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Perception and action are fundamental processes that characterize our life and our

possibility to modify the world around us. Several pieces of evidence have shown

an intimate and reciprocal interaction between perception and action, leading us

to believe that these processes rely on a common set of representations. The

present review focuses on one particular aspect of this interaction: the influence

of action on perception from a motor e�ector perspective during two phases,

action planning and the phase following execution of the action. The movements

performed by eyes, hands, and legs have a di�erent impact on object and space

perception; studies that use di�erent approaches and paradigms have formed an

interesting general picture that demonstrates the existence of an action e�ect on

perception, before as well as after its execution. Although the mechanisms of this

e�ect are still being debated, di�erent studies have demonstrated that most of the

time this e�ect pragmatically shapes and primes perception of relevant features

of the object or environment which calls for action; at other times it improves our

perception through motor experience and learning. Finally, a future perspective is

provided, in whichwe suggest that thesemechanisms can be exploited to increase

trust in artificial intelligence systems that are able to interact with humans.
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Introduction

At the basis of a successful behavior there is the interplay between perception and
action. Typically, perception informs the action mechanism regarding the features of the
environment and this mechanism is responsible for changes in the environment. If, on
the one hand, it is doubtless that perception influences the action, the influence of action
on perception cannot be taken for granted to the same extent. Starting from such a
consideration, this review aims to examine the influence of action on visual perception of
different properties of objects (i.e., size, orientation, and location) focusing on the actions
performed by different motor effectors such as the eye, the hand, and the leg. Since two
phases can be distinguished when looking at the influence of action on perception, namely
planning and execution, in the following sections we provide a separate overview of some of
the studies that explore the effect of action planning on the perception of the object/stimulus,
and of those that examine action execution and its effect on perception.
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The e�ect of action planning on
perception

As perceivers, we receive, on a daily basis, a wide variety
of information concerning the features of the surrounding
environment. As active players, we constantly explore this
environment based on the sensory processing of those stimuli
related to our goals/intentions and subsequent actions. For
example, everyday tasks such as grasping a cup or the handle of a
frying pan are highly precise actions that we perform automatically;
however, these involve a complex sensorimotor approach, many
aspects of which are still unknown.

An action, an intended and targeted movement, is
distinguished by several sequential sections that organize its
processing and work in close coordination with perception
(Hommel et al., 2016). Within this processing (assessment of
environmental information, location in three-dimensional space,
and selection, integration, and initiation of the action), action
planning represents a fundamental component (Hommel et al.,
2016; Mattar and Lengyel, 2022).

Action planning is specified as a process which considers
the execution of actions based on the environment and expected
outcomes (Sutton and Barto, 1998; Mattar and Lengyel, 2022).
Action planning could be referred to as the period between
the decision phase and the initial impulse phase. During the
action planning phase, the player generates an action goal (based
on the temporal and spatial properties of the environment)
which is then transferred to the motor system to achieve that
specific purpose. That is, first the information is organized and
subsequently integrated into a plan. This particularity provides
plasticity and favors the adaptation to possible changes to the input
information and goals (Mattar and Lengyel, 2022). For example,
when grasping an object, it can be observed how the hand adjusts
to the intrinsic properties of that object (Jeannerod, 1981), which
hints at the relevance of action planning in the interaction between
the environment and the final goal. In fact, input information
is processed in parallel by pathways acting in a shared action-
perception framework (Prinz, 1990; Hommel et al., 2001), within
which planning itself has been observed to influence (Hommel
et al., 2001, 2016; Witt, 2018).

Notwithstanding the considerable scientific literature on how
planning contributes to cognitive processes, the current findings
merely give us a glimpse of the long road ahead. Here, in the
following sections, we outline the most important behavioral
studies regarding the impact of action planning on perception.

