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THE SIGNATURE OF CUSPED HYPERBOLIC 4–MANIFOLDS

ALEXANDER KOLPAKOV, STEFANO RIOLO, AND STEVEN T. TSCHANTZ

Abstract. In this note we show that every integer is the signature of a non–
compact, oriented, hyperbolic 4–manifold of finite volume, and give some partial
results on the “geography” of such manifolds. The main ingredients are a
theorem of Long and Reid, and the explicit construction of a hyperbolic 24–cell
manifold with some special topological properties.

Few things are harder to put
up with than the annoyance
of a good example.

– Mark Twain

1. Introduction

In the recent survey [13] on hyperbolic 4–manifolds, Martelli asks whether one
can find a cusped hyperbolic 4–manifold with non–vanishing signature (see [13,
Section 4] for other open questions). The main purpose of this note is to prove
the following:

Theorem 1.1. Every integer is the signature of a cusped hyperbolic 4–manifold.

All manifolds in the paper are assumed connected and oriented unless otherwise
stated. Hyperbolic manifolds are understood to be complete and of finite volume.
Non–compact hyperbolic manifolds are called cusped.

Closed hyperbolic 4–manifolds have vanishing signature, while for cusped man-
ifolds this property holds virtually (in a strong sense, see Corollary 2.2). The
latter fact follows from a result of Long and Reid [12] which plays an important
role in this paper. It is worth noting that for cusped manifolds the signature is
not necessarily multiplicative under finite coverings.

As a byproduct of our construction, we obtain some results on the “geography
problem” for cusped hyperbolic 4–manifolds. The latter asks about realising a
given pair of integers as the Euler characteristic χ(M) and signature σ(M) of a
cusped hyperbolic 4–manifold M . Indeed, Theorem 1.1 is a consequence of the
following:

Theorem 1.2. For every pair of positive integers m,n with m odd, there exists a
cusped hyperbolic 4–manifold M with σ(M) = ±n and χ(M) = mn.

Recall that hyperbolic 4–manifolds have positive Euler characteristic by the
generalised Gauß–Bonnet formula.

A. K. was supported by the SNSF project PP00P2–202667. S. R. was supported by the
MIUR–PRIN project 2017JZ2SW5 and the SNSF “Ambizione” grant PZ00P2–193559.
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1.1. Consequences and questions. As shown by Ratcliffe and Tschantz [18],
every positive integer is realised as χ(M) for some cusped hyperbolic 4–manifold
M . However, all the manifolds constructed in [18] (as well as their covers) happen
to have vanishing signature, as well as any other cusped hyperbolic 4–manifold
that we could find in the literature. Combining this fact (or Corollary 2.2) with
Theorem 1.2, we obtain that for every integer n there exists a cusped hyperbolic
4–manifold M with σ(M) = n and χ(M) arbitrarily big.

On the other hand (Proposition 2.3), every cusped hyperbolic 4–manifold M
satisfies

χ(M) > 0.03493 · |σ(M)|.
It thus seems reasonable trying to minimise χ for any fixed value of |σ|. For σ = 0,
the minimum possible χ = 1 is realised by [18]. Theorem 1.2 implies the following
fact.

Corollary 1.3. For every positive integer n, there exists a cusped hyperbolic 4–
manifold with χ(M) = σ(M) = n.

We shall call the quantity

α(M) = σ(M)/χ(M)

the slope of M . By the above inequality, the slope of a cusped hyperbolic 4–
manifold is always bounded, and a natural “geography” problem is to determine
which slopes can be realised. Theorem 1.2 gives a partial answer:

Corollary 1.4. For every odd integer m, there exist infinitely many cusped hy-
perbolic 4–manifolds with slope 1/m.

In particular, the maximum slope realised by our construction equals 1. Note
that a well–known conjecture dating back to Gromov’s work on bounded co-
homology [4, §8.A4] states that every closed aspherical 4–manifold M satisfies
|α(M)| ≤ 1, which is known as Winkelnkemper’s inequality [7].

In the setting of our work, the following questions arise naturally.

