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Abstract: Immunotherapy is the most promising therapeutic approach against malignant pleural
mesothelioma (MPM). Despite technological progress, the number of targetable antigens or specific
antibodies is limited, thus hindering the full potential of recent therapeutic interventions. All
possibilities of finding new targeting molecules must be exploited. The specificity of targeting is
guaranteed by the use of monoclonal antibodies, while fully human antibodies are preferred, as they
are functional and generate no neutralizing antibodies. The aim of this review is to appraise the
latest advances in screening methods dedicated to the identification and harnessing of fully human
antibodies. The scope of identifying useful molecules proceeds along two avenues, i.e., through the
antigen-first or binding-first approaches. The first relies on screening human antibody libraries or
plasma from immunized transgenic mice or humans to isolate binders to specific antigens. The latter
takes advantage of specific binding to tumor cells of antibodies present in phage display libraries or in
responders’ plasma samples without prior knowledge of the antigens. Additionally, next-generation
sequencing analysis of B-cell receptor repertoire pre- and post-therapy in memory B-cells from
responders allows for the identification of clones expanded and matured upon treatment. Human
antibodies identified can be subsequently reformatted to generate a plethora of therapeutics like
antibody-drug conjugates, immunotoxins, and advanced cell-therapeutics such as chimeric antigen
receptor-transduced T-cells.

Keywords: malignant pleural mesothelioma (MPM); immunotherapy; fully human antibody; tertiary
lymphoid structure (TLS); therapeutic antibody; MPM management; mesothelioma; solid tumors
targeting; BCR repertoire; phage display

1. Introduction

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with a dismal prognosis,
median overall survival (OS) of 14 months, whose onset is associated with asbestos exposure [1].
Europe currently carries most of the global asbestos-related disease burden due to heavy asbestos use
during earlier decades [2]. A peak in MPM incidence is expected in the 2020s due to the long disease
latency, although most countries have already banned asbestos use [1,3–5]. In contrast, countries that
still employ asbestos are very likely to display a substantial burden of asbestos-related disease and
MPM nowadays and in the future.
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About 60% of MPM patients carry mutations in the BRCA1 associated protein-1 (BAP1)
gene [6]. BAP1 is a protein involved in DNA repair mechanisms, cell cycle control, apoptosis,
and carcinogenesis [7–13]. BAP1 mutational status is clearly associated with the insurgence of
MPM [9,10,12–15], the response to chemotherapy [16], patient survival [17], and, when coupled to other
DNA repair gene alterations, it has suggested synthetic lethality therapeutic approaches [18,19]. MPM
is frequently diagnosed at a late stage due to the lack of early symptomatology, reliable biomarkers,
and screening tools. Current therapies in clinical practice consist of surgery, radiotherapy, and
chemotherapy. We recently reviewed all current and innovative therapeutic approaches and most
relevant clinical trial results [20]. Such a detailed survey revealed that new therapeutic modalities
and prognostic biomarkers are urgently needed in order to grant a fair chance of survival to all
MPM patients. In this review, we examine the current unmet clinical needs in MPM, concentrating
on immunotherapy dilemmas, highlighting the main emerging experimental therapies and clinical
evidence, and, above all, exploring and analyzing the approaches that can be used to identify new
fully human MPM-targeting antibodies for future therapies. To our knowledge, no other review has
tackled the issue of targeting MPM from the same angle and perspective, providing useful suggestions
regarding novel technologies to achieve this goal.

2. Immunotherapy in MPM

Immune checkpoints (IC) proteins, such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4),
programmed death 1 (PD-1) and PD-L1, are immune system regulators that maintain homeostasis
and prevent autoimmunity in physiological conditions [21]. Their overexpression in MPM keeps the
anti-tumor immune response in check, creating a local immunosuppressive microenvironment [22,23].
IC inhibitors (ICIs), i.e., antibodies targeting CTLA-4, PD-1, or PD-L1, are used as immunomodulatory
agents to interfere with the CTLA-4:B7-1/2 or PD-1:PD-L1 axes and to help to overcome tumor-immune
escape [24–26] with very different efficacy.