The eye domain

Our visual system captures primordial information which
guides our actions. Once the visual environment and objects
of interest are defined, the visuo-spatial information is then
transferred in order to plan, execute, and control those goal-
directed actions (Hayhoe, 2017). The impact of vision on motor
actions has always been a topic of great scientific interest (Prablanc
et al., 1979; Desmurget et al., 1998; Land, 2006, 2009). Several

decades ago, groundbreaking studies were already describing how
vision improves goal-directed movement accuracy (Woodworth,
1899; Bernstein, 1967). Since then, subsequent studies have sought
to investigate how vision influences planning, execution, and
control of movements.

Visual information greatly contributes to the action planning
phase. During planning, the presence of visual feedback regarding
the limb is paramount. For example, motor actions are more
accurate when visual feedback is provided during action planning,
regardless of whether the limb is visible or not during the action
(Prablanc et al., 1979; Conti and Beaubaton, 1980; Pelisson et al.,
1986; Velay and Beaubaton, 1986; Elliott et al., 1991, 2014; Rossetti
et al., 1994; Desmurget et al., 1995, 1997; Coello and Grealy, 1997;
Bagesteiro et al., 2006; Bourdin et al., 2006; Sarlegna and Sainburg,
2009).

Indeed, vision plays a key role in action planning since
movements are apparently planned as vectors based on the extrinsic
coordinates of the visual environment (Morasso, 1981; Flanagan
and Rao, 1995; Wolpert et al., 1995; Sarlegna and Sainburg,
2009). Once visual information has been extracted, planning
should consider those properties that will shape further actions.
An example may be that of driving a car and approaching an
intersection. Our visual system extracts information regarding
the location and movement of other cars, pedestrians, and traffic
signals at the intersection. Based on the extrinsic coordinates of
the visual environment, during action planning we determine
the appropriate vectors for our movements, such as accelerating,
braking, or turning, that allow us to navigate the intersection safely
and efficiently.

In a common framework, two stages within action planning
have been suggested: the primary stage, in which vision is
fundamental to determine the visuo-spatial attributes (target,
limbs, and environment), and the secondary stage, in which the
primary input is transformed into motor commands to generate
the action (Sarlegna and Sainburg, 2009). Therefore, in a normal
context, during action planning, vision provides the relevant
information which facilitates the success of an action.

Acquiring visuo-spatial information would not be possible
without eye movements. If a target falls in the peripheral visual
field, eye movements assist in conveying the exact location of the
target. Suppose we want to reach for an object. Considering the
retinal spatial resolution, when a target of interest to be reached is
identified, the region of highest retinal resolution should be focused
on that target (Liversedge and Findlay, 2000; Land, 2006). To this
end, before the reaching action begins, the eyes perform a saccadic
movement toward the object and then fixate it constantly until it
is reached by the hand. Within this brief scenario, the relevance of
eye movements, which continuously support the coupling of vision
and action, can be appreciated (Land, 2006, 2009; Hayhoe, 2017; de
Brouwer et al., 2021).

Research into the interaction between the visual and motor
systems has shown how the eyes constantly support and guide
our actions in multiple dynamic tasks (Angel et al., 1970; Biguer
et al., 1982; Pelisson et al., 1986; Land, 1992; Land et al., 1999;
Neggers and Bekkering, 1999, 2000, 2001, 2002; Johansson et al.,
2001; Patla and Vickers, 2003). For example, Land et al. (1999)
demonstrated that eye movements are directed to those objects
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involved in our daily actions. In Neggers and Bekkering (1999,
2000, 2001, 2002) studies, a mechanism of gaze anchoring during
hand actions was elegantly demonstrated. They observed that
during reaching movements observers did not make saccadic
movements toward another target until the hand had arrived at the
target of interest. Similar findings were reported by Johansson et al.
(2001). They instructed participants to reach and grasp a bar which
they subsequently had to move while avoiding obstacles and finally
attach to a switch. They reported that gaze fixation was focused on
those points that were critical to the action. That is, eye movements
continuously guided the action to grasp, navigate, and attach the
object (Johansson et al., 2001). In other studies, it was shown
that fixation patterns differ when an object is grasped or viewed
passively (Vishwanath and Kowler, 2003; Brouwer et al., 2009).
Both studies showed that during visualization, fixation patterns
were focused on the object’s center of gravity, whereas during
grasping, fixation was affected by the contact zone of the index
and thumb digits. Interestingly, Brouwer et al. (2009) observed
that saccadic reaction times were slower in the grasping task as
compared to the visualization task. This outcome reflects that the
onset of eye movement was dependent on action planning, i.e.,
in those conditions in which the eye and hand participated in the
same process.