Question 1.5. Can we describe the set of pairs (χ(M), σ(M)) for all possible
cusped hyperbolic 4–manifolds M? In other words, what is the geography of
cusped hyperbolic 4–manifolds?

Question 1.6. What is the maximum slope of a cusped hyperbolic 4–manifold?

1.2. On the proof. Our proof of Theorem 1.2 is constructive and rather simple.
We explicitly build a cusped hyperbolic 4–manifold M satisfying χ(M) = σ(M) =
1 and such that for every m,n ≥ 1 with m odd, there exists an mn–sheeted
covering Mm,n →M with σ(Mm,n) = n.

An essential tool is an adaptation of the Atiyah–Patodi–Singer formula for
cusped hyperbolic 4–manifolds by Long and Reid (cf. Theorem 2.1), combined
with the results of Ouyang [16], thanks to which the signature can be expressed
only in terms of the oriented homeomorphism classes of the cusp sections.

Similar to [18, 19], the manifold M is obtained by gluing the sides of the ideal
right-angled 24–cell. In particular, χ(M) = 1. The side pairing is performed in
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order to have one cusp with section a “quarter twist” flat 3–manifold F4, while the
remaining cusps have 3–torus sections. Then Long and Reid’s signature formula
gives σ(M) = ±1.

Moreover, there exist homomorphisms π1(M) → Z that map to zero some
generators of the parabolic subgroup of the F4–cusp, in a way to get an n–sheeted
cyclic covering Mn → M under which σ is multiplicative, and an m–sheeted
cyclic covering Mm,n →Mn under which σ does not change. The latter condition
is satisfied if m is odd: in this case, the manifold Mm,n has exactly n cusps of
type F4, all coherently oriented, while the remaining ones have 3–torus sections.
This implies σ(Mm,n) = ±n.

As in [19], the starting point to find M is an extensive computer search. Despite
the fact that M is produced by computer, it has a relatively simple structure and
all the aforementioned properties can be verified by hand. However, finding such a
starting manifold M by hand is conceivably impossible within any reasonable time
if one wants to search through all or a sufficiently large number of side pairings.

We would like to stress the fact that the manifold M used in our present con-
struction does not appear to be special: we only concentrate on it because of its
simple structure that makes our proofs verifiable by hand. Another construction
of Tschantz’s involving 24–cells (the details of which are rather technical and im-
possible to verify without computer aid) together with some arithmetic tools and
ad hoc tricks allows us to produce ∼ mm commensurability classes of manifolds
with χ ≤ m for any fixed value of σ and m large enough, cf. [2, 3]. Presenting the
details here, however, would obfuscate our main goal, that is proving Theorem 1.1
in a relatively simple way. This result is the subject of a future work [11].

1.3. Structure of the paper. Some general facts on the geography of cusped
hyperbolic 4–manifolds are given in Section 2. The proof of Theorem 1.2 follows
in Section 3.

Acknowledgements. The authors are grateful to Bruno Martelli for suggesting
a strategy that helped simplifying their previous proof of Theorem 1.1. They
would also like to thank John Ratcliffe and Alan Reid for showing interest in this
work.

2. Preliminaries

Recall that all manifolds in this paper are connected and oriented, unless oth-
erwise stated. All homology and cohomology groups are understood with integer
coefficients.

2.1. Signature and geography. Let X be a compact 4–manifold with bound-
ary, and let [X, ∂X] ∈ H4(X, ∂X) ∼= Z be its fundamental class.

The cup product on H2(X, ∂X) defines the following symmetric bilinear form,
called the intersection form of X:

H2(X, ∂X)×H2(X, ∂X)→ Z, (α, β) 7→ α ^ β ([X, ∂X]).
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By the Poincaré–Lefschetz duality, the radical of the intersection form is the kernel
of the natural map H2(X, ∂X)→ H2(X).

Let q+ and q− be the positive and negative inertia indices of the associated
quadratic form over R. Then the signature of X is defined as

σ(X) = q+ − q− ∈ Z.