Recently, PD-L1 expression in malignant mesothelioma has been assessed on tissue microarrays
using two different FDA-approved antibodies, and 22% to 27% of cases were positive for PD-L1 (1% cut
off) [27]. PD-L1 is expressed by a substantial proportion of biphasic and sarcomatoid MPM cases, and
its positivity above 1% is associated with a significant 10-months reduction in median OS compared to
PD-L1 negative tumors [28,29]. Similarly, high PD-L1 expression (>50%) in epithelioid MPM patients
correlates with shorter PFS (6.7 vs. 9.9 months) [28]. Despite its prognostic value [30–32], PD-L1
expression is not a valid predictive marker of response to anti-PD-L1 therapies for several tumor
types [33,34], including MPM [35]. Anti-PD-1/PD-L1 therapies were tested in different trials as second
or third-line treatment in MPM patients [36–43], but, to date, only nivolumab has obtained regulatory
approval in chemo-refractory mesothelioma patients in Japan [44]. At present, the pembrolizumab plus
platinum/pemetrexed-based chemotherapy (PPC) combination as first-line treatment, in comparison to
pembrolizumab or PPC alone, is being evaluated in the phase III trial NCT0278417, while nivolumab
is being investigated in the randomized phase III trial CONFIRM (NCT03063450) in comparison
with placebo [41]. The activity of durvalumab, a PD-L1 inhibitor, in combination with first-line
PPC, was tested in the DREAM study (ANZ clinical trial registry number: ACTRN12616001170415).
This treatment resulted in an objective response rate (ORR) of 61% using mRECIST and 53% using
iRECIST criteria and in progression-free survival at 6 months of 71% (mRECIST). On the basis of these
observations, a randomized phase 3 trial will be started [45].

ICs expression is variable among tumor cells and strictly controlled at different stages of
T-lymphocyte activation. For these reasons, a combination strategy employing two different ICIs
in addition to chemotherapy has been proposed to achieve a synergistic effect by overcoming
immune-resistance observed in some MPM patients. Encouraging results observed for different ICIs in
combination [46–48] prompted the investigation of the nivolumab plus ipilimumab combination in
comparison to standard PPC alone as a first-line option in the phase III clinical trial Checkmate-743
(NCT02899299).
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At present, efficacy and safety of adoptive T-cell therapies, in particular chimeric antigen
receptor-transduced T-cells (CAR-T), in MPM and other solid tumors are under investigation [49,50].
CAR-T-cells directed against mesothelin (MSLN), a glycoprotein expressed on MPM and other solid
tumor cells, with a limited presence on normal tissues [51], represent a promising therapeutic option
and many efforts have been made to improve their clinical efficacy and safety profile [52,53]. Recently,
Adusumilli and colleagues reported the outcome of a phase I clinical trial, NCT02414269, [54,55]
on patients with MPM and pleural metastases from lung or breast cancer treated with anti-MSLN
CAR-T-cells. Of note, the inclusion of anti-PD-1 therapy was essential to elicit clinical efficacy
and to avoid T-cell exhaustion since no patient had an objective response before pembrolizumab
addition, showing the importance of also modulating the immune suppressive features of the tumor
microenvironment (TME) in this therapeutic setting. The pembrolizumab plus anti-MSLN CAR-T-cell
combination results in the best clinical outcome with an ORR of 63% (10/16) and a disease control rate
of 75% (12/16). No evidence of on-target, off-tumor, or therapy-related toxicities higher than grade
1 was observed. Although applied to a limited number of patients so far, CAR-T therapies against
MPM have shown impressive results, highlighting the difference in efficacy for advanced cell therapies
compared to small molecule drugs or antibodies. Recently, a comprehensive review of immunotherapy
in MPM has been published [56]. However, it is evident that the limited availability of therapeutically
targetable antigens hinders the effectiveness of these strategies in MPM patients and this issue will
need to be addressed in the future.

