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Abstract
Sensing skins and electrical impedance tomography constitute a convenient
and inexpensive alternative to dense sensor networks for distributed sensing
in civil structures. However, their performance can deteriorate with the aging
of the sensing film. Guaranteeing high identification performance after minor
lesions is crucial to improving their ability to identify structural damage. In this
paper, electrical resistance tomography is used to identify the crack locations
in nanocomposite paint sprayed onto structural components. The main nov-
elty consists of using crack annotations collected during visual inspections to
improve the crack identification performance of deep neural networks trained
using simulated datasets through transfer learning. Transfer component analysis
is employed for simulation-to-real information transfer and applied at a pop-
ulation level, extracting low-dimensional domain-invariant features shared by
simulated models and structures with similar geometry. The results show that
the proposed method outperforms traditional approaches for crack localization
in complex damage patterns.

1 INTRODUCTION

Machine learning has been widely employed in the last
decades for structural health monitoring (SHM) in civil
engineering to improve the performance, accuracy, and
user-friendliness of damage identification methods. The
integration of signal processing techniques and machine
learning allowed for extracting hidden features from
the structural responses and automatically estimating
the global state of the monitored structure (Rafiei &
Adeli, 2017). Research has also been conducted to pro-
pose ready-to-use general identification frameworks
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(Soleimani-Babakamali et al., 2022). While automatic
assessment of the state of a structure may be helpful for
large-scale monitoring (e.g., many bridges in a region),
widespread adoption of fully automated procedures is still
limited in practice by the lack of familiarity and trust of
professionals. Indeed, visual inspections are still the most
widespreadmethods to assess the health state of structural
components (Nayyeri et al., 2019). Also, local inspections
are necessary to identify particular damage types. For
most structures, superficial cracks are the first sign of
damage (C. Zhang et al., 2020), which may manifest due
to the exceedance of a limit surface tension or fatigue
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without impacting the global dynamic behavior of the
system substantially.
In this context, vision-based algorithms have proven

extremely valuable in supporting operators with objective
analyses (Deng et al., 2020; Liu et al., 2020). For instance,
Chun et al. (2022) developed a deep learning-basedmethod
to describe the damage condition of a bridge through text
explanation. Y. Pan and Zhang (2022) proposed a dual
attention deep neural network (DNN) to classify damage
in steel elements automatically and depict their shapes on
the structure. Zheng et al. (2022) proposed a multistage
semi-supervised active learning framework to measure
the width of cracks in bridges quickly and reliably. The
high dimensionality of the input features in vision-based
methods (i.e., pixels) typically leads to relatively high com-
putational runtime. Although research efforts have been
devoted to improving the training efficiency of vision-
based methods for crack identification (Y. Zhang & Yuen,
2021), other aspectsmake vision-basedmethods not always
applicable for permanent SHM, such as interfering objects
and varying lighting conditions.
Alternatively, self-sensingmaterials can be coupledwith

methods to identify the bulk conductivity variation of
structural elements or imaging techniques. Conductivity
is related to the mechanical properties of the interrogated
body, and its discontinuities (e.g., cracks) generate con-
ductivity alterations that can be detected and localized.
Advantages of self-sensingmaterials include high sensitiv-
ity to disconnections and altered strain states (enabled by
electron tunneling;Hu et al., 2008; Tallman et al., 2014) and
ease of interrogation without external instruments.
Electrical impedance tomography (EIT) is an imaging

method (Borcea, 2002; Capps & Mueller, 2020; Holder,
2004; Z. Lin et al., 2020) recently used for nondestructive
evaluation and SHM (Loh et al., 2009; Tallman & Smyl,
2020) to infer a dense distribution of conductivity proper-
ties of a body interrogated electrically from sparse voltage
measurements. While piezoresistive structural compo-
nents can only be used for newly built structures or
replacements (Meoni et al., 2020), functional coatings can
be applied to regular structural elements to enable the self-
sensing capability of the outer surface (Jauhiainen et al.,
2021). In this context, Hou et al. (2007) first proposed a
multifunctional carbon nanotube-based thin film to local-
ize conductivity variations due to mechanical phenomena
and chemical agents using an EIT-based method. In the
same year, Loh et al. (2007) presented a carbon nanotube-
polyelectrolyte functional film deposited layer-by-layer to
encode multiple transduction mechanisms for corrosion
and strain sensing. A few years later, Loh et al. (2009)
applied carbon nanotube-polymer thin films to aluminum
plates for impact damage localization. Loyola et al. (2010)
studied the bulk resistivity and inter-nanotube electrical
behavior of piezoresistive thin films based on carbon nan-

otubes deposited onto glass fiber structures to identify
the strain state and microcracking of the substrate. Some
authors used different paint formulations based on silver
(Seppänen et al., 2017) and copper (Hallaji et al., 2014)
to identify cracks and corrosion. Moreover, other scholars
(Gupta et al., 2020; Sijia Li et al., 2022; Y. A. Lin et al., 2021)
identified strain in different directions using a patterned
sensing film through a difference imaging approach (i.e.,
using the difference of voltage measurements collected at
different times to reconstruct the conductivity variation
instead of the absolute conductivity of the inspected body).
Due to the ill-posedness of the conductivity reconstruc-

tion problem through EIT, extensive research has been
conducted to formulate effective mathematical resolution
strategies. The most popular ones involve the recursive
resolution of a weak formulation of Kirchoff’s law until
the solution matches the measurements (Gupta et al.,
2017) or the direct inversion of a strongly ill-conditioned
problem (Gupta et al., 2020). In general, both methods
also need regularization techniques. Absolute imaging
approaches typically showed higher resolution in recon-
structed images when observation noise and modeling
errors are limited, compared to difference imaging meth-
ods (Hallaji & Pour-Ghaz, 2014; Hallaji et al., 2014). On
the other hand, difference imaging is generally less sensi-
tive to error sources, but it may suffer from reconstruction
“artifacts,” especially in the regions close to the electrodes
(Hallaji & Pour-Ghaz, 2014).
As an alternative to physical-based algorithms, machine

learning approaches have recently gained popularity for
EIT imaging. Z. Lin et al. (2020) found that approaches
entirely based on neural networks may be faster than
physical-based procedures but generally provide less
robust results. Z. Chen et al. (2021) used a convolutional
neural network coupled with group sparsity regularization
to improve reconstruction quality. Very recently, Jeon et al.
(2022) employed a deep learning-based approach to iden-
tify rebar position in reinforced concrete elements with
high accuracy using a frequency-difference EIT approach.
L. Chen, Hassan, et al. (2022) employed a deep learned
framework to reconstruct the strain and stress fields in
piezoresistive nanocomposites for damage identification,
bypassing the resolution of the inverse EIT problem. In this
case, the authors used an absolute imaging approach due
to its suitability for reducing the discrepancy between sim-
ulated data (used for training) and realmeasurements. Xue
and Zhang (2022) used a dual-channel inception-dense-
cbam network model integrated with an attention mech-
anism for damage detection in carbon fiber-reinforced
polymers in a difference imaging approach, which proved
particularly robust to noise.
A well-known issue affecting supervised machine