The notion of “geography” for 4–manifolds appears to be classical and has been
studied in different contexts by many authors (see [20] for a detailed survey). For
M a 4–manifold, the geography map can be defined as M 7→ (χ(M), σ(M)). The
slope of M is α(M) = σ(M)/χ(M). Note that in [20] the slope and geography
map are defined for manifolds with complex structures and thus expressed via
Chern numbers: we slightly modify the definitions in our setting.

Here and below we shall be interested in the class of cusped hyperbolic 4–
manifolds, and the behaviour of the geography and slope maps on it.

2.2. Signature of hyperbolic 4–manifolds. If M is a closed hyperbolic 4–
manifold, then it follows from the Hirzebruch signature theorem theorem that
σ(M) = 0, since by a theorem of Chern the first Pontryagin class vanishes [17,
Theorem 11.3.3] (as it more generally does for locally conformally flat manifolds,
cf. [12]).

Let now M be a cusped hyperbolic 4–manifold. Since M is homeomorphic
to the interior of a compact 4–manifold X with boundary, then by the Poincaré–
Lefschetz duality we have a well-defined intersection form onH2(M) ∼= H2(X, ∂X)
and signature σ(M) := σ(X).

In [12] Long and Reid provided an adaptation of the Atiyah–Patodi–Singer
formula [1] for cusped hyperbolic 4–manifolds.

Theorem 2.1 (Long–Reid). Let M be a hyperbolic 4–manifold with m cusps
C1, . . . , Cm, and let Si be a horospherical section of Ci. Then

σ(M) = −
m∑
i=1

η(Si).

Here η is the so-called eta invariant of a closed oriented Riemannian 3–mani-
fold, see [1, 12]. Same as the signature, η changes its sign when the orientation
of the manifold is reversed, and thus vanishes on achiral manifolds. Since cusped
hyperbolic manifolds have virtually torus cusps [15, Theorem 3.1], we have the
following corollary.

Corollary 2.2. For every cusped hyperbolic 4–manifold M there is a finite cov-
ering M ′ →M such that σ(M ′′) = 0 for every finite covering M ′′ →M ′.

This shows that, in particular, constructing cusped hyperbolic manifolds with
given signatures likely cannot be done by considering some sort of “generic” or
“random” coverings of a given particular manifold. We shall concentrate on using
cyclic coverings as in this case preserving the topological type of cusps in the
covering is relatively easy.
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There are precisely six closed orientable flat 3–manifolds up to homeomorphism
[5]. We denote them in the order given by Hantzsche and Wendt [5] as follows:
the 3–torus F1, the “half-twist” manifold F2, the “third-twist” manifold F3, the
“quarter-twist” manifold F4, the “sixth-twist” manifold F5, and the Hantzsche–
Wendt manifold F6. For i = 1, . . . , 5, the manifold Fi is a mapping torus over
S1 × S1 with monodromy of order 1, 2, 3, 4, and 6, respectively.

As shown by Ouyang [16], the η–invariant of a flat 3–manifold does not depend
on the chosen flat metric, and thus represents a topological invariant for such
manifolds. More precisely [16], we have:

η(F1) = η(F2) = η(F6) = 0,

η(F3) = ±2

3
, η(F5) = ±4

3
, η(F4) = ±1.

In particular, a hyperbolic 4–manifold M whose unique non–torus cusp has

F4 section has signature ±1. Moreover, σ(M̃) = ±n for any n–sheeted regular

covering M̃ → M = M̃/G with G < Isom+(M̃) acting transitively on the F4–

cusps of M̃ .

2.3. The slope is bounded. The previous facts together with the volume esti-
mates of Kellerhals [8] imply the following lower bound, that we believe however
to be far from sharp.

Proposition 2.3. Every cusped hyperbolic 4–manifold M satisfies

|α(M)| < 28.62869.

Proof. From Formula (4.6) in [8, Example 2] we have Vol(M) > 0.61293 ·k, where
k is the number of cusps of M . By Theorem 2.1 and the values of η(Fi) listed
above, we have 4

3
· k ≥ |σ(M)|. Then the claimed inequality follows by applying

the Gauß–Bonnet formula Vol(M) = 4π2

3
· χ(M). �

3. Proofs

In the following subsection we prove Theorem 1.2. The essential geometric con-
struction used in our proof (Theorem 3.1) is postponed to a separate subsection.

