-cell RNA-seq
For each time-point, cells were detached using TrypLE-express
(ThermoFisher, Gibco 12604). Harvested cells were then cen-
trifuged at 300 g and resuspended at the final cell density of
100 cells/mL using a solution containing 40% KnockOut Serum
Replacement (KSR, ThermoFisher, Gibco 10828) in DMEM. For each
timepoint, two replicates were produced, each containing cells from
4 independent chips that were pooled together then divided in ali-
quots containing 5000-80,000 cells. Samples were cryopreserved in
DMEM supplemented with 40% KSR and 15% DMSO and stored in
liquid nitrogen.

scRNA-seq libraries were generated using one or two samples for
each replicate. Briefly, each cryopreserved aliquot was thawed at 37 °C
until a tiny ice crystal remained in solution. Then each sample was
diluted under gentle shaking by dropwise adding 10 volumes of DMEM
supplemented with 40% KSR. Cells werewashed twice using a washing
buffer containing 8% MACS Running Buffer (Miltenyi, 130-091-221) in
PBS. Cells were then resuspended in the washing buffer and filtered
through a 40 µm cell strainer (Biosigma, 010198Z). Cell viability and
concentration were checked by visual inspection using Trypan Blue
(Logos Biosystems, L12002).

Single-cell RNA seq libraries were produced according to 10X
Single Cell 3’ v2.0 standard protocol and sequenced on Novaseq 6000
(Illumina).

Single-cell RNA-seq data pre-processing
scRNA-seq data pre-processing was performed using the cellranger
software (v 2.2). Fastq files were generated using the Cellranger pipe-
line mkfastq using 10X standard Chromium barcode sequences.
Alignment, filtering, barcode and UMI counting were performed using
theCellranger countpipeline. Humanpre-built genome index hasbeen
applied (hg38 genome reference and GRCh38 annotation, including
protein coding, linc and antisense RNAs). Each feature-barcodematrix
from each independent sample was merged to build up the final
dataset, containing 33,694 genes and 44,197 cells, then subjected to
cells and genes filtering. Cells having less than 1000 detected genes
and with the mitochondrial associated reads percentage greater than
10% were filtered out. Furthermore, in order to have a homogenous
sampling for each reprogramming day, the cell dataset was randomly
subsampled to 2500 cells per time point. The final dataset retained
only those genes expressed in at least 5% of all the cells, leading to
12,932 total genes. Gene expression values were normalized to CPM
(counts per million) and transformed to the log2 scale using a pseu-
docount of 1. Finally, cell-cycle scores and, consequently, phases were
assigned to each cell by Seurat’s (v.3.1.5) CellCycleScoring function.

Single-cell RNA-seq data visualization and clustering
To better visualize and characterize single cell data, high dimension-
ality was reduced. First, we computed the neighborhood graph using
the function compute_neighborhood_graph from the Python (v 3.9.5)
package wot (v 1.0.5)10, using 50 neighbors and choosing the first 100
PCA components and the first 20 diffusion map components. The
resulting 120 components were used as input to initialize the Force-
Directed Layout Embedding (FLE) algorithm, using forceatlas2 (v 1.0.3)
with 1000 iterations and reducing the space to 2 dimensions (FLE1 -
FLE2). The same components were also applied to perform an unsu-
pervised graph-based algorithm (louvain) using the FindNeighbours
and FindClusters (resolution = 0.6) functions in the Seurat (v.3.1.5)67

package. This step resulted in the identification of 12 clusters, anno-
tated based on the enrichment of somatic and developmental
signatures2 at the single-cell level (SR = somatic related; DR =
developmental related; NA = not assigned) and ordered by their com-
position in terms of time-points.

Single-cell RNA-seq differential gene expression and gene sets
enrichment
Differentially expressed genes among clusters were identified using
the FindAllMarkers function from Seurat (v.3.1.5), taking just LFC (log2
fold change) more than 0.25. For each gene, significance was assessed
with theWilcoxon rank-sum test P values, adjusted formultiple testing
using the Benjamini–Hochberg correction to retrieve the false dis-
covery rate (FDR). Only genes with FDR <0.01 were considered. As
expected, many gene markers were shared by clusters from the same
group (SR or DR) because of the continuous nature of data. We
therefore decided to select unique markers and to take duplicated
markers once, preferring the cluster where the LFC was the highest.

To perform enrichment of gene signatures in clusters, we used
pre-rankedGeneSet EnrichmentAnalysis (GSEA) from fgsea (v 1.14.0)68

R package. Pre-ranked lists for each cluster were generated by
assigning to eachgene its LFC relative to the average expression across
all the other clusters. Common pathways were defined as belonging to
several databases, i.e. Hallmark69, KEGG, Biocarta, Reactome and Gene
Ontology Biological Process.