The eye reaction time latencies relative to the action have
already been reported in several studies (Bekkering et al., 1994,
1995; Lünenburger et al., 2000; Pelz et al., 2001; Hayhoe et al., 2003).
Bekkering et al. (1994) measured eye and hand motor response
latencies using single- and dual-task methodologies. Like Brouwer
et al. (2009), and as can be appreciated in Figure 1, saccade reaction
time latencies were highest in the dual approach, i.e., when both the
eye and hand simultaneously moved toward the visual target. Hand
latencies were similar in both the single and dual tasks (Bekkering
et al., 1994). Conversely, in another study, lower saccadic reaction
time latencies were reported when the eye and hand moved
simultaneously toward a common target (Lünenburger et al., 2000).
Perhaps the type of planned action (pointing, reaching, grasping,
etc.) is decisive within this interference effect. Longer processing
times may be required according to the type of action planned, and,
thus, eye reaction times could be affected differently (Brouwer et al.,
2009). These findings demonstrate that these motor systems (eye-
limb) are not independent from each other, and that they share
synergistic processes when targeted to the same goal.

Recent studies have revealed how eye movements support
selection and action planning toward a goal. Particularly,
exploration of the eye-limb relationship in naturalistic tasks has
revealed how eye movements provide continuous information
from the visual environment, generating a context of intrinsic
properties and spatial coordinates during action planning to
effectively guide future movements (Zelinsky et al., 1997; Land
et al., 1999; Pelz et al., 2001; Brouwer et al., 2009). In tasks involving
jar-opening or hand-washing it has been observed that reaching
actions are preceded by anticipatory fixations toward the target of
interest (Pelz et al., 2001; Hayhoe et al., 2003). These fixations occur
during action planning and help the observer to obtain decisive
spatial information to assist in the future action (Hayhoe et al.,
2003). Other activities, such as walking or driving over difficult
and tortuous surfaces, have shown how visuo-spatial information
derived from eye movements is primordial during action planning

FIGURE 1

Averaged latencies of eye and hand responses, measured in

milliseconds, under both experimental conditions: single- and

dual-task. Modified from Bekkering et al. (1994).

(Land and Lee, 1994; Patla and Vickers, 2003; Land, 2006). For
example, while walking, gaze fixation anticipates action by 0.8–1.1 s
on average (Patla and Vickers, 2003; Land, 2006). This suggests that
during planning, the visual system acts as an anticipatory system,
in a feedforward manner, for the execution of the action.

Although previous studies focused on the role of the eyes as
support in the planning of actions performed by other motor
effectors, multiple studies have extensively examined the impact
of eye motor planning on visual perception within the oculomotor
system. These investigations have shown that spatial perception is
enhanced at the location where the eye movement is intended to
go, shortly before its execution (Hoffman and Subramaniam, 1995;
Deubel and Schneider, 1996; Neggers et al., 2007). For example,
research has shown that saccade target selection is influenced by
object recognition (Deubel and Schneider, 1996), and that visual
attention can influence the planning and execution of saccadic eye
movements (Hoffman and Subramaniam, 1995). Additionally, a
coupling between visuospatial attention and eye movements has
been observed (Neggers et al., 2007), with attention often following
the gaze. This coupling can be disrupted when transcranial
magnetic stimulation is applied to the frontal eye fields, suggesting a
causal relationship between attention and eye movements (Neggers
et al., 2007). These outcomes may imply that the process of
eye motor planning can have a significant impact on perception.
Although the exact mechanisms underpinning this impact are not
yet fully known, it is believed that the coordinated activity of
multiple brain regions and systems, including the saccadic system,
vestibular system, and attentional processes, is at play.