3.1. The proof. A hyperbolic 24–cell manifold is a hyperbolic 4–manifold which
can be obtained by gluing isometrically in pairs the sides of an ideal right-angled
24–cell. Such a manifold M satisfies χ(M) = 1.

Recall that the fundamental group of a flat quarter-twist 3–manifold F4 is gen-
erated by two translations t1 and t2, and a rototranslation a whose rotational part
has order 4. Note that t1, t2 and t3 = a4 generate the translation lattice of F4.

Given a hyperbolic 4–manifold M with a cusp C of type F4, let π1(C) =
〈t1, t2, a〉 < π1(M) denote the corresponding parabolic subgroup.

In the next subsection we shall prove the following theorem, that is the corner-
stone of our construction.
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Theorem 3.1. There exist an orientable hyperbolic 24–cell manifold M with one
cusp C of type F4 and all the other cusps of type F1, and two surjective ho-
momorphisms h, v : π1(M) → Z such that π1(C) = 〈t1, t2, a〉 ⊂ ker(h), while
v(t1) = v(t2) = 0 and v(a) = 1.

We are ready to prove Theorem 1.2 assuming Theorem 3.1.

Since η(F4) = ±1 and η(F1) = 0, by Theorem 2.1 σ(M) = 1 up to reversing
the orientation on M .

For n ≥ 1, let pn : Z → Z/nZ be the reduction mod n, and Mn → M be the
cyclic n–sheeted covering associated with hn := pn ◦h. Since π1(C) ⊂ ker(hn), the
manifold Mn has n cusps of type F4. Moreover, there is an orientation-preserving
isometry of Mn that is cyclically permuting said cusps. All the remaining cusps of
Mn have type F1. Thus σ(Mn) = n by Theorem 2.1, and χ(Mn) = n · χ(M) = n.

Now, fix m,n ≥ 1 and let Mm,n → Mn be the cyclic m–sheeted covering
associated with the restriction vm,n of pm◦v to ker(hn). Since vm,n(t1) = vm,n(t2) =
0 and vm,n(a) = 1, the subgroup π1(C) ∩ ker(vm,n) of π1(Mm,n) is generated by
t1, t2 and am, and does not contain ak for any positive k < m. If m is odd (or,
equivalently, m ≡ ±1 mod 4), the associated n cusps of Mm,n have type F4. As
before, the latter are coherently oriented, and all the remaining cusps are of type
F1. Thus σ(Mm,n) = n by Theorem 2.1, and χ(Mm,n) = m · χ(Mn) = mn.

The proof of Theorem 1.2 is thus complete assuming Theorem 3.1.

3.2. The construction. Here we prove Theorem 3.1.

The manifold M is specified by the side pairing of a regular ideal 24–cell, with
vertices given in Table 1, by the correspondence between the vertices of paired
sides provided in Table 2. We refer the reader to [17, Section 11.1] for more details
on how to build hyperbolic 24–cell manifolds by using Poincaré’s fundamental
polytope theorem.

Alternatively, we can give the side pairing by specifying the matrices for each
side pairing map. Since side 1 is paired to side 2, the side pairing map that carries
side 2 to side 1 is the inverse of that for the map from side 1 to side 2, similarly
for sides 3 and 4, etc. The matrices gi for sides 1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 21, and
22 are given in Table 3. These twelve matrices generate the fundamental group of
M and the defining relations of this group are determined from the ridge cycles
as shown in Table 4. There are 96 ridges in cycles of length 4, so there are 24
defining relations.

The manifold M is orientable with homology groups

H0(M) = Z, H1(M) = Z3, H2(M) = Z5, H3(M) = Z2, H4(M) = 0.

Moreover, M has three cusps: two of type F1, and the other of type F4. In order
to facilitate a manual verification, the gluing of the 24 cubes (the vertex links of
the 24–cell) producing the respective cusp sections are provided in Figures 1, 2
and 3.