learning approaches is that large datasets representa-
tive of realistic damaged conditions (typically missing for
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practical applications) must be used for training. Transfer
learning was proposed to “transfer” information between
two domains with common characteristics (i.e., a source
and a target domain) to extend the knowledge on the target
domain, for which fewer observations are typically avail-
able. In the field of crack identification, C. Zhang et al.
(2020), Shengyuan Li et al. (2019), andWu et al. (2021) used
transfer learning to improve the performance of neural net-
works for vision-based damage identification by retrain-
ing pre-trained networks. These approaches are typically
known as “parameter-level” methods or “fine-tuning” of
pre-trained models and do not modify the features.
As datasets are typically rare for real damaged struc-

tures, few instances collected for real cracks may be
insufficient for information transfer in parameter-level
approaches. In these cases, valuable information can
be transferred from simulated models to the real-world
domain. This field is typically known as “sim-to-real”
transfer. However, synthetic and real features may sub-
stantially differ due to noise and slight differences in
geometry or materials between simulated models and real
structures. In this context, domain-invariant features can
be obtained through feature-level transfer learning, also
known as “domain adaptation” techniques (Y. Lin et al.,
2022; S. J. Pan et al., 2011). This concept can also be applied
among a population of structures, where some features are
shared by different individuals with common characteris-
tics, in a population-level analysis (Bull et al., 2021). This
allows for improving the knowledge of specific structures
for which sufficiently large datasets are missing.
Previous studies showed that, in some cases, synthetic

data alone could be enough to train neural networks for
the identification of conductivity changes due to damage
or strain variations when the sensing body is originally
undamaged (Quqa et al., 2022). Nevertheless, while early
damage might be identified with good accuracy (Quqa et
al., 2023), the performance of neural networks typically
degrades with damage severity (L. Chen, Gallet, et al.,
2022; Hallaji et al., 2014; Seppänen et al., 2017). However,
not all surface disconnections are necessarily related
to structural damage. External agents may damage the

sensing films, thus reducing their ability to identify future
damage. Extending the lifespan of sensing films for SHM
is critical to reducing replacement costs and improving
identification performance when the sensing material is
already damaged.
This study proposes a new approach based on trans-

fer learning to gather information observed in the real
environment through visual inspections conducted after
detecting early damage and exploit it to update a DNN
trained with synthetic data (i.e., generated by a finite
element [FE] model). The main goal of this method is
to improve the capability to detect progressive cracks in
future monitoring.
In this study, domain adaptation is applied for the

first time for crack identification, transferring information
from the simulated to the real domain and at a popula-
tion level. Moreover, this study is the first to use a domain
adaptation method to solve the EIT imaging problem.
This paper is organized as follows: Section 2 introduces

the general methodology proposed. Section 3 describes the
theoretical background of FE formulation for theEIT prob-
lem, which is necessary to generate the structure of the
source domain. Section 4 defines the neural network archi-
tecture used for EIT imaging. Section 5 is the core of the
paper and describes in detail themethod proposed to trans-
fer information from simulated data and other structures
in the population to improve the performance of the neu-
ral network employed for crack identification. Section 6
describes experimental tests conducted in the laboratory
and discusses the results summarized in the conclusions
(Section 7).

2 GENERALMETHODOLOGY

A scheme of the proposed approach is summarized in
Figure 1. First, a FE model of the sensing film deployed on
a structural component is built (see Section 3), and several
damage scenarios are simulated by setting the conductivity
to zero in some regions (more details are provided in the
applications section). A preliminary DNN is then trained

Training of the
preliminary DNN

DNN update
(transfer learning)

Setup of the monitoring system Identification of
early damage

Visual inspection and
crack annotation

Identification of
progressive damage

F IGURE 1 Scheme of the proposed approach. DNN, deep neural network.
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using simulated data alone (see Section 4), and an SHM
system is deployed to identify early cracks from EIT data
based on this DNN (left-hand part of Figure 1). Literature
studies showed that DNNs could be successfully employed
for this task (L. Chen, Gallet, et al., 2022).
When early damage is detected, visual inspections are

typically scheduled in usual practice (this is the typical
case in which the SHM system triggers human interven-
tion). In this phase, operators can usemanual or automatic
annotation tools (J. Chen et al., 2022; Liu et al., 2020), for
example, by means of unmanned inspection devices, to
generate damage labels associated with the input dataset
used to predict the anomaly (central part of Figure 1).
After that, if inspectors decide that the structure can

still be used, the sensing film should still be able to iden-
tify further damage with the same accuracy as before.
Therefore, this study proposes a procedure to update the
preliminary DNN by including the real measurement and
the damage label annotated during the visual inspec-
tion in the training process to improve the reconstruction
performance in the followingmonitoring phases. This pro-
cess is carried out at the feature level, using the transfer
component analysis (TCA; S. J. Pan et al., 2011), a semi-
supervised domain adaptation technique, to account for
the inherent differences between simulated and real data
(see Section 5). Specifically, instead of using raw volt-
age measurements, the updated DNN is trained using
domain-invariant features obtained through TCA.
This method can also be applied at a population level,

such that different sensing films with the same geometry
can benefit from data collected in early damage states from
a given individual.

3 FE FORMULATION

EIT was first used as a noninvasive technique of medical
imaging in which the electrical impedance of a conductive
body is inferred from sparse electrodemeasurements on its
boundary to form a tomographic image of the body itself.
This problem, also known as the “inverse” EIT problem,
was initially formulated by Calderón (2006). Analytically,
it consists of recovering a distribution of the conductivity
𝜎 of a body Ω from the relation that exists between the
potential on its boundary 𝜙|Γ (where Γ is the boundary of
Ω) with the current density 𝑗 (Holder, 2004). This relation
can be either expressed as the “Dirichlet toNeuman” (DtN)
map Λ𝜎 ∶ 𝜙|Γ → 𝑗, or the “Neuman to Dirichlet” map
Λ−1𝜎 ∶ 𝑗 → 𝜙|Γ. The inverse EIT problem has generally
been studied using a discrete approximation through finite
FEmodeling for practical applications. Typically, the com-
plete electrode model (CEM; Holder, 2004) is employed
to incorporate the proper boundary conditions to model

the shunting effect and account for the contact impedance
of the electrodes with sufficient accuracy. Let a current 𝐼𝑞
be applied to the conductive body using 𝑄 electrodes with
areas 𝐸𝑞 (𝑞 = 1,… , 𝑄), and let Γ1 and Γ2 be the region
of the boundary covered by the electrodes and the remain-
ing part of the boundary, respectively. The CEM boundary
conditions are defined such that