The hand domain

Over the past few decades, the scientific literature has
provided compelling evidence as to how perception is biased by
the planning of arm movements, such as reaching and grasping
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(Musseler and Hommel, 1997; Prinz, 1997; Craighero et al., 1999;
Wohlschläger, 2000; Hommel et al., 2001; Knoblich and Flach,
2001; Wühr and Müsseler, 2001; Hamilton et al., 2004; Kunde
and Wuhr, 2004; Fagioli et al., 2007; Wykowska et al., 2009, 2011;
Kirsch et al., 2012; Kirsch and Kunde, 2013; Kirsch, 2015). From
the perceiver’s point of view, it is intriguing to consider the fact
that when planning a reaching or grasping movement toward an
object, the perception of the object is somehow influenced. For
example, when reaching for a cup of coffee, the perceiver’s visual
system considers the cup’s location and orientation relative to the
perceiver’s body. The perceived properties of the cup may also be
influenced by the planned action, as the perceiver’s motor system
may need to make adjustments based on these properties in order
to successfully grasp the cup. This suggests that the motor system
is not only involved in executing actions, but also in shaping
perception based on the perceiver’s intended actions. In fact,
multiple perceptual aspects, such as orientation, size, luminance,
location, motion, among many others, have been reported as target
features that are directly influenced by action planning (Musseler
and Hommel, 1997; Craighero et al., 1999; Wohlschläger, 2000;
Zwickel et al., 2007; Lindemann and Bekkering, 2009; Kirsch et al.,
2012). For example, studies by Kirsch have shown how planning
itself interferes with distance perception and, therefore, with target
spatial location (Kirsch et al., 2012; Kirsch and Kunde, 2013; Kirsch,
2015).

This action(planning)-perception interaction is dependent on
whether the goal is related or not to the action. When there
is a direct relationship between goal and action, perception is
facilitated by the planning of the action, whereas when the two are
independent, action planning interferes with perception (Hommel
et al., 2016).

Several benchmark studies carried out in the 1990s and
2000s demonstrated various scenarios exhibiting facilitation and
interference. Based on a set of five experiments, Musseler and
Hommel (1997) reported the impact of action planning on the
direction perception of a visual stimulus. Direction perception
(right or left) was influenced by action planning concurrence (right
or left button press). Specifically, identifying the direction of a
right-pointing stimulus was more costly after planning a right
button press (Musseler and Hommel, 1997). Given the common
code (Hommel et al., 2001), action planning toward a concrete
direction led to an interference scenario, i.e., the share-code
weighting favored action over perception (Musseler and Hommel,
1997; Hommel et al., 2016).

Subsequent studies corroborated the interaction between
perception and action planning processes. In Wohlschläger (2000)
study, observers had to report the perceived motion direction of
projected discs while turning a knob in a designated direction.
Hand motion direction biased subjects’ motion perception. Under
a similar experimental approach to that of Craighero et al.
(1999), Lindemann and Bekkering (2009) instructed volunteers to
reach, grasp, and subsequently rotate an x-shaped manipulandum
following the visual go signal’s onset. Here, a tilted bar (-45◦

or +45◦) served as the visual go signal. Volunteers detected the
onset of the go signal faster in the congruent conditions, in
which the go signal, and action planning presented the same
direction (Lindemann and Bekkering, 2009). These findings imply

that perception was facilitated in the direction in which the
action had been previously planned. In contrast, like Musseler and
Hommel (1997), Zwickel et al. (2007) reported action (planning)-
perception coupling but in an interference scenario. In their
study, reaction times were longer when movement deviations
agreed with the action planning direction (Zwickel et al., 2007).
Interference situations have also been reported by other authors
(Schubö et al., 2001; Hamilton et al., 2004; Zwickel et al.,
2010), indicating that the action (planning)-perception coupling is
dependent on whether the perceived target is linked or not to the
planned action.