The cusp C of type F4 is the link of the vertex cycle consisting of vertices v17,
v18, v19, v20, v21, v22, v23, and v24. The flat 3–manifold for the link of C is realised
as a gluing of 8 cubes giving a presentation for π1(C) with 24 generators that
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19

8

15

18
21

2
12 2

5

3 20 18

14 9

23

17 20

24

5 22 22 14 8

24 9 3 24 23 12 2 23

9 14

15 5 24

17 20

23

12

14

5 2 20 18 8

22 22
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11 1 10 4

x
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z

Figure 1. A fundamental domain for a horosection of one of the two 3–torus
cusps of M in its universal cover, tessellated by 8 unit cubes. A cube with label
i corresponds to the vertex vi of the 24–cell. A vertex of cube i has label j if
the corresponding edge of the 24–cell joins vi and vj . The resulting Euclidean
lattice is generated by translations along the vectors (4, 0, 0), (0, 2, 0) and

(0, 0, 1).

1

24

18

13
1

17
22 22

20

20 10 1

20 18

11

6 13

1

22 10 4 21 21

4 23 24 7 13 24 23 10

19 17

24 23 6

11 4

16

20

23

18 19 7 16 17

6 16
411

21 21
1918 6

11

7 13 22

7 16 19 17 10

9 3 8 14

2 5 15 12

x

y

z

Figure 2. A fundamental domain for a horosection of the other 3–torus
cusp of M in its universal cover. The resulting Euclidean lattice is generated
by translations along the vectors (4, 0, 0), (2, 2, 0) and (0, 0, 1).

can be simplified considerably: we provide a more computationally suitable one
below. The 8 cubes glue together in a pattern corresponding to a square 2–torus
tiled by 8 squares with sides at π

4
angle to the axes of the torus as in Figure 4,

multiplied by an interval in order to produce 8 cubes. The top and bottom tori are
identified with a π

2
twist of the square torus, which is exactly the gluing pattern

for the F4 manifold.
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Figure 3. A fundamental domain for a horosection of the F4–cusp C of M in
its universal cover. The resulting Euclidean lattice is generated by translations
along the vectors (2, 2, 0) and (−2, 2, 0), and the rototranslation along (0, 0, 1)
whose rotational part has vertical axis through the centre of cube 21 (see also
Figure 4).

20

22

24 23

22 17 21 18 22

23 19 24

22

Figure 4. A portion of a horizontal slice of the universal cover of a horo-
section of the F4–cusp C of M . The labels agree with the vertex indices of
the 24–cell. The shaded square is a fundamental domain for the action of the
group generated by translations along the vectors (2, 2, 0) and (−2, 2, 0) (see
Figure 3). The “quarter-turn” action of the rototranslation in the direction
orthogonal to the slice is shown by arrows in the centre.

Extracting the words in the generators of π1(M) giving parabolic elements
stabilising vertex v21 produces the generators for π1(C), see the accompanying
Tables 5 and 6. The two homomorphisms h and v are defined in Table 7.

The proof of Theorem 3.1 is now complete.
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v1 =
(
−1

2
,−1

2
,−1

2
,−1

2
, 1
)

v2 =
(
−1

2
,−1

2
,−1

2
, 1
2
, 1
)

v3 =
(
−1

2
,−1

2
, 1
2
,−1

2
, 1
)

v4 =
(
−1

2
,−1

2
, 1
2
, 1
2
, 1
)

v5 =
(
−1

2
, 1
2
,−1

2
,−1

2
, 1
)

v6 =
(
−1

2
, 1
2
,−1

2
, 1
2
, 1
)

v7 =
(
−1

2
, 1
2
, 1
2
,−1

2
, 1
)

v8 =
(
−1

2
, 1
2
, 1
2
, 1
2
, 1
)

v9 =
(
1
2
,−1

2
,−1

2
,−1

2
, 1
)

v10 =
(
1
2
,−1

2
,−1

2
, 1
2
, 1
)

v11 =
(
1
2
,−1

2
, 1
2
,−1

2
, 1
)

v12 =
(
1
2
,−1

2
, 1
2
, 1
2
, 1
)