∫
𝐸𝑞

𝑗𝑑𝑆 = 𝐼𝑞 on Γ1 (1)

𝑗 = 0 on Γ2 (2)

where 𝑑𝑆 represents a generic surface differential.
The impedance 𝑧𝑞 at the contact region between the

𝑞th electrode and the body is accounted for through the
following condition:

𝜙 + 𝑧𝑞𝑗 = 𝑣𝑞 (3)

where 𝜙 is the potential in the body, and 𝑣𝑞 is the rele-
vant voltage measurement with respect to some arbitrary
reference.
If the injected current is direct (DC), the EIT specializes

in electrical resistance tomography (ERT). In this context,
the DtN map can be written as

𝐢𝑞 = 𝐘𝐯𝑞 (4)

where 𝐢𝑞 ∈ ℝ𝑄 and 𝐯𝑞 ∈ ℝ𝑄 are vectors representing a cur-
rent injection and a related voltagemeasurement (between
pairs of electrodes) on the boundary of the interrogated
body, while 𝐘 ∈ ℝ𝑄×𝑄 is the transfer conductance matrix.
In general, different instances of 𝐢𝑞 and the associated 𝐯𝑞
are necessary to map the entire matrix 𝐘, which are gener-
ally selected according to specific measurement protocols
designed to minimize the number of interrogations. For
instance, the adjacent (or Sheffield—Loyola et al., 2013)
interrogation pattern consists of injecting the current into
couples of adjacent electrodes, one couple at a time. The
boundary voltage measured between all the other adjacent
electrode couples is recorded simultaneously, and the pro-
cess is repeated until the current is injected into all the
electrodes.
In the discrete formulation, the inverse ERT problem

consists of recovering a conductivity vector 𝝈 ∈ ℝ𝑀 from
𝐘, with 𝑀 denoting the number of triangular discrete
elements considered in the description of the conductive
body.
A weak form of the EIT problem can be formulated

to obtain a solution only at the 𝑁 mesh nodes of the FE
model. The obtained results can then be interpolated over
the entire region using linear shape functions𝑤𝑛, with𝑛 =

1,… ,𝑁, so that a discrete approximation of the potential
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can be written as

𝜙FE =

𝑁∑
𝑛=1

𝜙𝑛𝑤𝑛 (5)

The FE formulation of EIT can thus be written in a
matrix form as follows:[

𝟎

𝐢

]
=

[
𝐀𝐌 + 𝐀𝐙 𝐀𝐖
𝐀T
𝐖

𝐀𝐃

] [
𝝓

𝐯

]
(6)

Here, 𝝓 ∈ ℝ𝑁 and 𝐯 ∈ ℝ𝑄 represent the vector of poten-
tials in every node of themesh and the boundary voltage at
the electrodes, respectively, when the current represented
by the generalized current vector 𝐢 ∈ ℝ𝑄 is injected into
the conductive body. 𝟎 represents a vector with null ele-
ments. Besides, 𝐀𝐌 ∈ ℝ𝑁×𝑁 , 𝐀𝐙 ∈ ℝ𝑁×𝑁 , 𝐀𝐖 ∈ ℝ𝑁×𝑄,
and 𝐀𝐃 ∈ ℝ𝑄×𝑄 form the global transfer conductance
matrix and are defined as

[𝐀𝐌]𝑛1𝑛2
= ∫

Ω
𝜎∇𝑤𝑛1 ⋅ ∇𝑤𝑛2𝑑𝑉 (7)

[𝐀𝐙]𝑛1𝑛2
=

𝑄∑
𝑞=1

1

𝑧𝑞
∫
𝐸𝑞

𝑤𝑛1𝑤𝑛2𝑑𝑆 (8)

[𝐀𝐖]𝑛𝑞 = −
1

𝑧𝑞
∫
𝐸𝑞

𝑤𝑛𝑑𝑆 (9)

[𝐀𝐃]𝑞𝑞 =

|||𝐸𝑞|||
𝑧𝑞

(10)

where 𝑑𝑉 represents a generic volume differential, while
the notation [𝐀]𝑎𝑏 identifies the element on the 𝑎th row
and 𝑏th column of the matrix 𝐀. In Equation (10), 𝐀𝐃 is a
diagonal matrix with zeros in the off-diagonal terms.

4 DEEP LEARNING FOR
DISTRIBUTED SENSING

The inverse ERT problem is generally computationally
expensive, as it may require a recursive resolution of the
forward problem (Gupta et al., 2017). Alternatively, one-
step approaches have been applied in the last decades
(Gupta et al., 2020). However, the issue of computational
runtime is only partially addressed in these cases, as the
minimization process involved consists of the inversion of
large matrices.
In this study, the inverse ERT problem is addressed

using a machine learning approach, which consists of
representing the complex effect of localized conductiv-
ity variations on the electric field of a conductive body
using a DNN. Specifically, this paper considers conduc-

tivity variations induced by discontinuities (i.e., cracks) in
the conductive material. The problem is addressed from a
difference imaging perspective, inwhich the input and out-
put of the DNN employed for regression are represented
by the difference between two voltage measurements
obtained during different interrogations and the relevant
conductivity variation in the FE model, respectively.
DNNs need a preliminary training process conducted

using known input–output instances. Due to the substan-
tial number of instances typically required to train a DNN
appropriately, using real data for training is impractical,
especially if generating the instance involves damaging the
specimen, which represents the modeled body. Therefore,
in this study, an extensive training dataset is generated by
imposing different disconnection patterns in a simulated
FE model (i.e., reducing to zero the conductivity of some
elements of themesh) and solving the forward problem for
each case to obtain the voltage difference at the electrodes.
Let 𝐙 = 𝐘−1 be the transfer resistance matrix of the

interrogated body and 𝐈 = [𝐢1, … , 𝐢𝑄] a matrix embedding
the current injections of a Sheffield measurement protocol
(Loyola et al., 2013). The corresponding set of bound-
ary voltages can be expressed as 𝐕 = 𝐙𝐈, where 𝐕 =