Recent research has proven the relevance of the type of
action planning in how perception is biased (Bekkering and
Neggers, 2002; Fagioli et al., 2007; Symes et al., 2008; Wykowska
et al., 2009, 2011; Gutteling et al., 2011). Bekkering and Neggers
(2002) instructed observers to point at or grasp an object with
a specific orientation and color. The authors found that while
color errors were identical in both approaches, the number of
orientation errors was lower in the grasping scenario (Bekkering
and Neggers, 2002). Gutteling et al. (2011) asked participants to
perform a grasping or pointing movement simultaneously with
an orientation or luminance discrimination task (see Figure 2).
Orientation sensitivity increased when planning a grasping action,
as opposed to a pointing action. Size, location, and luminance
have also been described as being perceptually dependent attributes
of the type of action planning (Fagioli et al., 2007; Wykowska
et al., 2009, 2011; Kirsch et al., 2012; Wykowska and Schubö,
2012; Kirsch and Kunde, 2013). Fagioli et al. (2007) revealed that
planning a grasping action improved the ability to detect deviations
in object size, while planning a reaching action facilitated the
detection of location deviations. Studies by Wykowska et al. (2009)
and Wykowska and Schubö (2012) corroborated the finding that
planning to grasp improves size perception, while planning to reach
enhances luminance perception.

All the above-mentioned scientific evidence seems to support
the common coupling of action(planning)-perception. Planning an
action primes those perceptual dimensions that can enhance one’s
own action (Hommel et al., 2001; Wykowska et al., 2009).

The majority of studies cited have shown that the motor system
dynamically modulates the incoming perceptual information.
However, these modulations have been observed when the
perceptual information is intermixed with attentional and
decisional mechanisms because they are strictly related to the
motor response (i.e., Gutteling et al., 2011). Relevant literature
was dedicated to understanding the temporal tuning of incoming
perceptual information at very early cortical stages. To do this,
different studies measured the contrast sensitivity of a brief visual
stimulus that was not correlated with the action to be performed,
and that was presented at different times during motor planning
and execution. These studies used contrast sensitivity because it
represents and reflects the activity of the primary visual cortex,
since it has been demonstrated that the change of contrast visibility
requires a modulation at this early cortical level (Boynton et al.,
1999). Furthermore, it has recently been demonstrated that both
sensory and motor processes are regulated by a rhythmic process
that reflects the oscillations of neuronal excitability (Buzsáki
and Draguhn, 2004; Thut et al., 2012). Combining all these
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FIGURE 2

E�ect of grasping and pointing planning on orientation and luminance detection. (A) Experimental approach. Experiments 1 and 2 used a similar

stimulus display, which included a fixation spot and two bars. Participants were instructed to execute an action after a go-cue signaled by the

appearance of the first bar. The second bar was either rotated slightly (Experiment 1) or di�ered in luminance (Experiment 2) from the first bar. (B) In

Experiment 1, participants showed better orientation discrimination when planning a grasping action rather than when planning a pointing action. (C)

Experiment 2 did not reveal any consistent change in luminance discrimination between grasping and pointing planning. Modified from Gutteling

et al. (2011).

pieces of evidence, Tomassini et al. (2015) evaluated whether
the rhythmic oscillations of visual contrast sensitivity were also
present when synchronizing the perceptual information with the
onset of a reaching and grasping movement. They found that the
oscillations in contrast sensitivity emerged around 500ms before
movement onset, during action planning, even if perception was
not related to the motor task (see Figure 3). These findings were
extended in an electroencephalographic (EEG) study, in which
the same group demonstrated that motor planning is combined
with perceptual neural oscillations (Tomassini et al., 2017). The
perceptual “action-locked” oscillations were also observed when
the movements were performed with the eyes (Benedetto and
Morrone, 2017; Benedetto et al., 2020). In this study, the results
showed that saccadic preparation and visual contrast sensitivity
oscillations are coupled, suggesting a functional alignment of the
saccade onset with the visual suppression (Benedetto andMorrone,
2017).

