
This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

P. Bellavista, M. Fogli, L. Foschini, C. Giannelli, L. Patera and C. Stefanelli, "A Framework for QoS- Enabled
Semantic Routing in Industrial Networks: Overall Architecture and Primary Protocols," 2022 IEEE Future
Networks World Forum (FNWF), Montreal, QC, Canada, 2022, pp. 58-63.

The final published version is available online at:
https://dx.doi.org/10.1109/FNWF55208.2022.00019

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/FNWF55208.2022.00019

A Framework for QoS-Enabled Semantic Routing
in Industrial Networks: Overall Architecture and

Primary Protocols
Paolo Bellavista∗, Mattia Fogli†, Luca Foschini∗,

Carlo Giannelli†, Lorenzo Patera∗, Cesare Stefanelli†
∗University of Bologna, Bologna, Italy, {paolo.bellavista, luca.foschini, lorenzo.patera}@unibo.it
†University of Ferrara, Ferrara, Italy, {mattia.fogli, carlo.giannelli, cesare.stefanelli}@unife.it

Abstract—The manufacturing sector represents a notable use
case of the Industry 4.0 revolution, heavily stressing the capability
of plants to ensure the desired QoS. Currently, manufacturing
plants are characterized by an increasing amount of non-mission-
critical traffic, in addition to traditional mission-critical safety-
related traffic, which is negligible in comparison. Since computing
and networking capabilities are no longer as abundant as in the
past, there is the need to properly manage available resources.
To ensure challenging QoS requirements, we propose a novel
protocol suite specifically designed for our QoS-enabled semantic
routing framework. Such a framework adopts an architecture
that fits the characteristics of modern manufacturing environ-
ments and exploits an overlay networking solution providing a
semantic routing substrate that operates both at the application
and network layers.

Index Terms—Software-Defined Networking, Message-
Oriented Middleware, Semantic Routing, Industry 4.0,
Industrial Internet of Things, Quality of Service

I. INTRODUCTION

Following the Industry 4.0 revolution, the industrial do-
main has been going through a profound metamorphosis.
Traditionally, the traffic produced on the shop floor was
limited to mission-critical information generated by fixed
equipment. Such traffic was mainly about operational- and
safety-related machine parameters and was a limited amount
in comparison with available network capabilities. As a result,
network resources available in loco were sufficient to carry
out mission-critical messages both timely and reliably. The
advent of the Industrial Internet of Things (IIoT) has radically
changed the industrial domain. IIoT devices have been the
key enablers for modern industrial applications (e.g., mobile
asset tracking, online remote reconfiguration, and predictive
maintenance), but at the price of ever-increasing complexity.
Such complexity concerns the amount of traffic traversing
the network, infrastructure heterogeneity, and cyber-security
threats, among others.

Within the Industry 4.0 revolution, the manufacturing sec-
tor represents a notable use case. Typically, manufacturing
environments consist of a shop floor, a plant, and an en-
terprise level. Specifically, the shop floor level is where
industrial automation takes place. The primary components
of the shop floor are programmable logic controllers, human-
machine interfaces, industrial machines, automated guided

vehicles, and IIoT devices. Then, the plant level is about
managing manufacturing processes, whereas the enterprise
level is about decision-making to run business operations. The
critical components of the plant and enterprise levels are the
manufacturing execution system and the enterprise resource
planning, respectively. It is worth mentioning that current
industrial guidelines for cyber security recommend splitting
the network topology into several shop floor subnets (shop
floor level components) and a single control room subnet
(plant/enterprise level components), each subnet provided with
a dedicated gateway. The industrial backbone connects such
subnets through multiple communication channels to increase
performance and fault tolerance. This means a multihop
multipath topology providing several end-to-end connectivity
opportunities with differentiated performance.