v13 =
(
1
2
, 1
2
,−1

2
,−1

2
, 1
)

v14 =
(
1
2
, 1
2
,−1

2
, 1
2
, 1
)

v15 =
(
1
2
, 1
2
, 1
2
,−1

2
, 1
)

v16 =
(
1
2
, 1
2
, 1
2
, 1
2
, 1
)

v17 = (1, 0, 0, 0, 1) v18 = (−1, 0, 0, 0, 1)

v19 = (0, 1, 0, 0, 1) v20 = (0,−1, 0, 0, 1)

v21 = (0, 0, 1, 0, 1) v22 = (0, 0,−1, 0, 1)

v23 = (0, 0, 0, 1, 1) v24 = (0, 0, 0,−1, 1)

Table 1. The vertices of an ideal regular 24–cell in the hyperboloid model
of hyperbolic 4–space.
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From side To side Vertex map

1 2 (13, 14, 15, 16, 17, 19) 7→ (7, 8, 5, 6, 19, 18)
2 1 (5, 6, 7, 8, 18, 19) 7→ (15, 16, 13, 14, 19, 17)
3 4 (9, 10, 11, 12, 17, 20) 7→ (3, 4, 1, 2, 20, 18)
4 3 (1, 2, 3, 4, 18, 20) 7→ (11, 12, 9, 10, 20, 17)
5 14 (11, 12, 15, 16, 17, 21) 7→ (6, 2, 8, 4, 23, 18)
6 13 (3, 4, 7, 8, 18, 21) 7→ (12, 16, 10, 14, 23, 17)
7 16 (9, 10, 13, 14, 17, 22) 7→ (3, 7, 1, 5, 24, 18)
8 15 (1, 2, 5, 6, 18, 22) 7→ (13, 9, 15, 11, 24, 17)
9 18 (7, 8, 15, 16, 19, 21) 7→ (10, 2, 12, 4, 23, 20)
10 17 (3, 4, 11, 12, 20, 21) 7→ (8, 16, 6, 14, 23, 19)
11 20 (5, 6, 13, 14, 19, 22) 7→ (3, 11, 1, 9, 24, 20)
12 19 (1, 2, 9, 10, 20, 22) 7→ (13, 5, 15, 7, 24, 19)
13 6 (10, 12, 14, 16, 17, 23) 7→ (7, 3, 8, 4, 21, 18)
14 5 (2, 4, 6, 8, 18, 23) 7→ (12, 16, 11, 15, 21, 17)
15 8 (9, 11, 13, 15, 17, 24) 7→ (2, 6, 1, 5, 22, 18)
16 7 (1, 3, 5, 7, 18, 24) 7→ (13, 9, 14, 10, 22, 17)
17 10 (6, 8, 14, 16, 19, 23) 7→ (11, 3, 12, 4, 21, 20)
18 9 (2, 4, 10, 12, 20, 23) 7→ (8, 16, 7, 15, 21, 19)
19 12 (5, 7, 13, 15, 19, 24) 7→ (2, 10, 1, 9, 22, 20)
20 11 (1, 3, 9, 11, 20, 24) 7→ (13, 5, 14, 6, 22, 19)
21 23 (4, 8, 12, 16, 21, 23) 7→ (11, 3, 15, 7, 21, 24)
22 24 (2, 6, 10, 14, 22, 23) 7→ (5, 13, 1, 9, 22, 24)
23 21 (3, 7, 11, 15, 21, 24) 7→ (8, 16, 4, 12, 21, 23)
24 22 (1, 5, 9, 13, 22, 24) 7→ (10, 2, 14, 6, 22, 23)

Table 2. Side pairings defining M .
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g1 =