[𝐯1, … , 𝐯𝑄]. Consider the vector 𝐯 ∈ ℝ𝐾 collecting the
components of 𝐕 organized in a column, excluding the
measurements taken at the electrodes employed for cur-
rent injection to avoid inaccuracies related to the unknown
contact impedance (Harikumar et al., 2013). In this case,
𝐾 = 𝑄(𝑄 − 3).
A set of 𝐶 simulated discrete conductivity vectors 𝝈(𝑐)

were generated by simulating random cracks in the FE
model of the conductive material, with 𝑐 = 1,… , 𝐶. For
each instance, a vector 𝐯(𝑐) was obtained by solving the
forward problem.
One possible strategy for distributed sensing through

deep learning is to train a DNN with a training set defined
as  = {𝛿�̄�, 𝛿𝚺}, where 𝛿�̄� = [𝛿�̄�(1), … , 𝛿�̄�(𝐶)] and 𝛿𝚺 =
[𝛿𝝈(1), … , 𝛿𝝈(𝐶)], with 𝛿�̄�(𝑐) ∈ ℝ𝐾 representing a normal-
ized boundary voltage difference between conditions 0
(i.e., a baseline configuration) and 𝑐, defined as

𝛿�̄�(𝑐) =
𝐯(𝑐) − 𝐯(0)

𝑣
(11)

where 𝑣 is the maximum of the absolute values of the ele-
ments in 𝐯(0), while 𝛿𝝈(𝑐) ∈ ℝ𝑀 is the difference between
the conductivity distributions obtained in the same condi-
tions:

𝛿𝝈(𝑐) = 𝝈(𝑐) − 𝝈(0) (12)

This strategy was proposed in previous studies (Quqa
et al., 2022; Quqa et al., 2023) andwill be used here to repre-
sent the reference performance of a DNN-based method to
solve the inverse ERT problem. This DNN will be referred
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F IGURE 2 Deep neural network (DNN) architecture.

to as “preliminary” DNN hereafter, as it is trained on syn-
thetic data alone. The architecture of the preliminary DNN
used in this paper consists of an input layer of dimen-
sion 𝐾 followed by four hidden layers with 2048 neurons
each, activated by exponential linear unit (ELU) functions,
and the output layer of dimension 𝑀, without any acti-
vation function. The choice of the number of neurons
followed a trial-and-error process. The configuration used
in this study provided higher identification performance
using the lowest number of neurons. The ELU function
was selected due to its robustness to noise, which typically
leads to faster learning (Clevert et al., 2015).
Batch normalization was carried out after the input

layer. A schematization of the reference DNN is reported
in Figure 2.
The forward propagation in each hidden layer provides

the following result:

𝐱𝑙 = ELU (𝐆𝑙𝐱𝑙−1 + 𝐛𝑙) (13)

where 𝐆𝑙 ∈ ℝ𝑅×𝑅 is the weight matrix, and 𝐛𝑙 ∈ ℝ𝑅 is
the bias vector of the 𝑙th layer. The training process is
conducted to determine the elements of the set of param-
eters 𝐃 = {𝐆1, … ,𝐆𝐿, 𝐛1, … , 𝐛𝐿 } using the samples of the
training dataset  as follows:

𝐃 = arg min
𝐃

(‖‖‖𝛿𝚺 −𝛿�̂� (𝐃,𝛿�̄�)‖‖‖2
)

(14)

where 𝛿�̂�(■) is a set that includes the outputs of the DNN
obtained by using all the samples in  . The trained net-
work can be used to predict the conductivity variation 𝛿�̂�(𝑐)
associated with a measured voltage difference 𝛿�̄�(𝑐) at the
electrode locations by feeding the DNNwith 𝛿�̄�(𝑐) and cal-
culating the forward propagation, up to the output layer,
using the trained parameters in 𝐃.

5 INFORMATION TRANSFER

Recently published works focused on machine learn-
ing implementations to solve the inverse EIT problem,

providing promising results (L. Chen, Gallet, et al., 2022).
However, due to the inherent differences between the FE
model and the real body used in a field application (e.g.,
measurement noise, modeling, and fabrication errors), the
real and virtual voltage measurements may differ substan-
tially. In some examples, pre-processing was performed on
simulated data to limit this issue (L. Chen, Hassan, et al.,
2022). Yet, this approach may be challenging to apply with
difference imaging.
The preliminary DNN may be the only tool available at

the beginning of the monitoring process due to the lack of
real datasets from the damaged structure. However, due to
modeling errors, the preliminary DNN can lead to inaccu-
rate crack localization for complex crack patterns, that is,
when the sensing film is already damaged.
This paper proposes using the TCA as a pre-processing

operation to extract meaningful features from simulated
voltage difference datasets that overlap those extracted
from real measurements collected after early damage. The
extracted domain-invariant features are then used as the
input to train an “updated” DNN, together with the refer-
ence conductivity distributions associated with simulated
cracks, which are at the output of the DNN. The updated
DNNcan thus replace the preliminaryDNN to predict con-
ductivity distributions from field voltage measurements
collected in the future.
To date, management decisions for damaged structures

are still made upon visual inspections, whichmay however
be triggered—and thus optimized—by automatic damage
identification procedures. Suppose that a first crack is iden-
tified in the monitored structural portion by processing a
voltage measurement 𝛿�̄�(𝑐𝑟). A visual inspection is thus
scheduled to assess the severity of damage and take suit-
able action. During the inspection, the crack location can
be annotated to generate a vector 𝝈(𝑐𝑟) on the mesh of the
FE model by setting the conductivity of the triangular ele-
ments overlapping the actual crack to zero. This vector
can then be used to generate a conductivity variation label
𝛿𝝈(𝑐𝑟) with respect to a baseline condition𝝈(0) according to
Equation (12). These datasets can be used to improve the
generality of the model trained on synthetic data to iden-
tify future crack evolutions more accurately. Specifically,
this section presents a procedure based on domain adap-
tation to project the synthetic training dataset 𝛿�̄� onto a
latent space with reduced dimensions, in which the distri-
bution of the synthetic instances overlaps that of a set of
real measurements 𝛿�̄�(𝑐𝑟) that triggered visual inspections.
This process is carried out using TCA (S. J. Pan et al., 2011).
Upon projecting the features onto the latent space, the
model (i.e., the DNN used for early damage detection) can
be refined to improve its accuracy for future predictions.
Domain adaptation is a feature-level strategy for transfer

learning that allows transferring knowledge from a source
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2432 QUQA et al.