3. Making a Hot Tumor Microenvironment

The efficacy of ICIs in MPM patients highlights the presence and the activity of immune cells in
situ able to fight cancer if properly unleashed. However, to achieve this goal, TME must be modified in
order to abolish/interfere with specific immune-suppressive cues. Interestingly, Barsky and colleagues
recently reported a case of a man with MPM treated with a combination of palliative radiation and
immune-gene therapy (GM-CSF) [57]. The outcome of this treatment combination was outstanding,
resulting in a so-called “abscopal effect”. In oncology, the abscopal effect is a phenomenon by which
localized radiation induces an anti-tumor response at distant sites. RT can trigger an immunogenic
cell death (ICD) [58,59] and can stimulate antigen-specific, adaptive immunity [60]. ICD leads to
subsequent anti-tumor immune responses, including the release of tumor antigens by irradiated tumor
cells, the cross-presentation of tumor-derived antigens to T-cells by antigen-presenting cells (APCs),
and the migration of effector T-cells from the lymph nodes to distant tumor sites suggesting that
irradiated tumors can act as an in situ vaccine if appropriate conditions are in place [61–63]. The overall
incidence of the abscopal effect of RT alone is low, with 46 clinical cases reported from 1969 [63]. Those
statistics may be explained by the insufficiency of RT alone to overcome the immunoresistance of
malignant tumors. Given that immunotherapy can reduce host immune tolerance towards tumors, it is
possible that the combination of RT and immunotherapy can amplify the anti-tumor immune response,
a hypothesis currently under investigation within the phase I trial, NCT02959463, in which adjuvant
pembrolizumab after RT in lung-intact MPM patients is under evaluation. In a murine model of MPM,
the abscopal effect can be induced by local RT and enhanced by immune-suppressive CTLA-4 blockade
as infiltrated T-cells, both in primary and secondary tumor sites, are predominantly composed by
anti-tumor cytotoxic CD8+ T-cells, while immunosuppressive regulatory T-cell (Tregs) are reduced [64].
Those observations corroborate the idea that systemic tumor response can be induced or unleashed by
modifying the TME features locally.

4. Tertiary Lymphoid Structures in Solid Tumors and MPM: Where the Anti-Tumor
Response Begins

Efficient adaptive responses against cancer occur typically in secondary lymphoid organs (SLOs),
wherein major histocompatibility complex (MHC) molecule–peptide complexes are presented by
dendritic cells (DCs) to T-cells, and require the migration of DCs from the tumor site to the SLOs [65].
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B-cells are activated in the SLOs upon antigen binding in primary follicles and receive help from
the CD4+ T-cells to proliferate and form a secondary follicle that will become a germinal center (GC).
This process allows lymphocyte proliferation and differentiation into effector T-cells and memory
B-cells (MBCs) that migrate into the tumor, leading to its destruction if no antagonizing and exhaustive
cues are in place.

However, studies on the immune context of tumors revealed that anti-tumor defenses can also
occur at the tumor site within organized lymphoid aggregates resembling SLOs [66] called tertiary
lymphoid structures (TLSs) [67]. TLSs are also found in the stroma at the invasive margin and/or core of
different tumor types [68,69]. TLSs are composed of a T-cell-rich zone harboring mature DCs juxtaposed
to a B-cell follicle with GC characteristics surrounded by plasma cells (PCs). TLSs are privileged sites
for local presentation of neighboring tumor antigens to T-cells by DCs and activation, proliferation, and
differentiation of T and B-cells, resulting in the generation of effector memory T helper (TH) cells and
effector memory cytotoxic cells, MBCs, and antibody-producing PCs [70–75]. TLS density is associated
with higher numbers of CD8+ and CD4+ T-cells in tumors [76], and evidence indicates that TLSs play
a major role in controlling tumor invasion and metastasis. A positive impact of TLS density on OS and
disease-free survival in lung cancer [71,76–78], colorectal cancer [79,80], pancreatic cancer [81,82], oral
squamous cell carcinoma [83], and invasive breast cancer [70,84–86] has been documented. Importantly,
its prognostic value is independent of tumor–node–metastasis (TNM) staging in most malignancies,
suggesting TLS can induce a systemic, long-lasting anti-tumor response. High endothelial venules
(HEVs) similar to those that allow entry of lymphocytes into SLOs are usually detected near TLSs [70].
In this context, HEVs allow lymphocytes to enter into tumors. Therefore, therapies enhancing this
feature would be beneficial to improve anti-tumor immune responses. Tregs negatively affect HEV
formation, and their depletion in murine models of cancer lead to increased T-cell infiltration and
activation, and to the eradication of the disease [87,88]. Tregs and other immune-suppressive cell
types, such as myeloid-derived suppressor cells (MDSCs), regulatory B-cell (Bregs), and soluble factors
like TGFb and IL-10, contribute to the development of an immune-suppressive TME. Tumor-resident
Tregs co-express high levels of CTLA-4, OX-40, and GITR compared to effector T-cells, and in murine
models of mesothelioma, the combination of anti-OX-40 and anti-CTLA-4 has a synergistic effect and
results into a 20% to 80% increase in tumor regression as compared to single-antibody treatment [89].
Coherently with this picture, the combination of anti-angiogenic drugs with anti-PD-L1 therapies
increases HEV and TLS formation in murine models of breast cancer and neuroendocrine pancreatic
tumors [90], supporting the idea that a powerful anti-tumor systemic response by ICIs is sustained, if
not triggered, by the presence of TLSs in situ. TLS heterogeneity among human cancers, analyzed
via a pan-cancer gene expression analysis of TME cellular composition on The Cancer Genome Atlas
(TCGA) data and MPM, as well as lung adenocarcinoma and lung squamous cell carcinoma, displays a
high expression of a 12-chemokine gene signature associated with TLS composition [91], hinting at a
frequent, but also heterogeneous, presence of TLSs [92].