2 1 0 0 −2
−1 −2 0 0 2
0 0 −1 0 0
0 0 0 1 0
−2 −2 0 0 3

 g3 =


2 −1 0 0 −2
1 −2 0 0 −2
0 0 −1 0 0
0 0 0 1 0
−2 2 0 0 3



g5 =


2 0 1 0 −2
0 0 0 −1 0
0 1 0 0 0
−1 0 −2 0 2
−2 0 −2 0 3

 g6 =


2 0 −1 0 2
0 0 0 1 0
0 −1 0 0 0
1 0 −2 0 2
2 0 −2 0 3



g7 =


2 0 −1 0 −2
0 0 0 1 0
0 −1 0 0 0
1 0 −2 0 −2
−2 0 2 0 3

 g8 =


2 0 1 0 2
0 0 0 −1 0
0 1 0 0 0
−1 0 −2 0 −2
2 0 2 0 3



g9 =


0 0 0 −1 0
0 2 1 0 −2
1 0 0 0 0
0 −1 −2 0 2
0 −2 −2 0 3

 g10 =


0 0 0 1 0
0 2 −1 0 2
−1 0 0 0 0
0 1 −2 0 2
0 2 −2 0 3



g11 =


0 0 0 1 0
0 2 −1 0 −2
−1 0 0 0 0
0 1 −2 0 −2
0 −2 2 0 3

 g12 =


0 0 0 −1 0
0 2 1 0 2
1 0 0 0 0
0 −1 −2 0 −2
0 2 2 0 3



g21 =


0 −1 0 0 0
1 0 0 0 0
0 0 −1 −2 2
0 0 2 1 −2
0 0 −2 −2 3

 g22 =


0 1 0 0 0
−1 0 0 0 0
0 0 −1 2 −2
0 0 −2 1 −2
0 0 2 −2 3


Table 3. Generators of π1(M) in SO(4, 1).

g3g
−1
10 g

−1
22 g8 g3g

−1
5 g−122 g12 g7g8g

−1
12 g

−1
11 g3g11g

−1
22 g

−1
7

g3g8g
−1
22 g

−1
11 g7g

−1
11 g

−1
12 g8 g1g8g22g

−1
12 g1g

−1
7 g22g9

g1g12g22g
−1
7 g1g

−1
11 g22g6 g3g9g21g

−1
5 g3g6g21g

−1
9

g5g6g
−1
10 g

−1
9 g5g

−1
10 g

−1
11 g8 g6g

−1
9 g−112 g7 g3g

−1
12 g21g6

g3g
−1
7 g21g10 g6g7g

−1
12 g

−1
9 g5g8g

−1
11 g

−1
10 g1g6g

−1
21 g

−1
10

g1g
−1
5 g−121 g11 g5g

−1
9 g−110 g6 g1g10g

−1
21 g

−1
5 g1g

−1
9 g−121 g8

Table 4. Defining relations for π1(M).
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t1 = g−15 g−18 g12g9 =


1 0 −4 0 4
0 1 4 0 −4
4 −4 −15 0 16
0 0 0 1 0
4 −4 −16 0 17



t2 = g−19 g−110 g5g6 =


1 0 −4 0 4
0 1 −4 0 4
4 4 −15 0 16
0 0 0 1 0
4 4 −16 0 17



t3 = g421 =


1 0 0 0 0
0 1 0 0 0
0 0 −31 −8 32
0 0 8 1 −8
0 0 −32 −8 33



a = g21 =


0 −1 0 0 0
1 0 0 0 0
0 0 −1 −2 2
0 0 2 1 −2
0 0 −2 −2 3


Table 5. Generators of π1(C) in SO(4, 1).

a4t−13 at1a
−1t−12 at2a

−1t1 at3a
−1t−13

t1t2t
−1
1 t−12 t1t3t

−1
1 t−13 t2t3t

−1
2 t−13

Table 6. Defining relations for π1(C).

h(g1) = 1 h(g3) = 1 h(g5) = 2 h(g6) = 0

h(g7) = 2 h(g8) = 0 h(g9) = 1 h(g10) = 1

h(g11) = 1 h(g12) = 1 h(g21) = 0 h(g22) = 0

v(g1) = 2 v(g3) = 0 v(g5) = 2 v(g6) = 0

v(g7) = 2 v(g8) = 0 v(g9) = 1 v(g10) = 1

v(g11) = 1 v(g12) = 1 v(g21) = 1 v(g22) = −1

Table 7. The two homomorphisms h, v : π1(M)→ Z.
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