Nowadays, manufacturing plants not only produce a del-
uge of non-mission-critical traffic but also include mobile
equipment. This leads to a challenging domain, where com-
puting and networking resources within and among control
and shop floor subnets are no longer as abundant as in
the past and potentially adopt different (even proprietary)
protocols. Therefore, the dynamic management of resources
at service provisioning is crucial to ensure the desired QoS
level. For instance, automated guided vehicles moving spare
parts among the plant and the warehouse may abruptly migrate
traffic flows across different network devices (e.g., switches,
routers, and access points) based on their physical position.
Additionally, the plethora of industrial protocols on the shop
floor makes both intra- end inter-subnet machine-to-machine
communications difficult. Ideally, industrial machines should
keep interacting one each other seamlessly, notwithstanding
their actual physical location or heterogeneous data exchange
formats, while also ensuring QoS requirements.

This paper proposes a protocol suite for a framework for
QoS-enabled semantic routing in industrial networks. Such a
framework is based on an architecture that fits the charac-
teristics of modern manufacturing environments, as outlined
above. In particular, the proposed solution relies on overlay
networking to provide a semantic routing substrate that oper-
ates both at the application and network layers. The application
layer consists of a Message-Oriented Middleware (MOM) and

several Application Gateways (AGWs), whereas the network
layer combines Software-Defined Networking (SDN) and In-
Network Processing (INP). The overarching ambition is to
enable i) loosely-coupled, asynchronous communications, ii)
fine-grained traffic management, and iii) in-network traffic
optimization.

The rest of this paper is structured as follows. First, Sec-
tion II discusses the related work. Then, Section III lays out
the requirements of modern manufacturing domains. Next,
Section IV depicts the architecture and the protocols we
propose. Lastly, Section V provides conclusive remarks.

II. RELATED WORK

Industry 4.0 is pushing toward sophisticated industrial envi-
ronments, where heterogeneous industrial machines interact in
an articulated and flexible manner [1]. The SDN paradigm [2],
[3] is gaining momentum, not only in static and wired sce-
narios but also in wireless ad hoc ones, where mobile nodes
generate short-living connections [4]. Currently, OpenFlow [5]
is the most significant implementation of an open interface
between the control plane (i.e., a logically centralized entity
that implements the control logic) and the data plane (i.e.,
network devices that behave as dictated by the control plane).

In the industrial domain, SDN has often been jointly applied
together with edge computing and IIoT. For example, [6]
adopts SDN to manage the edge-cloud interplay in IIoT
environments. Specifically, the authors used SDN to handle big
data streams in an energy-aware and QoS-guaranteed fashion.
Similarly, [7] combines edge computing with SDN to support
data streams characterized by different latency constraints
among IIoT devices.

Recently, INP has been proposed to support the execution
on network devices of software modules that typically run on
end hosts [8], [9]. A notable first example of INP applied
to the industrial domain is [10], which proposes an SDN-
based adaptive transmission protocol to support time-critical
services by activating in-network functions on-demand for in-
path caching and retransmission.

Several proposals in the context of INP rely on Pro-
gramming Protocol-independent Packet Processors (P4) [11],
[12], an open-source domain-specific language for network
devices. For example, [13] combines P4-enabled switches with
edge computing. The authors offloaded critical lightweight
(sub)tasks to network devices while keeping the others on
edge-computing resources. [14] uses P4-enabled switches to
aggregate packets sharing common headers into a single one
and to disaggregate the aggregated packet before reaching the
destination. [15] proposes to program P4-enabled switches to
generate an alarm if MQTT messages convey values exceeding
a given threshold.

In previous work, we provided principles and design guide-
lines for QoS-enabled semantic routing [16]. Semantic routing
is based on additional semantics other than mere IP addresses.
Specifically, semantic routing may also depend on policy
coded in, configured at, or signaled to network devices [17].
This means network devices may operate in, above, and below

the network layer. Accordingly, a network device is intended
as an element that receives/transmits packets and performs
network functions on them, such as forwarding, dropping,
filtering, and packet header (or payload) manipulation. We then
used those principles and guidelines to design a framework for
QoS-enabled semantic routing in industrial networks [18]. In
this work, we detail a protocol suite to rule how the framework
components interact one each other.