In MPM, lymphoid aggregates are present in about 70% of tumors, and GCs within these
aggregates can be spotted in about 30% of cases [23]. These aggregates show functional similarity to
TLSs, in which T- and B-lymphocytes are apart in two adjacent regions surrounded by HEV, as already
shown in ovarian and prostate cancer [93,94]. Despite that, clear evidence of HEV’s presence in MPM
is still lacking. Importantly, the presence of intratumoral CD8+ T-lymphocytes is an independent good
prognostic marker associated with a reduced risk of death for MPM patients [73].

Additionally, structural inter- or intra-chromosomal rearrangements and single nucleotide variants
have been recently reported from mate-pair and RNA sequencing-based analyses on mesothelioma
specimens predicting the expression of potentially-targetable neoantigens [95]. Moreover, some of
these neoantigens bind patient-specific MHC, and specific tumor-infiltrating T-cell clones are expanded
as observed through TCR repertoire analysis [95]. In line with these observations, TCR diversity
and mutation/neoantigen load have been inversely correlated, but both active and suppressive TME
immune components, such as Treg and CD8+ T-cells, were present and equally balanced suggesting a
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scenario where activated anti-tumor CD8+ T-cells are counteracted by pro-tumoral immune suppressive
molecules and Treg cells [96] or activated CD8+ T and CD4+ T-helper cells displaying phenotypic
markers of exhaustion including PD-1, TIM-3, and LAG3 positivity [30].

5. The Importance of B-cell Infiltration in Solid Tumors and MPM

B-cell follicles in TLS from non-small cell lung cancer and ovarian cancers contain bona fide Ki67+

GC B-cells expressing the activation-induced deaminase (AID) gene, encoding an enzyme critical
for somatic hypermutation and class switch recombination of immunoglobulin genes, as well as,
of BCL-6, the transcription factor involved in the late stage of B-cell maturation [71,97]. Additionally,
the presence of CD38+ CD138+ PCs around the follicle is highly suggestive of antibody production
in situ [98]. Indeed, micro-dissected follicles subjected to BCR repertoire analysis revealed clonal
amplification compared to peripheral B-cells, suggesting a local antigen-driven B-cell response to several
malignancies [93,97,99–102]. Additionally, PCs isolated from dense aggregates in tumor stroma [98],
produce anti-tumor antibodies of the immunoglobulin G (IgG) isotype in vivo, whose mechanism of
action has not been yet determined. One possibility is that anti-tumor IgGs produce locally increase
antigen presentation by DCs and/or directly promote the activity of specific subsets of CD4+ T-cells
endowed with Fcγ receptors (FcγRs) [25]. In favor of this scenario is the presence of IgG deposits
in TLS, the spatial organization of TLSs that may favor DC priming by locally produced IgGs, and
the observation that tumor-derived immune complexes increase the expression of the co-stimulatory
molecule CD86 on DCs in vivo [93]. In favor of the latter are the results of a meta-analysis in a
large set of human cancers showing that the prognostic effect of T-cells is generally stronger when
tumor-infiltrating B-cells or PCs are present, highlighting the importance of the coordination between
cellular and humoral adaptive immune responses [103].

The role of B-cells and the association of B-cell rich TLSs with survival and anti-PD-1
immunotherapy response in sarcoma and melanoma have been recently established [104,105].
Importantly B-cells are the strongest prognostic factor even in the context of low CD8+ T-cells [104] in
sarcoma, and class-switched MBCs are specifically enriched in melanoma ICI-treated responders [106].