Enrichment scores (ES) of gene signatures at the single cell level
were obtained by computing the z-score for each gene across the data

Article https://doi.org/10.1038/s41467-023-37270-w

Nature Communications |         (2023) 14:2829 11

http://www.proteinatlas.org


sheet. After truncating these scores at 5 or −5, the enrichment score
was defined by the average z-score over all genes in the gene set.

Single-cell RNA-seq trajectory inference
To infer the reprogramming trajectory, two different approaches were
used: wot (v 1.0.5)10 andMonocle3 (v 0.2.3.0)38. The former applies the
Mass Optimal Transport theory to the gene expression space to infer,
for each cell in a given sample, the most probable ascending and
descending cells in the previous and following timepoints. First, birth-
death rateswere computed for each cell by applying a logistic function
to the enrichment scores for Cell-cycle70 and Apoptosis (R-HSA-
109581, hsa04210, HALLMARK_APOPTOSIS in Liberzon et al., 201569). ß
and δ logistic functions were optimized (center = −0.1 and center =
0.15, respectively). Second, transport maps were generated in batch
for each pair of subsequent time-points using the functions wot.o-
t.OTModel (epsilon = 0.2) and compute_all_transport_maps. Finally,
trajectories were inferred using population_from_cell_sets and trajec-
tories functions starting from D15 cells that showed high enrichment
(> 2) for the signatures Matrisome36 and Late pluripotency2. For each
timepoint, cells having a trajectory probability greater than the mean
were considered to belong to the trajectory.

Monocle 3, on the other hand, learns a trajectory graph looking at
the gene expression changes required for each cell to move from a
state to another during a dynamic biological process. In particular,
UMAP coordinates in Monocle 3 were replaced with the FLE ones, in
order to obtain an FLE-based Monocle trajectory. Furthermore, clus-
ter_cells and learn_graph were performed by tuning the parameters k
(30) and ncenter (96), respectively.

Single-cell RNA-seq interaction analyses
Interaction analyses have been performed on a set of 82 ligand-
receptor pairs obtained as follows.

A putative list of 3333 couples has been generated from the
ligands identified in the secretome analysis with every possible
receptor. Afterwards, receptors have been filtered out in case they
were not defined as receptor on BioGrid or they did not belong to any
of these GO terms: GO-CC:0009897, GO-CC:0098802 and
GO:0004714. The resulting list of 1082 pairs was then filtered based on
the expression of both ligand and receptor in at least one cell (491).
Finally, we selected only those pairs that were experimentally
validated39.

Interaction scores between trajectories throughout the time-
coursewere evaluated as shown in Schiebinger et al., 201910 (Approach
1). Top interactors were selected by ordering the results by standar-
dized interaction score (sIS). Then, the highest ligand-receptor pair for
each day was assessed. All the unique couples with a sIS comprised
between the first and the last day-specific occurrence was taken.

HGF/MET cluster-to-cluster interaction scores were computed as
the product between the average gene expression value of MET in a
cluster and the value of HGF in another. Significancewas assessedwith
empirical p-value, generating a null distribution of 1000 permutations
on the association between cells and clusters.

Matrisome to late-pluripotency interaction was also evaluated
using a different, independent approach (Approach 2) using
scSeqComm71. First, each ligand and each receptor in a trajectory was
scored based on the probability of observing expression values higher
than the ones observable by chance from the expression levels of
random genes in the same trajectory and time point. Second, ligand-
receptor pairs scores were computed as the minimum (i.e. a fuzzy
logical AND operator) between the ligand score and the receptor
score. An empirical p-value was also computed doing the above pro-
cedure multiple times on a randomly permuted gene expression level
matrix (i.e. permuting multiple times the gene expression levels of
each cell independently) and then measuring the percentage of
interaction sub-scores higher than the obtained one. The score and the

corresponding p-value was computed as a function of both the abso-
lute ligand and receptor expression levels (as explained above) and,
similarly, for their log2 fold change in a specific trajectory/time point,
with respect to their average expression across the entire data matrix.

STAT3 targets expression
STAT3 targets were identified using a ChIP-seq dataset on HUS64
human embryonic stem cells45. In particular, STAT3 target genes were
defined as genes with STAT3 significant peaks at ±3000bp from the
transcription start site. For each cell, the STAT3 pathway enrichment
was computed from the scaled gene expression matrix as the average
value for all the STAT3 targets. For each enrichment value, the corre-
sponding p-value was calculated by performing a hypergeometric test
and using a random gene list to obtain the null distribution.