III. REQUIREMENTS

Modern industrial environments have demanding commu-
nications requirements. In this regard, it is worth pointing
out some constraints imposed by the industrial domain while
seeking to satisfy such requirements. In particular, industrial
machines typically tend to have an extremely long lifetime
(i.e., decades) compared to the rate of innovation in computer
science, high costs (i.e., ranging from thousands to millions
of USD), and strict policies forbidding future updates unless
provided by the manufacturer. Accordingly, a suitable com-
munications substrate should live within the constraints of the
industrial domain while satisfying the following requirements.

First, traffic flows traversing the network should be appro-
priately prioritized based on the information they carry. In this
regard, it is paramount to distinguish between mission-critical
and non-mission-critical traffic flows. For instance, mission-
critical flows could notify human operators about (potential)
hazardous circumstances, thus such flows should reach the
destination as close to real-time as possible. At the opposite
end of the spectrum, non-mission-critical flows carry non-
urgent information. Note that non-mission-critical flows are
typically way larger than mission-critical ones, meaning the
former may take resources at the latter’s expense if not ade-
quately managed. This is where per-flow traffic management
comes in. Specifically, traffic flows should be prioritized (SDN
side) so that safety-related flows go first, then monitoring ones.
However, flow prioritization may not be enough in the case of
several huge flows traversing the network concurrently. Given
that network resources are not as abundant as in the past
compared to the traffic volume produced on the shop floor,
network devices should be able to apply data filtering if needed
and data aggregation whenever possible (INP side).

Second, shop floor components should communicate
straightforwardly despite the plethora of protocols within the
industrial domain. This requires connectors (AGWs) to nor-
malize such protocols. Once normalized, intermediate nodes
(i.e., network devices) can perform actions on packet headers
and payloads according to a given semantic. For example, a
network device may perform data aggregation by averaging
consecutive temperature values or may perform data filtering
by dropping values under a given threshold.

Lastly, shop floor components should seamlessly communi-
cate on the move. This means the overall performance should
not be affected while moving from one shop floor subnet
to another. As a notable example, let us consider the case
of an automated guided vehicle moving from a shop floor
subnet to another while carrying spare parts. As the vehicle

(a) Functional/layered view. (b) Network topology.

Fig. 1: Architecture overview.

changes subnet, so does its subnet gateway. As a result,
the traffic flow(s) produced and consumed by the vehicle
should be rescheduled accordingly. It is worth noting that flow
rescheduling requires not only reconfiguring network devices
dynamically but also doing so in compliance with other flows
already in place along the new path(s).

IV. ARCHITECTURE OVERVIEW AND PROTOCOLS

As mentioned above, the solution we propose operates at
both the application and network layers. The architecture
design follows the SDN approach, clearly distinguishing the
control plane from the data plane and identifying the interfaces
(i.e., protocols) between such planes. In this regard, Fig. 1a
provides a layered architecture overview.

The control plane comprises AGW, MOM, SDN, and INP
controllers to monitor and configure AGWs, MOM, and
SDN/INP-enabled network devices, respectively. The ratio-
nale behind the architectural components is the following.
AGWs sit close to shop floor components that cannot support
our protocols. For example, some legacy industrial machines
may not support IP-based communications and, at the same
time, cannot even be updated due to restrictive manufacturer
policies. Then, the MOM decouples senders and receivers,
sorts messages in topics of interest, and provides delivery
semantics. Although the MOM enables critical features in
message dispatching, it does not control how packets traverse
the network. This is where SDN and INP come in. Specifically,
SDN-enabled network devices put into action fine-grained
traffic management (flow steering and prioritization), whereas
INP-enabled network devices perform in-network traffic opti-
mization (data filtering and aggregation).