In murine models of mesothelioma treated with immunotherapy, the presence of B-cells is
essential for a good prognosis, indicating that antibodies are generated and contribute significantly
and essentially to the therapeutic effect [107]. Consistently, B-lymphocyte infiltration in MPM
tissue positively correlates with prognosis [108] although variable in its extent [109]. Moreover,
clinical [110] and preclinical data on B-lymphocytes’ contribution to MPM prognosis suggest that they
elicit an adaptive cytotoxic immune response rather than acting directly as antigen-presenting cells
(APCs) [107,111]. In this respect, MPM shares many similarities with other solid tumors previously
described and provides a unique opportunity to develop novel immunotherapies and to identify novel
MPM targeting receptors in patients.

6. The Quest for Specificity in Malignant Mesothelioma: How Do We Fill This Gap?

Adoptive cell therapies, in combination with ICIs, have shown very promising results in MPM.
The specificity or preference of targeting is granted almost exclusively by the use of antibodies or
their derived fragments directed to tumor-specific/associated antigens. First, attempts of therapy
using murine monoclonal antibodies (mAbs) in cancer patients failed due to the rapid generation of
neutralizing antibodies and because of a mismatch with components of the human immune system.
These results showed the importance of using human or human-compatible/tolerable biomolecules
and prompted the design of novel screening platforms to find them.

Both antigen-based (Figure 1) and -unbiased screening methods (Figure 2) can be used to this
end. The first approach is based on previous knowledge of tumor-specific/associated antigens located
on cell membranes, whereas the second leverages on the possibility to test a priori the binding of
antibodies to cells restricting the successive identification of antigens to lead candidates only.
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Figure 1. Schematic representation of antigen-based screening strategies to obtain fully human
tumor-targeting antibodies.
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Figure 2. Schematic representation of 4 antigen-unbiased screening strategies to obtain fully human
tumor-targeting antibodies.

7. Phage Display Screening Using Human Synthetic Antibody Libraries

Next-generation sequencing applied to tumor cells is a powerful tool to identify and quantify
expressed neoantigens as mutations/fusions or as alternative splicing variants [112]. Frequency data
from RNA-Seq datasets can inform on tumor heterogeneity and guide patient stratification. In lung
cancer patients, for example, the abundance of alternative splicing variants correlates with the longest
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OS [113], suggesting that variants can be displayed and targeted by adaptive immunity. Altered
sequences generated by improper splicing or mutations can be expressed and used to generate human
antibodies specific to these moieties. A convenient strategy to generate human antibody fragments
(Fabs and scFvs) against specific antigens or cells is phage display (reviewed in [114]). The importance
of phage display technology was restated in 2018 by the award of Nobel Prize in Chemistry to George P.
Smith and Sir Gregory P. Winter ”for the phage display of peptides and antibodies”. Phage display has
allowed the production of clinically relevant antibodies (reviewed in [115]) via the classical approach
that relies on the incubation of antibody-displaying phages with an antigen (biopanning), either
produced as a purified protein immobilized on a solid substrate or expressed on a host cell surface for
consecutive rounds of phage library and antigen exposure to progressively decrease antibody library
complexity in favor of specificity (see Figure 1). While the first approach is straightforward and usually
employs proteins expressed in bacteria or mammalian cells to recapitulate potential post-translational
modifications, the latter allows the expression of the antigen in its physiological context, e.g., on cell
membrane, at the cost of increased complexity of screening setup. Classically, single bacterial clones
are selected and grown to produce antibodies or phages displaying specific antibodies and test their
binding to the target of interest individually.

Phage display can also be used to discover antibodies binding to cancer cells rather than to a
specific antigen. Biopanning on cancer cells aims to find antibodies able to bind to cancer-specific and
not-yet-characterized antigens (see Figure 2). Nowadays, next-generation sequencing provides an
efficient, quantitative and fast way to analyze the evolution of complexity of phage antibody-display
libraries during consecutive biopanning enrichment stages in order to predict putative antigen or
tumor cell binders subsequently produced, reformatted, and tested for their affinity to the target of
interest [116].