Bulk RNA-seq analysis of reprogramming data
To analyze the relationship between mouse feeders and human
reprogramming cells at day 8, we re-analyzed bulk RNA-seq data from
Cacchiarelli et al., 20152. Fastqs have been trimmed using Trim Galore
(https://github.com/FelixKrueger/TrimGalore) for quality and adap-
ters removal. Then, reads have been mapped with TopHat (v. 2.1.0)72

and Bowtie2 (v. 2.3.2)73 with default parameters against a hybrid build
of the human (hg38) and mouse (mm10) genomes. Reads aligned to
the mouse reference were few (alignment rate <20%), but it was con-
sistent with the purified nature of the samples, where mouse cells
should just represent contamination. Finally, read quantification was
performed with HTSeq (v. 0.9.1)74 on GENCODE human (GRCh38) and
mouse (mm10) genome annotations, including protein coding, linc
and antisense RNAs. The final count matrix was created by merging
mouse and human genes by orthology and differential expression
analysis was performed between human andmouse (feeders) samples
using DESeq275.

Immunofluorescence staining
For immunofluorescence staining, cells were fixed in 4% paraf-
ormaldehyde for 10min at room temperature, then permeabilized
with 0.1% Triton X-100 for 10min, blocked in blocking solution (DPBS
with 10% horse serum and 0.1% Triton X-100 for intracellular targets)
for 45min, followed by overnight incubation with primary antibodies.
The following antibodies were used for immunofluorescence: rabbit
anti-NANOG (Cell Signaling, 4903)(1:200), mouse anti TRA1-60 (Milli-
pore, MAB4360)(1:100), mouse anti-STAT3 (Cell Signaling, 9139)
(1:300), goat anti- HGFR/c-MET (R&D, AF276)(1:200). Alexa488 or
Alexa594 conjugated rabbit, mouse or goat secondary antibodies
(1:200) were used (Life Technologies, A21202; A21207; A11058). The
nuclei were stained with Hoechst 33342 (Life Technologies).

Images were acquired on a confocal TCS SP5 microscope (Leica)
at 40x magnification and on a fluorescence microscope DM6B (Leica)
at 5 and 10x magnification.

Assessment of reprogramming efficiency
Reprogramming efficiency was quantified after immunostaining with
TRA1-60 and NANOGmarkers. When the efficiency of reprogramming
was too high to allow counting single colonies, it was quantified as
relative TRA1-60+ and NANOG+ cell area divided by the total area
occupied by the cells. Since TRA1-60 is a membrane/extracellular
marker and NANOG is a nuclear marker, we considered TRA1-60 area
positive only where it overlapped with NANOG positive nuclear area,
for having the double positive cells as result.

Microarray data analysis
Previously published microarray data18 were analyzed by the Quanti-
tative Set Analysis for Gene Expression (QuSAGE v2.26.0)76 Bio-
conductor package within MSig DB – Hallmark gene set collection69.
Results were plotted by MATLAB R2017a.
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Secondary reprogramming experiments
Secondary reprogramming experimentswere performed aspreviously
reported in Cacchiarelli et al., 20152. Briefly, 105 TERT-immortalized
secondary fibroblasts (hiF-T) harbouring a doxycycline-inducible
OSKM cassette were seeded with or without irradiated mouse
embryonic fibroblast (MEF) in a 3:1 ratio. The day after seeding, cells
were treated with doxycycline (Sigma Aldrich, D9891-1G) (2 µg/mL) to
start the OSKM expression. In addition, LSD1 inhibitor RN-1 (MERK,
489479) was added at the final concentration of 10 nM to further
increase the reprogramming efficiency. Both treatments were pro-
longed for 21 days. Colony counting and visualization in bright-field
were performed by using a TRA-1-60 chromogenic staining77.

Statistics and reproducibility
Sequencing data were analyzed and plots were produced in R78 (v
4.2.0). Data variability is presented asboxplots,wherebars indicate the
median, boxes indicate the 25th and 75th percentiles,whiskers represent
median + /- the interquartile (25-75%) range multiplied by 1.5. The
number of replicates and the tests used to assess statistical differences
are reported within each figure caption. Experiments shown in Fig. 1C
have been repeated 10 times independently with similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq raw and processed data generated in this study have
been deposited in the GEO database under accession code
“GSE221739”. The proteomic data generated in this study have been
deposited in the Massive database under accession code
“MSV000090954 [https://doi.org/10.25345/C5M32NG9C]”. Other
databases enquired are: Protein Atlas, Gene Ontology, Reactome and
MSig DB. All other relevant data supporting the key findings of this
study are available within the article and its Supplementary Informa-
tion files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
The authorsdeclare that data analysis in this studywas performedwith
bioinformatic algorithms already publicly available. However, we
provide R scripts used to analyze scRNA-seq data. (DOI: 10.5281/
zenodo.7640602; https://github.com/panariellofrancesco/scRNAseq_
Reprogramming)79.
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