Fig. 1b places control and data plane components within
the industrial domain, as described above. Specifically, the
controllers and the MOM are in the control room subnet
(plant/enterprise level). SDN/INP-enabled network devices
are both subnet gateways and industrial backbone elements.
Lastly, AGWs are in the shop floor subnets, close to the shop
floor entities not compliant with the architecture interfaces.
Note that each shop floor subnet may be provided with one or

more AGWs, and a single AGW may serve one or more shop
floor entities.

The protocols used by the links and the interaction flows
between the architectural components are the following. Start-
ing from the lowest layer, in the data plane we find machine
data packets enriched by the respective AGWs with the Data
Header (Section IV-A), adopted to identify the data flow and
the generating machine in a unique way. Protocols A to D
(Sections IV-B to IV-E) implement the southbound interfaces
of our architecture and command AGWs, SDN/INP-enabled
network devices, and MOM. Lastly, Protocol E (Section IV-F)
commands the infrastructure and configures the control plane,
synchronizing all components on a unique shared state. For the
sake of clearness, in the final subsection (Section IV-G), we
report the sequence diagram in case of new topic subscription.

A. Data Header

The Data Header is attached to every packet traversing the
system by the AGWs of our architecture. Each component that
receives a new unforeseen Data Header in the packet forwards
it to its controller and waits for routing/processing/flow rules
to be set.

Table I shows an implementation of the Data Header, which
keeps track of three fields:

• flowID: 16-bit user-defined integer that identifies the flow
in a unique way in the system.

• machineId: 16-bit machine identifier. It can be logically
set based on user necessities.

• machineSerial: String displaying the machine serial
number. It can be dynamically read from machine reg-
isters or manually set on the AGWs.

TABLE I
STRUCTURE OF DATA HEADER

Field Type
flowId int16
machineId int16
machineSerial String

TABLE II
PROTOCOL A: AGW CONTROLLER TO AGWS

Field Type
header Data Header
crud 2bit
ttl uint32
ipFrom ipAddr
ipTo ipAddr
destTopic String
semanticDelivery 3bit
machineProtocol String
machineUrl String
pollingInterval int8
geoPosition geoURI [19]
applicationType String

B. Protocol A

Protocol A is adopted between the AGW controller and
AGWs. Its purpose is to pass information and configurations
about which machine to connect for gathering data and with
which frequency. Moreover, it contains the header field, to be
put as header of every message gathered by the specific AGW.

Table II details Protocol A:
• header: the Data Header (Section IV-A), applied to each

packet outgoing from the AGW.
• crud: 2 bit flags for identifying Create, Read, Update and

Delete of a new or existent configuration.
• ttl:time to live [ms] of the configuration. After that time

the AGW stops sending out new messages. If set to 0 the
configuration is permanent.

• ipFrom: IP address of the AGW interface on which send
out messages through the platform.

• ipTo: IP address of the destination MOM.
• destTopic: destination topic of the messages.
• semanticDelivery: 3 bits identifying the semantic of the

flow in the MOM. Typically, it can be at-most-once, at-
least-once, and exactly-once, but others can be defined
based on the specific implementation of the MOM.

• machineProtocol: protocol for extracting data from the
machine. Examples can be MODBUS [20], Profibus [21],
EtherCAT [22], and OPC-UA [23].

• machineUrl: Url address of the machine supervised by
the AGW.

• pollingInterval: interval in [ms] for polling data extrac-
tion.

• geoPosition: position in space of the machine supervised
by the AGW expressed in compliance to RFC 5870 [19].

• applicationType: application type header attached to the
message body by the AGW. Examples can be ’applica-
tion/json’ or ’application/xml’.