An unbiased phage display approach has been used to identify mesothelioma tumor-targeting
scFvs that recognize antigens expressed on mesothelioma cells and tissues of both sarcomatoid and
epithelioid histotype. In this study, 95 mesothelioma-targeting scFvs were identified, and 21 candidates
were further characterized by FACS, IHC, and for their in vitro internalization capacity on mesothelioma
cells with the goal to deliver conjugated anti-tumor drugs directly inside tumor cells [117]. Further
analyses identified MCAM/CD146, a surface transmembrane glycoprotein with adhesion functions
that belongs to the immunoglobulin superfamily, as one of the antigens. CD146 had been previously
described as a marker for advanced melanoma [118] and other tumors [119,120]; it is expressed by
all mesothelioma histotypes and by a limited spectrum of normal human adult tissues, among that
some vascular endothelial and smooth muscle cells [121]. Currently, the utility of MCAM/CD146
detection in pleural effusion fluid and peripheral blood samples is being investigated as a diagnostic
and prognostic marker for MPM [122]. The generation of a phage antibody-display library from the
entire antibody genes repertoire of a cancer patient has also been attempted. Rare cancer-targeting
antibodies have been identified by this strategy [123]. However, the immunodominance phenomenon
typical of certain cancers [114,124,125] has hindered a wider use of this strategy in early attempts.

8. Fully-Human Antibodies from Genetically Modified Transgenic Mice

Besides phage display, an ever more popular approach to generate human antibodies deploys
humanized mice engineered to express human immunoglobulin chains. Several models have been
generated over the past 25 years by different engineering strategies (reviewed in [126]). These transgenic
animals can be vaccinated with human antigens, and single B-cell clones or derived hybridomas can
be screened for the production of targeting antibodies via ELISA or flow cytometry-based assays.
Companies like TRIANNI Inc., Kymab Limited [127], and Creative Biolabs [128] developed proprietary
animal models to pursue this strategy. These platforms feed internal pipelines with novel biologics and
are available to academic and private institutions in a pay-for-service modality or through the licensing
of animals. Advantages include generation in vivo of high affinity, matured IgG antibodies (preferred
format for therapy) bypassing additional affinity maturation steps typically used in phage display,
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high efficiency of the system and low hands-on-time required, ease of automation and throughput of
screening. However, this strategy is not suited to raise antibodies against antigens extremely conserved
between human and mouse since the murine immune system counter selects self-antigens to prevent
the generation of autoantibodies. Human synthetic antibody phage display libraries, on the contrary,
can be used to raise antibodies against any moiety at the cost of longer subsequent optimization
steps. Both technologies have contributed to the generation of clinically relevant antibodies in several
fields [129].

9. From Today’s Patients the Future Cures for MPM

As explained above, patients develop an immune response against MPM that, if unleashed, can be
very effective. The presence of TLSs and the insurgence of oligoclones of B-cells inside or at the border
of MPM tissue are positive prognostic features and constitute a window of opportunity to capture
human therapeutic antibodies. Now the next question is, how can we exploit this powerful reservoir
of biologics to isolate or design novel targeting drugs? In other words: what technologies are available
to take up this challenge?

10. BCR Repertoire from Sequencing Data

Bulk RNA-Seq data from tumor tissue contain a hitherto overlooked picture of a tumor and its
ecosystem. Typically, this data is used to evaluate the expression of known transcripts, while de novo
formed sequences, like those generated by T- and B-cells in the assembly and generation of their specific
receptors, are usually discarded since they cannot be easily matched with the reference transcriptome.
However, these sequences can be retrieved from raw data and employed to extract the sequence of
TCRs and BCRs from tumor tissue infiltrated immune cells using specific bioinformatic tools. One of
them is MiXCR [130], a universal tool that takes raw sequencing data, including RNA-Seq, as input
and profiles TCR and BCR repertoires. As a reference, it uses a built-in library of V, D, J, and C gene
sequences from human or mouse. As an output, it provides a list of clonotypes derived by assembling
identical and homologous reads, corrected for sequencing errors. V’DJer is another framework that
can be applied to RNA-Seq data for this purpose [131]. It can be run on BCR light and heavy chain data
and employs unmapped paired-end short reads aligning them against a reference transcriptome. Then,
V’DJer detects VDJ rearrangements, generates contigs, and quantifies the ones that represent the most
abundant portions of the BCR repertoire. When the expression levels of BCR are low, there is an option
to increase the sensitivity of the algorithm at the cost of increasing the demand for computational
resources. V’DJer has been used, for example, to retrieve antibodies from RNA sequencing data of
melanoma patients from TCGA repository [131,132]. At present, TCGA contains expression analyses of
87 MPM patients (TCGA-MESO) that could be used for this purpose. In addition, RNA can be obtained
from FFPE samples specifically showing TLSs by IHC in prospective and retrospective cohorts of
patients. It is possible to infer the sequence of resident B-cell clones by applying bioinformatic tools to
RNA-Seq or by sequencing amplicons for immunoglobulin chains using specific sets of degenerate
universal primers from whole tissue DNA or RNA/cDNA. The latter approach is implemented by
the immunoSEQ platform (Adaptive Biotechnologies, Seattle, WA). In contrast to profiling using
bulk RNA-Seq data, it is more precise since the experimental design is optimized to identify the
BCR repertoire through the ImmunoSeq Analyzer software, specifically for this data. Its starting
material can be both genomic DNA (gDNA) and cDNA: in order to assess the clonal expansion of
B-cells in tissues, gDNA is the best solution since each cell contains the same copy number, while
mRNA transcripts can be very different among cells, depending on cellular activation and even the
retrotranscription procedure can add other confounding factors. However, cDNA is a better starting
material when the goal is to study different antibody abundance since there is a difference in the mRNA
expression between activated and naive B-cells. Finally, independently of the method employed for
their derivation, identified immunoglobulin heavy and light chain sequences can be further used to
build and produce candidate antibodies to test their ability to bind to MPM target cells.
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11. MPM Patient Memory B-cell Receptor Repertoire Exploitation to Find Novel
Therapeutic Antibodies