domain to a different yet related target domain through a
convenient feature representation. This process consists of
selecting a limited number of transfer components across
domains, such that the features can be projected onto a
latent space spanned by the selected transfer components,
where their distributions overlap. TCA selects the transfer
components in a reproducing kernel Hilbert space based
on maximum mean discrepancy (MMD; S. J. Pan et al.,
2011). Projected features can thus be employed to train a
DNN with a smaller input layer. New instances from the
target space can be used as an input of the DNN upon
being projected onto the same latent space to predict a new
conductivity distribution.
S. J. Pan et al. (2011) presented a TCA-based approach

for domain adaptation, which encodes both labeled and
unlabeled instances for selecting transfer components.
This method operates by simultaneously addressing three
optimization objectives, namely, (1) minimize the MMD
between features distributions from the source and target
domain in the latent space, (2) maximize the dependence
of the projected features on the label information, and (3)
preserving the local geometry of the data.
In this study, the source domain is represented by the

synthetic dataset  , obtained using the FEmodel (see Sec-
tion 4). On the other hand, the target domain is that of real
measurements, in which voltage differences are obtained
by measurements at the electrodes of the conductive body,
and the related conductivity variations are labeled during
inspections.
Consider a matrix of real voltage measurements 𝛿�̄�∗ =

[𝛿�̄�(1), … , 𝛿�̄�(𝐶𝑟)] ∈ ℝ𝐾×𝐶𝑟 with the same structure as 𝛿�̄�,
where 𝛿�̄�(𝑐𝑟) are voltage measurements (herein addressed
as “prior measurements”) that predicted new cracks in the
past, triggering visual inspections. Here, 𝐶𝑟 represents the
number of inspections carried out at the time of the model
refinement. It is worth noting that, in general, 𝐶𝑟 ≪ 𝐶.
Similarly, consider a matrix of the relevant real labels gen-
erated during the inspections 𝛿𝚺∗ = [𝛿𝝈(1), … , 𝛿𝝈(𝐶𝑟)] ∈

ℝ𝑀×𝐶𝑟 .
Consider also a further unlabeled voltage measurement

𝛿�̄�(𝐶𝑟+1) collected very recently (herein addressed as “cur-
rent measurement”), for which we want to identify the
corresponding conductivity distribution.
Let 𝛿�̄�+ be the union of the real and synthetic voltage

datasets, such that 𝛿�̄�+ = [𝛿�̄�, 𝛿�̄�∗, 𝛿�̄�(𝐶𝑟+1)] ∈ ℝ𝐾×�̄� ,
with �̄� = 𝐶 + 𝐶𝑟 + 1. Similarly, 𝛿𝚺+ = [𝛿𝚺, 𝛿𝚺∗, 0] ∈

ℝ𝑀×�̄� is the set of synthetic and real labels, with 0 repre-
senting a column vector of zeros. Thereby, an extended
training set that includes the datasets of both domains can
be defined as  + = {𝛿�̄�+, 𝛿𝚺+}.
In general, due to the inherent differences between

the source and target domains, the marginal probabil-
ity distributions of the features are different, that is,

𝑃(𝛿�̄�) ≠ 𝑃(𝛿�̄�∗). TCA assumes that a transformation 𝜏

exists such that 𝑃(𝜏(𝛿�̄�)) ≈ 𝑃(𝜏(𝛿�̄�∗)) and 𝑃(𝛿𝚺|𝜏(𝛿�̄�)) ≈
𝑃(𝛿𝚺∗|𝜏(𝛿�̄�∗)). Instead of finding the nonlinear transfor-
mation directly, S. J. Pan et al. (2011) proposed a formu-
lation to find a transformation matrix related to a kernel
of the input data. This approach avoids the problems of
local minima related to highly nonlinear transformations.
Considering a linear kernel, let 𝐊𝐕 = (𝛿�̄�+)

T
𝛿�̄�+ and

𝐊𝚺 = (𝛿𝚺+)
T
𝛿𝚺+ be the kernel matrices of the voltage and

conductivity data, respectively.
The MMD distance between the empirical means of the

two domains can be minimized to ensure that the two dis-
tributions become more similar (Smola et al., 2007), that
is, to extract domain-invariant features. This distance can
be written as tr(𝐖T𝐊𝐕𝐋𝐊𝐕𝐖), with tr( ) denoting the
trace of its argument,𝐖 ∈ ℝ�̄�×𝑆 is the sought transforma-
tion matrix, and 𝐋 ∈ ℝ�̄�×�̄� is a normalization matrix that
accounts for the number of instances in the source and
target domains, used to calculate the MMD:

[𝐋]𝑎𝑏 =

⎧⎪⎪⎨⎪⎪⎩

1

𝐶2
if 𝑎, 𝑏 ≤ 𝐶

1

(𝐶𝑟+1)
2 if 𝑎, 𝑏 > 𝐶

−
1

𝐶+𝐶𝑟
otherwise

(15)

Therefore, optimization objective 1 consists of minimiz-
ing tr(𝐖T𝐊𝐕𝐋𝐊𝐕𝐖), also considering a regularization
term tr(𝐖T𝐖) to control the complexity of𝐖.
Concerning optimization objective 2, let �̃�𝚺 be a matrix

built to maximize the label dependence (Steinwart, 2001)
and the variance on the source and target domains accord-
ing to a weight parameter 𝛾, such that

�̃�𝚺 = 𝛾𝐊𝚺 + (1 − 𝛾) 𝐈�̄� (16)

with 𝐈𝑛 an identity matrix of size 𝑛 × 𝑛. It is worth noting
that all the prior measurements are considered as labeled
in this application, except the (𝐶𝑟 + 1)th. However, also
unlabeled data can be included in the first 𝐶𝑟 instances by
modifying𝐊𝚺 suitably (i.e., by setting [𝐊𝚺]𝑎𝑏 = 0 if the rel-
evant label was not measured). The influence of unlabeled
data in TCA will be discussed in future studies.
In order to address optimization objective 3, two neigh-

bor instances in the input space should still be neighbors in
the latent space. To this aim, S. J. Pan et al. (2011) exploited
the locality-preserving property of a manifold regularizer.
Specifically, consider a matrix𝐌 such that

[𝐌]𝑎𝑏 = exp

⎛⎜⎜⎜⎝
−

𝑑2
𝑎𝑏

2
(∑

𝑎,𝑏
𝑑𝑎𝑏

)2
⎞⎟⎟⎟⎠

(17)
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QUQA et al. 2433

if 𝛿�̄�(𝑎) is one of the k nearest neighbors of 𝛿�̄�(𝑏)

(or vice versa), while [𝐌]𝑎𝑏 = 0 otherwise. In Equa-
tion (17), ‖‖‖𝛿�̄�(𝑎) −𝛿�̄�(𝑏)‖‖‖ is the distance between two
voltage instances. Let  be the Laplacian matrix

 = �̃� −𝐌 (18)

with [
�̃�

]
𝑎𝑎
=
∑
𝑏

[𝐌]𝑎𝑏 (19)