C. Protocol B

Open Networking Foundation - ”OpenFlow Switch Specifi-
cation” [24] is adopted as Protocol B to enable the interaction
between SDN controller and the SDN-enabled network de-
vices. The SDN approach decouples data from control plane
access, making the introduction of new network functionalities
simple and well structured on SDN-compliant hardware. A

TABLE III
PROTOCOL D’: MOM CONTROLLER TO MOM

Field Type
header Data Header
crud 2bit
ttl uint32
semanticDelivery 3bit
forwardOnTopics List<String>

custom SDN controller uses the data shared with the Protocol
E (Section IV-F) to control switches and to forward the data
to the correct INP-enabled network device for processing and,
lastly, to the MOM.

D. Protocol C

We have selected the P4 [12] language to define data
structures of this level. Unlike a generic language like C
or Python, P4 is a domain-specific language with a set of
constructs optimized for network data forwarding.

In our architecture, the P4 language is used to administrate
the INP-enabled network devices and to create processing
pipelines that digest the messages in the AGW-MOM path.

E. Protocol D

Protocol D is in charge of configuring and exchanging
information between MOM controller and MOM. Protocol
D is further split into two sub-protocols (i.e. D’ and D”) as
follows.

Protocol D’ configures the MOM to forward on a list of
topics the data with the specified header and to exchange the
semantic delivery QoS settings. The D’ message is triggered
every time that the MOM receives a new unforeseen flow in
input and requires the MOM controller flow information.

Protocol D” is used to communicate the topic subscribers
to the control plane to correctly set the network paths with
the specified priority. The D” message is sent by the MOM
to the controller every time there is a new subscription to the
managed topics. It is necessary for guaranteeing the QoS also
between the MOM and the subscribers and triggers an update
on the SDN controller via the Protocol E (Section IV-F).

Table III reports Protocol D’:
• header: the Data Header (Section IV-A), applied to each

configuration for identifying the traffic on which to apply
the rule.

• crud: 2 bit flags for identifying Create, Read, Update and
Delete of a new or existent configuration.

• ttl: time to live [ms] of the configuration. After that time
the MOM stops forwarding/prioritizing the flow. If set to
0 the configuration is permanent.

• semanticDelivery: 3 bits identifying the semantic of the
flow in the MOM. Typically, it can be at-most-once, at-
least-once, and exactly-once, but others can be defined
based on the specific implementation of the MOM.

• forwardOnTopics: the topics on which to forward the
specified flow.

Table IV reports Protocol D”:

TABLE IV
PROTOCOL D”: MOM TO MOM CONTROLLER

Field Type
header Data Header
crud 2bit
ipFromMom ipAddr
topic String
priority 3bit
subscribers List<ipAddr>

• header: the Data Header (Section IV-A), applied to each
configuration for identifying the traffic on which to apply
the rule.

• crud: 2 bit flags for identifying Create, Read, Update and
Delete of a new or existent configuration.

• ipFromMom: IP address of the MOM interface on which
send out messages through the platform.

• topic: starting topic of the messages.
• priority: SDN priority of the flow outcoming the MOM.
• subscribers: a list of IP addresses subscribed to the

specified topic. They are necessary for updating the SDN
rules.

F. Protocol E

The northbound interface is managed in a uniform way
between all entities by sharing information via Protocol E.
Protocol E is configures the system and shares the state of
the incoming data transmissions between all the controllers. It
contains all the fields that we defined in the previous subsec-
tions together with the crud flags marking and differentiating
new configurations from updates.

Table V describes Protocol E:
• header: the Data Header (Section IV-A), applied to each

configuration for identifying the traffic on which to apply
the rule.

• crud: 2 bit flags for identifying Create, Read, Update and
Delete of a new or existent configuration.

• ttl: time to live [ms] of the configuration.
• semanticDelivery: 3 bits identifying the semantic of the

flow in the MOM.
• priority: SDN priority of the flow outcoming the MOM.
• ipFrom: IP address of the AGW interface on which send

out messages through the platform.
• ipFromMom: IP address of the MOM interface on which

send out messages through the platform.
• ipTo: IP address of the destination MOM.
• destTopic: destination topic of the messages.
• forwardOnTopics: the topics on which to forward the

specified flow.
• subscribers: a list of IP addresses subscribed to the

specified topic.
• inp: a list of field coupled with the specific INP function

to apply on.
• applicationType: application type header attached to the

message body by the AGW.
• geoPosition: position in space of the machine supervised

by the AGW expressed in compliance to RFC 5870 [19].