A second powerful approach to obtain human antibodies targeting MPM cancer cells directly
exploits the immune system of patients. Individuals exposed to viral agents, parasites, and tumors
develop an adaptive response against non-self and neoantigens. Anti-cancer treatments such as
vaccines and ICIs elicit impressive clinical responses (reviewed in [25]) and immunological memory
in subgroups of cancer patients (“elite responders”). MPM is not characterized by a high mutational
burden [15], an important determinant of the response to checkpoint blockade.

The efficacy of the anti-PD-1 pembrolizumab was shown by Alley and colleagues in
KEYNOTE-028 [38]. Additionally, treatment with the ICI ipilimumab in combination with anti-TGF-β
and anti-CD25 antibodies of syngeneic MPM in BALB/c mice resulted in (i) disease eradication in
all treated animals, (ii) elevated levels of tumor-specific IgG antibodies in cured mice, (iii) failure to
regrow tumors in cured mice when re-challenged with the same tumor, and (iv) response abolition in
the absence of B-cells, suggesting that antibodies generated upon treatment contribute significantly to
the curative effect [107]. Besides that, CD20+ B-cells infiltration in MPM tumor tissue has a positive
prognostic value, as previously discussed [108].

Therefore, the immune system of elite responders can be mined to isolate MBCs producing
targeting antibodies. MBCs derive mostly from affinity matured and somatic hypermutated B-cells
from the germinal centers [133] and constitute a reservoir of high-affinity antibody producers. These
features make the MBC pool very attractive so that companies invest in the design of screening
platforms to exploit it. For example, Oncoresponse, a company that developed a proprietary, clinically
validated human-antibody discovery platform in partnership with MD Anderson Cancer Center,
follows this paradigm and aims to identify therapeutically relevant antibodies from patients showing
elite response against cancer after immunotherapy. MBCs are easily accessible from the peripheral
blood of donors and are suitable for viral immortalization to generate lymphoblastoid cultures for high
throughput screens. MBC immortalization involves the infection and transformation of peripheral
MBCs by Epstein Barr Virus (EBV) [134] or by BCL-6 / BCL-XL expressing vectors [135] and generates
cells that express BCR on the membrane and release their antibody into culture medium at the same
time. BCR presence is exploited to isolate cells binding to labeled soluble antigens by cell sorting [135]
so that subsequently immunoglobulin sequences from isolated cells can be cloned into expression
vectors for large-scale antibody production. Companies like Humabs and AIMM therapeutics exploit
those strategies to raise antibodies against specific targets. However, the same technology can be used
to isolate targeting antibodies in an antigen-unbiased manner, as shown for melanoma via cell-based
screenings of EBV immortalized B-cells [136]. Additionally, human plasmablasts and MBCs can also
be cultured for a limited time using specific cytokines [136–141]. Importantly, these approaches do
not rely on prior knowledge of a specific target. Instead, target identification is postponed, initially
drawing on the demonstration of efficacy and specificity towards MPM cancer cells. MBCs receptor
repertoire can also be obtained by RNA-Seq from peripheral blood or draining lymph node purified
MBCs mining for de novo formed or highly enriched variants after treatment in elite responders [142].
The advantages and drawbacks of the different screening strategies for fully human antibody selection
are summarized in Table 1.
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Table 1. Advantages and drawbacks for all screening strategies used to obtain fully human antibodies.