The transformationmatrix𝐖 that projects the instances
𝛿�̄�+ onto a latent space that complies with the mentioned
optimization criteria can thus be obtained by solving

min
𝐖

{
tr
(
𝐖T𝐊𝐕𝐋𝐊𝐕𝐖

)
+ 𝜇 tr

(
𝐖T𝐖

)
+
𝜆

�̄�2
tr
(
𝐖T𝐊𝐕𝐊𝐕𝐖

)}

such that

𝐖T𝐊𝐕𝐇�̃�𝚺𝐇𝐊𝐕𝐖 = 𝐈𝑆 (20)

where𝐇 is a centering matrix defined as

𝐇 = 𝐈�̄� − �̄�−1𝟏�̄� (21)

with 𝟏𝑛 representing a square matrix of ones of size 𝑛 × 𝑛,
and 𝜇 > 0, 𝜆 ≥ 0 are tradeoff regularization and geometry
parameters, respectively (S. J. Pan et al., 2011). Therefore,
the first 𝑆 eigenvectors of the matrix

𝚿 =

[
𝐊𝐕

(
𝐋 +

𝜆

�̄�2


)
𝐊𝐕 + 𝜇𝐈�̄�

]−1
𝐊𝐕𝐇�̃�𝚺𝐇𝐊𝐕 (22)

constitute the columns of the transformation matrix𝐖 ∈

ℝ�̄�×𝑆 . After obtaining the transformation matrix, the
“updated” DNN can be trained using the synthetic labeled
instances projected onto the latent space. Thereby, the new
training dataset consists of p = {𝛿�̄�𝐩, 𝛿𝚺}, with �̄�𝐩 repre-
senting the first 𝐶 columns of 𝐖T𝐊𝐕 . It is worth noting
that the projected real instances are not used for training
in this procedure to avoid overfitting. Also, the architec-
ture of the updated DNN can be different from that of the
original DNN, as the input layer is substantially smaller.
In this study, the updated DNN has the same architec-
ture as the preliminary DNN described in Section 4, with
a lower number of neurons per layer (see Section 6.2 for
more details).
The proposed transfer learning approach is schema-

tized in Figure 3. First, a preliminary DNN is initialized
using only synthetic data  (a), which was shown effective
for early damage detection. The trained network is then

employed in a monitoring process, consisting of periodi-
cally interrogating the conductive material and identifying
cracks that constitute a set of prior measurements (b).
When damage is detected, the relevant voltage measure-
ment 𝛿�̄�(𝑐𝑟) is stored, and a visual inspection is planned,
where the inspectors can annotate the crack location and
generate a label 𝛿𝝈(𝑐𝑟). Labeled instances are then used to
generate  +. When a sufficient number of instances from
the target domain is available, the extended dataset can
be employed to apply the TCA to improve the prediction
of a new data instance 𝛿�̄�(𝐶𝑟+1), which is included in  +

without the label (c). The synthetic data projected onto the
latent space can thus be used to train an updated DNN
that will be employed to predict the conductivity distri-
bution relevant to 𝛿�̄�(𝐶𝑟+1) and future interrogation data,
according to the scheme of Figure 3b.
It is worth noting that DNNs have been employed

in this study due to their well-acknowledged properties,
including their high representational power and ease of
use. However, the proposed transfer learning approach
can be employed to extract domain-invariant features that
can be used with any other machine learning method to
reconstruct the conductivity map.
The size of the transformation matrix 𝐖, that is, the

number of most significant eigenvectors of the matrix 𝚿
is a parameter selected by the user. While many eigenvec-
torsmay includemore information and thus lead to amore
accurate conductivity reconstruction, the benefit of trans-
fer learning is lost if this parameter is set too high, leading
to overfitting noise, material, and geometry properties. On
the other hand, underfitting with an excessively small size
of𝐖 would lead to the loss of information and low recon-
struction accuracy. One criterion to select 𝑆 consists of
imposing a hard threshold to generate a transformation
matrix𝐖with the eigenvectors associated with the largest
𝑆 eigenvalues 𝜔𝑠 of 𝚿, the sum of which is higher than a
certain percentage 𝜂 of the total sum of eigenvalues, that is,

𝑆∑
𝑠 = 1

𝜔𝑠 > 𝜂

�̄�∑
𝑠 = 1

𝜔𝑠 (23)

6 EXPERIMENTAL INVESTIGATION

This study presents the results obtained using four spec-
imens fabricated at the ARMOR laboratory (University of
California, San Diego). Specifically, two different paint for-
mulations were used to investigate the benefit of informa-
tion transfer among sensing films with different materials.
The formulations are described in Section 6.1, as well as
the specimen fabrication and the configuration of the FE
model. Section 6.2 discusses the results obtained.
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2434 QUQA et al.

F IGURE 3 Monitoring phases: (a) initialization of the preliminary DNN, (b) construction of the extended training set using prior
measurements, and (c) initialization of the DNN updated with transfer learning. FE, finite element; TCA, transfer component analysis.

F IGURE 4 Specimen fabrication: (a) multi-walled carbon nanotubes (MWCNT)-based paint formulation, (b) graphene nanosheets
(GNS)-based paint formulation, and (c) fabrication process. EC, ethyl cellulose; GNS, graphene nanosheets; MWCNT, multi-walled carbon
nanotubes; NMP, N-methyl-2-pyrrolidinone; PSS, poly-(sodium 4-styrenesulfonate).

6.1 Experimental setup

In the first paint formulation, 0.339 g of multi-walled car-
bon nanotubes (MWCNT; Mortensen et al., 2013) from
NanoIntegris with an outer diameter of 8 nm were mixed
with 0.806 g of N-methyl-2-pyrrolidinone (NMP) and
33.855 g of 2 wt.% poly-(sodium 4-styrenesulfonate) (PSS)
solution (NMP and PSS provided by Sigma-Aldrich). The
MWCNTs were dispersed by tip ultrasonication (more
details on times and tip size are provided in Quqa et al.,
2022). A sprayable inkwas then obtained by adding a Latex
solution (provided by Kynar Aquatec) and de-ionized
water.
The second paint formulation is based on graphene

nanosheets (GNS; Y. A. Lin et al., 2021; Lin et al., 2021b).
GNS was first synthesized using water-assisted liquid-
phase exfoliation (Manna et al., 2019) and then added to
ethyl cellulose solution and subjected to bath sonication.
The mixer was thus heated to 60◦C and stirred for 12 min
to generate a sprayable ink. The process to obtain the two
formulations is schematized in Figure 4.

F IGURE 5 Experimental setup: (a) MWCNT-based specimen
and interrogation setup and (b) example of induced crack.