The leg domain

The above-discussed research focuses on peripersonal space.
However, it has been observed that the impact of action planning
on perception can extend to the leg effector domain, resulting
in facilitation effects on the perception of extrapersonal space.
Several studies have shown that, when viewing objects in our
extrapersonal space, we scale the perceived distance according to
our intended motor action. For example, if we plan to walk a
certain distance, we perceive the distance based on the amount
of walking effort needed to traverse it, while, if we intend to
throw a ball, the perceived distance is based on the amount of
throwing effort required (Witt et al., 2004; Proffitt, 2006; Witt
and Proffitt, 2008). The way we perceive our environment seems
to be influenced by the specific actions we anticipate taking,
with perception being adjusted based on an optimal cost-benefit
principle (Proffitt, 2006). Recently, Fini et al. (2014, 2015a,b)
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FIGURE 3

Rhythmic oscillations of contrast sensitivity synchronized with hand movements. (A) Experimental setup of the motor and visual tasks. (B) Example of

trial sequence. Visual noise and fixation point were presented from the beginning of the trial to the end. At a random time from the start of the trial, a

Gabor stimulus was displayed to the lower right or to the lower left of fixation. (C) Time course of the orientation discrimination responses for each

participant aligned with the onset of the hand movement. Modified from Tomassini et al. (2015).

used a virtual paradigm to investigate the influence of anticipated
actions on spatial perception. Participants were asked to judge
the location of an object positioned at progressively increasing or
decreasing distances from a reference frame. They noticed that
participants perceived the target object to be closer to their own
body when they intended to move toward it compared to when
they had no intention of moving. This effect was not observed
when the target object was compared to another static object
(Fini et al., 2015a). Additionally, studies have demonstrated that
when leg actions such as walking or running are primed, the
portion of extrapersonal space judged as near in other-based
coordinates is significantly expanded (Fini et al., 2017), together
with an extension of peripersonal space during full-body actions
such as walking compared to standing (Noel et al., 2015). These
findings suggest that visual perception of the physical environment

beyond our body is heavily influenced by our actions, intentions,
and physical abilities. Apparently, the main way of exploring the
extended environment seems to be through locomotion, as it is
the only way to cover distances and access information from more
distant locations in the extrapersonal space compared to near
extrapersonal locations, where information can be extracted from
different sources (di Marco et al., 2019).

The e�ect of action execution on
perception

Human ability to perform actions impacts the visual perception
of objects/targets. This represents the framework within which the
influence of action execution on perception is typically explained.
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FIGURE 4

Size perception modification induced by saccadic adaptation. (A) Top row, Shortening adaptation condition. The fixation point was presented at the

start of the trial. After 1 s, a bar appeared, but participants had to continue to focus on the fixation target. After a randomized time, an acoustic signal

indicated the possibility of executing a saccade toward the bar. Then the bar was decreased in size by 30% of its length at the right border as soon as

the saccade was detected. Bottom row, Lengthening adaptation phase. This condition was identical to the shortening adaptation condition, with the

only di�erence being that the bar was increased in size by 30% during saccade execution. (B) Mean deviation of grip aperture from baseline in

shortening adaptation (white column) and lengthening (black column) adaptation. The data were averaged across subjects and sizes. Error bars

indicate SE. *p < 0.05, significant deviations from baseline (modified from Bosco et al., 2015).

The action-specific effects indicate all the effects generated from
the ability to act on spatial perception (Proffitt, 2006, 2008). The
first study suggesting that spatial perception was influenced by the
ability to perform an action was carried out by Bhalla and Proffitt
(1999). They showed that the perception of hill slant was influenced
by the physiological potential. In fact, if the energetic costs required
to climb them increased, the hills were estimated to be steeper.
Following this work, several researchers have focused and expanded
this concept beyond the physiological potential; however, these
studies focus on other aspects of action. For example, softball
players whowere good at hitting the ball estimated it as being bigger
compared to others (Witt and Proffitt, 2005; Gray, 2013). Similarly,
archers who had a better shot than others estimated the target as
bigger (Lee et al., 2012). Parkour athletes judged walls as lower
compared to non-parkour athletes (Taylor et al., 2011), and good
tennis players judged the net as being lower (Witt and Sugovic,
2010).