Screening Strategy Approach Antigen Display Advantages Disadvantages

Antigen-based
screening
(pre-selection of specificity
based on antigen expression)

Phage-display technology with
human antibody synthetic
libraries [115,116]

In vitro adsorbed antigen
• Does not require expensive instrumentation
• Applicable to any moiety anchored on a substrate or exposed on cells

(biopanning)
• Established protocols
• Fastest strategy to lead candidates
• Analysis of library complexity and prediction of binders via NGS

• Fab or scFv fragment production
(affinity maturation steps
often needed)

• Requires reformatting to IgG formatExpression of the antigen on the
host cell membrane
(biopanning)

Transgenic mice expressing fully
human antibodies [126–128]

Vaccination with soluble
antigen

• Quick (3–4 months turn around time to lead candidates)
• Fully human antibodies in IgG format
• Established protocols
• No requirement for affinity maturation steps

• Requires an animal facility
• Expensive
• More difficult to apply it for plasma

membrane antigens

MBC immortalization via
BCL6/BCL-XL expression
[134,135]

Soluble and fluorescently
labeled antigen

• Ease of blood samples collection from elite responders or volunteers
• In vivo affinity matured human immunoglobulins

• Requires a BSL2 area
• Requires the sorting of very

rare populations
• Expensive instrumentation

(cell sorter)
• Requires the rescue of VH and VL

IgG chain sequences at early stages
(AID expression)

• Requires the production
of labeled-antigens

Antigen-unbiased
screening
(selection based on binding to
cancer cells)

Phage-display technology with
human antibody synthetic
libraries [115–117]

Antigen on cell surface

• Does not require expensive instrumentation
• Applicable to any cell type
• Established protocols
• Fastest strategy to lead candidates
• Analysis of library complexity and prediction of binders via NGS

• Fab or scFv fragment production
(affinity maturation steps
often needed)

• Requires reformatting in IgG format
• Requires a test of binding specificity

to normal human tissues a posteriori
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Table 1. Cont.

Screening Strategy Approach Antigen Display Advantages Disadvantages

BCR repertoire from the
peripheral blood of elite
responders pre- and
post-therapy [142]

Antigen on cell surface
• Ease of blood sample collection from elite responders
• In vivo affinity matured human immunoglobulins

• Possible downsampling
• Requires cloning and production of

the antibodies
• VH and VL pairs are not known

(unless single-cell sequencing
is used)

• Requires a test of binding specificity
to normal human tissues a posteriori

Bioinformatic analysis of BCR
repertoire in tumor tissue
[130,131]

Antigen on cell surface

• Availability of large number of FFPE samples
• Applicable to retrospective case series
• Applicable to any RNA-Seq dataset

• Requires cloning and production of
the antibodies

• Possible downsampling due to low
quality or limited sample material

• VH and VL pairs cannot be known
• Requires a test of binding specificity

to normal human tissues a posteriori

EBV infection [134] Antigen on cell surface

• Easy availability of elite responder samples (blood/PBMCs)
• Established protocols
• Isolation of in vivo high-affinity matured and

human-compatible immunoglobulins
• Basic technical expertise on viral manipulation

• Requires a BSL2 area
• Identification of the antigens can be

technically challenging
• Requires a test of binding specificity

to normal human tissues a posteriori
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12. Conclusions

Despite amazing efforts made by the scientific and medical community and the plethora of
therapeutic options developed over the last decades, the discovery of a curative MPM treatment
remains elusive and is an unmet clinical need. To date, the most promising therapeutic approaches
comprise immunotherapies and CAR-based therapies that have shown impressive although preliminary
clinical achievements. The necessity of discovering novel antigens and ways to target them to cope
with tumor heterogeneity and to provide more effective combined treatments for patients is now clear,
and future therapies cannot disregard it. The most innovative screening technologies for the generation
of fully human antibodies are in place and combine elements from fields of science that started far
apart and came together to serve the purpose. These include protein engineering, next-generation
sequencing (NGS), virology, cell biology, and genetic modeling of animals, providing an opportunity to
find novel and unknown therapeutic targets for MPM and cancer in general. Based on these premises,
we believe that a future breakthrough in MPM management will come from the design of adoptive cell
therapies engineered to target antigens that are still unknown, but that can be identified via unbiased
screening strategies.
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