The paints were manually sprayed onto four 108 × 132
mm2 rectangular polyethylene terephthalate sheets (two
for each sensing material) using a Paasche airbrush and
air-dried for 12 h before use. In this study, specimens 1 and
2 were fabricated using the MWCNT-based formulation,
while specimens 3 and 4 were fabricated using the GNS-
based formulation. Copper tape strips were attached along
the boundaries of the specimens (Figure 5) and used as
electrodes (18 in total, in a 4 × 5 pattern). Silver epoxy (Ted
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QUQA et al. 2435

F IGURE 6 Crack sequences induced in the tested specimens; dimensions in cm.

F IGURE 7 Scheme of the finite element (FE) model.

Pella) was applied over copper tapes to reduce the contact
impedance.
A razor blade was employed to simulate cracks in the

sensing film as shown in Figure 5. Specifically, the crack
patterns reported in Figure 6 were applied, measuring volt-
age before and after each cut. A baseline measurement
𝐯(0) was taken for each specimen before inducing damage.
Then, after each crack, a new voltage measurement 𝐯(𝑐𝑟)
was recorded and employed to calculate 𝛿�̄�(𝑐𝑟).
The specimen was fixed to the table using electrical

insulating tape before cutting and interrogation. A data
acquisition system was used to interrogate the specimens
and collect voltage data. Specifically, an AC/DC (alternat-
ing current/direct current) generator (Keithley 6221) was
employed to inject current using the adjacent interrogation
pattern (Loyola et al., 2013), and a multifunctional switch
with a digital multimeter (Keysight 34980A) was used to
measure boundary voltage.
An FE model representing all the specimens was

generated using a triangular mesh with the geometric
properties described in Figure 7. The CEMwas adopted for

boundary conditions as explained in Section 3. The initial
conductivity of the material was set to 100 S/m. The set of
𝐶 synthetic cracks mentioned in Section 4 was generated
by simulating randomly distributed line-shaped regions
with zero conductivity in the sensing surface. Specifically,
a “crack line” was modeled as a random number (between
1 and 10) of connected segments with random lengths
(max 2 cm each) and inclination. This line was positioned
randomly within the surface of the model, in a selected
region of interest with a size of 11.28 × 8.88 cm2, and
the conductivity of the triangular elements of the mesh
touching it was set to zero. In this study, the synthetic
dataset includes 3000 labeled instances obtained in this
way, that is, voltage data and the relevant conductivity
distributions within the region of interest.
Both the preliminary and the updated DNNs were

trained using the synthetic dataset described above. How-
ever, the preliminary DNN takes the normalized voltage
measurements (Equation 11) in the input layer, while the
updated DNN takes the features extracted through TCA.
As for the updated DNN, this study presents the results

obtained in two monitoring scenarios. Both scenarios
involve the set of 3000 synthetic labeled instances from
the source domain generated by inducing random decre-
ments in the conductivity of the FE model. Scenario 1
also involves eight labeled instances (i.e., prior measure-
ments) from the target domain collected for specimens
1 and 2 (the first four crack propagation steps shown in
Figure 6) to extend the training set. On the other hand,
the second scenario involves 27 labeled instances from
the target domain, that is, the eight already considered in
scenario 1, plus all the 19 instances collected from spec-
imens 3 and 4. Therefore, scenario 1 represents the case
where the datasets are mainly collected from the moni-
tored structures (i.e., prior information transfer). On the
other hand, scenario 2 considers information transfer also
among different structures in a population-level analysis.
In this study, the difference between structures is given
by the material formulation of the sensing film (see Sec-
tion 6.1) and geometric dissimilarities due to fabrication
errors.
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2436 QUQA et al.

F IGURE 8 Selection of the latent space size.

The first step of the information transfer procedure con-
sists of determining the size of the latent space. Figure 8
reports the first 100 eigenvalues of the matrix 𝚿, normal-
ized to the maximum value, obtained for scenario 1, in
decreasing order of magnitude, as well as their cumulative
sum. The base that spans the latent space was selected as
the set of eigenvectors associated with the first 𝑆 eigenval-
ues with a sum equal to at least 99.9% of the total sum of
eigenvalues of𝚿. In this specific case, the resulting size of
the latent space is 40. A size of 39 was obtained by repeat-
ing the calculation in scenario 2. Therefore, all the results
presented in the following were obtained using 𝑆 = 40.

6.2 Discussion of the results

The transformation matrix 𝐖 was calculated for the two
aforementioned scenarios. In scenario 1, the extended
dataset was made of 3020 instances (i.e., including syn-
thetic instances and prior measurements from specimens
1 and 2). In this case, only the labels of the first four crack
patterns were included for both specimens. In scenario 2,
the extended dataset was made of 3039 instances (i.e., also
including prior measurements from specimens 3 and 4,
together with their labels). Then, the extended dataset was
projected onto the latent space (ℝ𝑆 , 𝑆 = 40) by calculating
the projected matrix𝐖T𝐊𝐯 .
In general, the exact number of instances required in the

target domain to successfully apply TCA can vary depend-
ing on the specific problem and the characteristics of the
data. Since TCA minimizes the MMD between two distri-
butions (in the source and target domains), the number
of instances considered for each domain should be signifi-
cant to describe the distribution they are extracted from.
In the case of limited instances from the target domain,
their significance can be assessed by evaluating the stabil-
ity of their statistical moments. Figure 9 shows the first
three statistical moments (i.e., mean, standard deviation,
and kurtosis) of the norm of real voltage measurements
for different sets of instances selected from the total set of
39 available experimental measurements, with increasing
size. The analysis was repeated 10 times, considering a dif-

ferent set of randomsamples for each size of the considered
set every time. The left-hand side of the figure reports the
moments of each feature set as a function of the number of
instances for every test conducted (10 different lines). The
right-hand side of the figure shows the difference between
consecutive points of the diagrams described above, in
absolute value (gray lines), and their average (thick black
line) calculated over the 10 different tests. These results
show that the first statistical moments are quite stable
when the number of considered instances is around 27.
This means that the first statistical moments will likely not
change much when adding more instances taken from the
same distribution. Therefore, the set of samples considered
in scenario 2 can represent the feature distribution in the
target domain and allow for performing TCAproperly. The
statisticalmoments aremore unstablewhen the number of
considered instances is 8. This means that the conditions
for performing TCA in scenario 1may be suboptimal. How-
ever, it is worth noting that the MMD calculated between
the synthetic and real raw voltage datasets was 0.457. On
the other hand, after applying the TCA, theMMDbetween
the sets of domain-invariant features extracted from syn-
thetic and real datasets decreased to 0.240 in scenario 1 and
0.142 in scenario 2.
The higher similarity between real and synthetic

