## **Supplementary information**

# A spectroelectrochemical study of copper chloro-complexes for high performance all-copper redox flow batteries

Giampaolo Lacarbonara<sup>a§</sup>, Nicolò Albanelli<sup>a§</sup>, Daniele Fazzi<sup>a</sup>, Catia Arbizzani<sup>a§</sup>\*

<sup>a</sup>Alma Mater Studiorum - University of Bologna, Dept. of Chemistry "Giacomo Ciamician",

Via Francesco Selmi 2, 40126 Bologna, Italy

\* Corresponding Author: catia.arbizzani@unibo.it

§ ISE Members

#### 1. Calculations

a. Example of optimized (GFN2-xTB) water copper-chloride supramolecular clusters.





## b. Optimized (GFN2-xTB) geometry for [CuCl(H<sub>2</sub>O)<sub>5</sub>]<sup>+</sup>

| 0  | -2.7599122238 | -0.3335844248 | -0.2996072262 |
|----|---------------|---------------|---------------|
| Cl | 0.9603619173  | -1.6463921577 | 0.1555632251  |
| Cu | -0.7278111628 | -0.1654402697 | 0.2726916931  |
| 0  | -0.1547980495 | 1.5557862806  | 1.4474117895  |
| 0  | -0.6967317927 | 1.3338709274  | -1.4395155435 |
| 0  | 1.8164179369  | 0.4036333442  | -1.8619007240 |
| 0  | 2.3631818679  | 0.9615560708  | 0.9550925003  |
| Н  | -2.7555813661 | -1.1454356353 | -0.8153441982 |
| Н  | -2.7107425919 | 0.4019312335  | -0.9236169948 |
| Н  | -0.5878672332 | 2.1106260353  | -0.8828762561 |
| Н  | 0.2080880910  | 1.0882061340  | -1.7328454176 |
| Н  | 0.8314367040  | 1.4581623618  | 1.3320016335  |
| Н  | -0.3418023401 | 1.3342574439  | 2.3619011461  |
| Н  | 2.1074822118  | 0.0176963070  | -2.6894102043 |

| Н | 1.6226733733 | -0.3567427579 | -1.2616588787 |
|---|--------------|---------------|---------------|
| Н | 2.5344506442 | 1.1841206380  | 0.0329338011  |
| Н | 2.1790677577 | 0.0037812069  | 0.9396047295  |

## c. Optimized (GFN2-xTB) geometry for [CuCl<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>0</sup>

| 0  | -0.3038060950 | 1.0320559058  | -1.7117699988 |
|----|---------------|---------------|---------------|
| Cu | 0.2703833903  | 0.1667054970  | 0.3113748432  |
| Cl | -1.0249183703 | -1.6187053839 | 0.4696427171  |
| Cl | 2.1208999465  | -0.8421134306 | -0.4914698328 |
| 0  | 1.5067718223  | 1.8002388522  | 0.6198349273  |
| 0  | -1.3692837260 | 1.3124795095  | 1.0902061582  |
| 0  | -2.8610350287 | 0.2354960323  | -0.9750845115 |
| Н  | 0.1142288018  | 0.4080800740  | -2.3144609005 |
| Н  | -1.2608299675 | 0.8585328511  | -1.7357329980 |
| Н  | 2.3246481054  | 1.3995554051  | 0.2809646219  |
| Н  | 1.1963545267  | 2.4339644838  | -0.0376496511 |
| Н  | -2.4429918568 | -0.5704412145 | -0.5941370703 |
| Н  | -3.7613780492 | -0.0008695975 | -1.2065160057 |
| Н  | -1.6685826435 | 0.8083188331  | 1.8548600582  |
| Н  | -2.0436512332 | 1.1796220229  | 0.3948384840  |

## d. Optimized (GFN2-xTB) geometry for [CuCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]<sup>-</sup>

| 0  | -0.8837196322 | -1.3536342608 | 1.0492810436  |
|----|---------------|---------------|---------------|
| Cu | 0.1803511293  | 0.0122251617  | 0.2996706058  |
| Cl | -1.4530229176 | 1.4060568265  | 0.4441310985  |
| Cl | 1.8246931265  | -1.3915790290 | 0.1835006193  |
| Cl | 1.4209939154  | 1.5505215876  | -0.3764847997 |
| 0  | -0.4292691232 | -0.6124687687 | -1.9532050608 |
| 0  | -2.8908107878 | -1.1768048658 | -0.5434552430 |
| Н  | -0.4150571484 | -2.1988372335 | 0.9754966824  |
| Н  | -1.7537380734 | -1.4050590241 | 0.5131388640  |
| Н  | -0.2883251402 | 0.2180301037  | -2.4224183067 |
| Н  | 0.3032059889  | -1.1938587482 | -2.1908160997 |
| Н  | -2.3586911708 | -1.0572325278 | -1.3416525492 |
| Н  | -3.1842330760 | -0.2923438365 | -0.2857877478 |

e. Cu-O radial distribution function  $g_{\text{Cu-O}}(r)$  computed for clusters containing 50 water molecules.



f. TDDFT calculations on water copper-chloride supramolecular clusters by varying the number of water molecules, e.g. 10, 50 and 200.



## g. Molecular orbitals involved in the electronic transitions: [CuCl<sub>3</sub>(H<sub>2</sub>O)<sub>3</sub>]<sup>-</sup>







## h. Molecular orbitals involved in the electronic transitions: $[CuCl(H_2O)_5]^{\scriptscriptstyle +}$



### 2. Cu(II) speciation dependence from Cl<sup>-</sup> concentration



Figure S1. UV/Vis absorption spectra of 50 mM  $CuCl_2$  electrolytes with different concentrations of HCl in a quartz cuvette with 50  $\mu$ m optical path.

### 3. Cu(II) voltammetric dependence from Cu(II) concentration



Figure S2. CV at 0.01 V s<sup>-1</sup> of (a) 0.5 M CuCl<sub>2</sub> 6 M HCl and (b) 2 M CuCl<sub>2</sub> 6 M HCl electrolytes in three-electrode conventional cell, WE: Pt disk, CE: Pt wire, RE: Ag/AgCl.