Another study examining a different branch of action-specific
effects analyzed the affordance of the object, in other words, the
possibility to act on or with an object (Gibson, 1979). Typically,
the measurement of affordance perception is carried out by
assessing the point at which an action is perceived as barely
possible. For example, some studies have explored the width of a
doorway that is perceived as being just possible to pass through,
or the height of a step at which the affordance of stepping up
is perceived (Warren, 1984; Mark, 1987; Warren and Whang,

1987). Other examples are studies in which people with broader
shoulders perceived doorways to be smaller compared to people
with narrower shoulders (Stefanucci and Geuss, 2009), or studies
in which a target is presented beyond the distance of the arm’s
reach: the target is perceived as being closer when the participants
use a reach-extending tool to reach the target and more distant
when they reach without the tool (Witt et al., 2005; Witt and
Proffitt, 2008; Witt, 2011; Davoli et al., 2012; Osiurak et al., 2012;
Morgado et al., 2013). Given all these remarkable data, the next
section focuses on the action-specific effects on perception as a
function of the specific effector used, expanding the panorama to
other investigation modes.

The eye domain

In the eye realm, the effect of saccade execution on
perception has been investigated through saccadic adaptation
and perisaccadic mislocalization mechanisms. Saccadic adaptation
allows researchers to study how saccade amplitudes change
according to changes in the post-saccadic target shift. This change
can be either parallel or orthogonal to the main direction of
the saccade. In other words, it is well established that saccade
amplitudes adapt when a small target is horizontally shifted
during saccade execution to another position in relation to
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FIGURE 5

Size perception modification not induced by saccadic adaptation. (A) Top row, Shortening adaptation condition. The fixation point was presented at

the start of the trial. After 1 s, a bar appeared, but participants had to continue to focus on the fixation target. After a randomized time, an acoustic

signal indicated the possibility of executing a saccade toward the bar. Then the bar was symmetrically decreased in size by 30% of its length as soon

as the saccade was detected. Bottom row, Lengthening adaptation. This was identical to the shortening adaptation, with the only di�erence being

that the bar was symmetrically increased in size by 30% during the execution of the saccade. (B) Mean deviation of size perception (grip aperture)

from baseline for the shortening (white column) and the lengthening (black column) adaptation trials. The data were averaged across participants

and sizes. Details as in Figure 4 (modified from Bosco et al., 2020). *p < 0.05, significance level.

the initial one (McLaughlin, 1967; Miller et al., 1981; Deubel,
1987; Watanabe et al., 2003; Hopp and Fuchs, 2004; Kojima
et al., 2005; Ethier et al., 2008; Rahmouni and Madelain, 2019).
Further studies investigated the possibility of the saccadic system
sharing common coordinates with other domains. In fact, several
researchers have demonstrated that the modification of motor
variables induced by saccade adaptation leads to a concomitant
modification of the perceived location of the target when the
localization is executed by a pointing movement or by a perceptual
report (Bahcall and Kowler, 1999; Awater et al., 2005; Bruno
and Morrone, 2007; Collins et al., 2007; Zimmermann and
Lappe, 2010; Garaas and Pomplun, 2011; Gremmler et al.,
2014).

A particular application of the saccadic adaptation paradigm
was developed using spatially extended targets that, during the
saccade, systematically changed their horizontal size (Bosco et al.,
2015), and in reading studies (McConkie et al., 1989; Lavergne
et al., 2010). In particular, the manipulation used in Bosco et al.
(2015) influenced the target visual perception. The modification
of size perception occurred according to the direction of saccadic
amplitude adaptation: if the saccade was adapted to a smaller
amplitude, target size was perceived as being smaller; if the
saccade adapted to a larger amplitude, target size was perceived
as being larger (Bosco et al., 2015). The scheme of the adaptation
phase paradigm and the consequent size perception modification
measured by grip aperture of the hand is shown in Figure 4.