instances is beneficial for generalization. An updatedDNN
was then trained using the synthetic part of the projected
dataset p and an architecture similar to the one described
in Section 4. However, in this case, the hidden layers con-
tained 256 neurons each, thus reducing the overall number
of weights in the DNN by eight times. This value is similar
to the reduction in the size of the input feature (i.e., 𝑆 is
about seven times smaller than 𝐾).
The updated network was fed with the projected real

voltage measurements to predict the relevant distribution
of conductivity variation. The results obtained using the
preliminary DNN and the updated DNN in the two sce-
narios are reported in Figures 10 and 11 for each damage
condition representing the crack propagation (C1–C10).
In these figures, the grayscale contour plots represent
the identified conductivity variations due to the induced
cracks. Before and after each crack, a voltagemeasurement
was taken. The relative conductivity variation for each
crack step was first identified by setting the previous volt-
age measurement as a baseline, thus obtaining the plots
on the right-hand side of the figure (last three columns). In
order tomake the identified cracksmore easily observable,
artifacts and conductivity variations due to material defor-
mation have been removed by setting a threshold equal
to half of the maximum conductivity reduction identified
at each step, below which any other conductivity varia-
tions were canceled. This application is only focused on
crack identification, which entails total conductivity loss.
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QUQA et al. 2437

F IGURE 9 Statistical moments of the norm of real voltage measurements.

Therefore, only high conductivity variations are inter-
preted as cracks. Since the input voltage was normalized
(as shown in Equation 11), the identified conductivity
variation is dimensionless.
In the left-hand part of Figures 10 and 11, the cumu-

lative conductivity variation is also represented as the
sum of relative variations identified before each inspec-
tion. Relative and cumulative plots have different color
scaling to improve representation clarity. A dotted hatch
is used when the conductivity distribution exceeds the
maximum representation scale. In these figures, the thick
black lines represent the reference crack patterns, that is,
those reported in Figure 6. Moreover, the “+” symbols
depicted on the conductivity variation plots represent the
centroids of identified cracks (i.e., the weighted means
of the identified conductivity variations). The Euclidean
distance between these centroids and the center of progres-
sively induced cracks is used in this study as a performance
index of the identificationmethod. Since specimens 3 and 4
have been used for training in scenario 2, Figures 10 and 11
only present the results for specimens 1 and 2.
The gain obtained from applying the proposed approach

can be appraised by comparing the conductivity recon-
structions obtained through the preliminary and the
updated DNNs. In general, the preliminary DNN pro-
vides more concentrated conductivity variations than the
updated DNNs for the first crack patterns. However, the
reconstruction accuracy suddenly drops for more com-
plex patterns, that is, after C4 for both specimens, failing

in damage localization. Indeed, in more complex dam-
age patterns, the relative conductivity variation identified
by the preliminary DNN mainly consists of small regions
distributed throughout the sensing surface. On the other
hand, the relative conductivity distributions predicted
using projected data typically present concentrated low-
conductivity regions close to the location of reference
cracks.Moreover, theDNNused in scenario 2 typically pro-
vides better localization results with fewer artifacts (e.g.,
see C9 in specimen 1 and C7 in specimen 2).
Also, the total variation (TV) algorithm (Holder, 2004)

was employed to have a reference comparison with a
“standard” literature method. Figure 12 shows the results
obtained using the TV method for the two analyzed spec-
imens. More details on the application of this method to
difference voltage data can be found in (Quqa et al., 2022).
In this study, a regularization coefficient equal to 10−6
was employed. The results obtained using the TV method
generally have better localization performance in the first
stages of cracking, similar to those of the preliminaryDNN.
However, crack localization accuracy tends to reduce for
complex crack patterns, that is, after C5. In the last damage
cases, several artifacts populate the identified conductivity
distribution.
The Euclidean distance was calculated between the cen-

troids of reference and identified progressive cracks (i.e.,
the relative conductivity variation) for all analyzed cases
(herein called “inspections”) as a performance indicator
for crack localization. Figure 13 shows the distances for
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2438 QUQA et al.

F IGURE 10 Experimental results for specimen 1. Left: total normalized conductivity variation; right: relative normalized conductivity
variations. The gray contour depicts the identified conductivity, + symbols represent their centroids, and thick black lines are the reference
cracks.

the TV method, the preliminary DNN, and the updated
DNNs using TCA in both scenarios. A linear regression
of the distance values over time was also calculated (thick
gray lines). Generally, while the TV method and the pre-
liminary DNN provide results with an increasing distance

over time (denoting decreasing performance), the TCAhas
an almost flat (and lower) trend, especially in scenario
2. This confirms that using transfer learning is beneficial
for improving the performance of crack identification for
complex crack patterns.
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QUQA et al. 2439

F IGURE 11 Experimental results for specimen 2. Left: total normalized conductivity variation; right: relative normalized conductivity
variations. The gray contour depicts the identified conductivity, + symbols represent their centroids, and thick black lines are the reference
cracks.

7 CONCLUSION

This study investigated the possibility of improving the
performance of DNNs for conductivity reconstruction in

the inverse EIT problem using transfer learning. A new
strategy was proposed for including annotations taken
by operators during visual inspections through a domain
adaptation process based on TCA.
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2440 QUQA et al.

F IGURE 1 2 Relative normalized conductivity variation
identified using the total variation (TV) method.

F IGURE 13 Euclidean distance between the identified and
reference cracks. Thin black lines indicate the performance of each
inspection; Thick gray lines indicate the linear regression. TCA,
transfer component analysis.

The method was tested for crack identification using
sensing films obtained by deposing a sprayable conductive
ink onto the monitored element. Two different scenarios
were tested, one including only information collected at
early damage states of the monitored structures and one
exploiting information transfer at a population level.
After applying domain adaptation, real and synthetic

voltage measurements showed a higher level of similarity,
thus demonstrating the effectiveness of the procedure.
The higher performance of the updated neural networks
(trained using the projected data) was also proven by
comparing the conductivity reconstructions obtained
through regression. The Euclidean distance between the
centroids of reference and identified cracks was used as
a performance index for damage localization. Predicting
crack location based on the preliminary DNN provided
results with an accuracy similar to that of the TV method,
a traditional approach for solving the inverse EIT prob-
lem. Specifically, the first cracks were identified with good
accuracy. Identification performance diminished with
the increasing complexity of the crack pattern. On the
other hand, including early damage information in the
training process through transfer learning substantially
improved the ability of the neural network to identify
advanced damage states. Moreover, information col-
lected on specimens with similar geometry and different
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QUQA et al. 2441

material further increased the performance of themachine
learning approach, giving a new value to the information
collected during other inspection campaigns. Improve-
ments in crack identification accuracy are fundamental in
the perspective of SHM of civil infrastructure.
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