TABLE V
PROTOCOL E: CONTROLLER TO CONTROLLER

Field Type
header Data Header
crud 2bit
ttl uint32
semanticDelivery 3bit
priority 3bit
ipFrom ipAddr
ipFromMom ipAddr
ipTo ipAddr
destTopic String
forwardOnTopics List<String>
subscribers List<ipAddr>
inp List<(field: String, func: String)>
applicationType String
geoPosition geoURI [19]
machineProtocol String
machineUrl String
pollingInterval int8

• machineProtocol: protocol used by AGWs for extracting
data from the machine.

• machineUrl: Url address of the machine supervised by
the AGW.

• pollingInterval: interval in [ms] for polling data extrac-
tion.

G. New Topic Subscription Sequence Diagram

Fig. 2 presents the sequence diagram in case of new topic
subscription. By delving into finer details, the subscription of
a new data consumer to the MOM triggers an interaction with
Protocol D” (Table IV). Such interaction is handled by the
MOM controller, which triggers a proper reconfiguration of
the underlying SDN-enabled network devices.

Fig. 2 details the sequence diagram showing the interactions
triggered by the addition of a new subscriber to a MOM
topic. The MOM communicates the updated list of subscriber
IPs to the MOM controller via Protocol D”. MOM controller
unleashes a synchronization phase (Protocol E) within the
northbound interface to the SDN controller.

Fig. 2: New topic subscription sequence diagram.

The SDN controller has complete knowledge of the network
components and thus chooses the best path to achieve the
desired priority based on provided priority bits. Once the
best path is calculated, the SDN controller configures the
network equipment with Protocol B (OpenFlow) to route the
packets accordingly from the MOM to the new subscriber,
guaranteeing the correct QoS to the final data consumer.

V. CONCLUSIONS AND FUTURE WORK

This paper extends our previous framework for QoS-enabled
semantic routing in industrial networks, exploiting the SDN-
INP interplay to enable the semantic routing of traffic flows
within a MOM-based Industry 4.0 environment. In this work,
we detailed how the architectural components interact based
on a novel protocol suite designed to ensure challenging
QoS requirements in terms of flow steering and prioritization,
protocol normalization, and traffic optimization. We believe
that the proposed protocol suite fits the characteristics of
modern manufacturing environments, by providing an overlay
networking solution that supports a semantic routing substrate
operating both at the application and network layers. In the
future, we intend to extend our solution by allowing the dy-
namic deployment and adoption of novel industrial machines
and control room components seamlessly, also supporting the
federation among different geographically distributed manu-
facturing plants.

REFERENCES

[1] A. Corradi, L. Foschini, C. Giannelli, R. Lazzarini, C. Stefanelli, M. Tor-
tonesi, and G. Virgilli, “Smart appliances and rami 4.0: Management and
servitization of ice cream machines,” IEEE Transactions on Industrial
Informatics, vol. 15, 2019.

[2] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and
O. Koufopavlou, “Software-Defined Networking (SDN): Layers and
Architecture Terminology,” RFC 7426, Jan. 2015. [Online]. Available:
https://www.rfc-editor.org/info/rfc7426

[3] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[4] M. Fogli, C. Giannelli, and C. Stefanelli, “Software-defined networking
in wireless ad hoc scenarios: Objectives and control architectures,”
Journal of Network and Computer Applications, p. 103387, 2022.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
p. 69–74, mar 2008.

[6] K. Kaur, S. Garg, G. S. Aujla, N. Kumar, J. J. P. C. Rodrigues,
and M. Guizani, “Edge computing in the industrial internet of things
environment: Software-defined-networks-based edge-cloud interplay,”
IEEE Communications Magazine, vol. 56, no. 2, pp. 44–51, 2018.

[7] X. Li, D. Li, J. Wan, C. Liu, and M. Imran, “Adaptive transmission opti-
mization in sdn-based industrial internet of things with edge computing,”
IEEE Internet of Things J., vol. 5, no. 3, pp. 1351–1360, 2018.

[8] “In-network computing,” last visited in Apr. 2022. [Online]. Available:
https://www.sigarch.org/in-network-computing-draft/

[9] D. R. K. Ports and J. Nelson, “When should the network be
the computer?” in Proceedings of the Workshop on Hot Topics in
Operating Systems, ser. HotOS ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 209–215. [Online]. Available:
https://doi.org/10.1145/3317550.3321439

[10] J. Chen, Q. Ye, W. Quan, S. Yan, P. T. Do, W. Zhuang, X. S. Shen,
X. Li, and J. Rao, “Sdatp: An sdn-based adaptive transmission protocol
for time-critical services,” IEEE Network, vol. 34, no. 3, pp. 154–162,
2020.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, Jul. 2014.

[12] “P4 language specification,” last visited in Apr. 2022. [Online].
Available: https://p4.org/p4-spec/docs/P4-16-v1.2.1.html

[13] T. Mai, H. Yao, S. Guo, and Y. Liu, “In-network computing powered
mobile edge: Toward high performance industrial iot,” IEEE Network,
vol. 35, no. 1, pp. 289–295, 2021.

[14] S. . Wang, J. . Li, and Y. . Lin, “Aggregating and disaggregating packets
with various sizes of payload in p4 switches at 100 gbps line rate,”
Journal of Network and Computer Applications, vol. 165, 2020.

[15] A. Atutxa, D. Franco, J. Sasiain, J. Astorga, and E. Jacob, “Achieving
low latency communications in smart industrial networks with pro-
grammable data planes,” Sensors, vol. 21, no. 15, 2021.

[16] P. Bellavista, M. Fogli, L. Foschini, C. Giannelli, L. Patera, and
C. Stefanelli, “Qos-enabled semantic routing for industry 4.0 based on
sdn and mom integration,” in 2021 IEEE 22nd International Conference
on High Performance Switching and Routing (HPSR). IEEE, 2021, pp.
1–6.

[17] A. Farrel and D. King, “An Introduction to Semantic Routing,”
Internet Engineering Task Force, Internet-Draft draft-farrel-irtf-
introduction-to-semantic-routing-03, Jan. 2022, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-farrel-irtf-
introduction-to-semantic-routing-03

[18] P. Bellavista, L. Foschini, L. Patera, M. Fogli, C. Giannelli, C. Stefanelli,
and Z. Lou, “A Framework for QoS-Enabled Semantic Routing in
Industrial Networks,” Internet Engineering Task Force, Internet-Draft
draft-bellavista-semantic-sdn-mom-00, Mar. 2022, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-bellavista-
semantic-sdn-mom-00

[19] C. Spanring and A. Mayrhofer, “A Uniform Resource Identifier for
Geographic Locations (’geo’ URI),” RFC 5870, Jun. 2010. [Online].
Available: https://www.rfc-editor.org/info/rfc5870

[20] “Modbus 101 - introduction to modbus,” last visited in Apr. 2022. [On-
line]. Available: https://www.csimn.com/CSI pages/Modbus101.html

[21] “Profibus,” last visited in Apr. 2022. [Online]. Available:
https://www.profibus.com/technology/profibus

[22] “Ethercat - the ethernet fieldbus,” last visited in Apr. 2022. [Online].
Available: https://www.ethercat.org/en/technology.html

[23] “Unified architecture,” last visited in Apr. 2022. [Online]. Avail-
able: https://opcfoundation.org/developer-tools/specifications-unified-
architecture

[24] “Openflow switch specification,” last visited in Apr.
2022. [Online]. Available: https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