However, recent studies have shown that change in perception
of visual features is present also without saccadic adaptation
(Herwig and Schneider, 2014; Herwig et al., 2015, 2018; Valsecchi
and Gegenfurtner, 2016; Paeye et al., 2018; Köller et al., 2020;
Valsecchi et al., 2020). This phenomenon occurs with the
following features: the perception of spatial frequency (Herwig and
Schneider, 2014; Herwig et al., 2018), shape (Herwig et al., 2015;
Paeye et al., 2018; Köller et al., 2020), and size (Valsecchi and
Gegenfurtner, 2016; Bosco et al., 2020; Valsecchi et al., 2020). For
example, Bosco et al. (2020) used a manipulation consisting in the
systematic shortening and lengthening of a vertical bar during a
horizontal saccade aimed to do not modify the saccade amplitude;
by these conditions, they observed a significant difference in
perceived size after the saccade execution (see Figure 5A for the
scheme of saccadic adaptation paradigm in Bosco et al., 2020).
This finding suggested that the modification of size perception
does not rely on the modified saccadic amplitude induced by
saccadic adaptation mechanisms (see Figure 5B, Bosco et al.,
2020). In the study by Valsecchi et al. (2020), it was shown that
saccadic adaptation and size recalibration share the same temporal
development. However, size recalibration of the visual stimuli was
also present in the opposite hemifield, but saccadic adaptation did
not suggest that distinct mechanisms were involved. Although the
modification of saccadic parameter induced by saccadic adaptation
is not the causal mechanism for the modification of stimulus
property perception, the shift of the target image from the periphery
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to the fovea, typically performed by a saccade, remains the potential
cause of the observed object perception modification.

A considerable body of literature has shown that the visual
stimuli briefly presented just before the onset of a saccade, or during
it, are mislocalized and perceived as being closer to the saccade
target (Matin and Pearce, 1965; Honda, 1989; Schlag and Schlag-
Rey, 1995; Ross et al., 1997). In other terms, this mislocalization
consists in a shift of apparent position in the direction of the
saccade (Honda, 1989, 1995; Schlag and Schlag-Rey, 1995; Cai
et al., 1997; Lappe et al., 2000) and a compression of positions
onto the target location of the saccade (Bischof and Kramer, 1968;
Ross et al., 1997; Lappe et al., 2000). The shift is attributed to
a mismatch between the actual eye position during the saccades
and the predicted position originating from an internal corollary
discharge (Duhamel et al., 1992; Nakamura and Colby, 2002;
Kusunoki and Goldberg, 2003; Morrone et al., 2005).

Interestingly, the compression effect is primarily observed
parallel to the saccade direction (Ross et al., 1997), and also in
the orthogonal direction (Kaiser and Lappe, 2004; Zimmermann
et al., 2014, 2015), suggesting that a linear translation of the internal
coordinate system is a reductive explanation. Additionally, non-
spatial features such as the shape and colors of perisaccadic stimuli
have also been investigated to evaluate the effect of perisaccadic
compression. Specifically, the discrimination of shape (Matsumiya
and Uchikawa, 2001) and colors (Lappe et al., 2006; Wittenberg
et al., 2008) of visual stimuli is preserved, but they are not
perceived in separate positions. Although the mechanism of this
effect is still an open question, the general view describes the
perisaccadic mislocalization as being related to mechanisms aimed
at maintaining visual stability (Matin and Pearce, 1965; Honda,
1989; Schlag and Schlag-Rey, 1995; Ross et al., 1997; Lappe et al.,
2000; Pola, 2004; Binda and Morrone, 2018).

The hand domain

The execution of different types of hand movements can
generate perceptual modifications of object properties relevant for
that type of action, such as the perception of size and weight. In
2017, Bosco et al. (2017) investigated the direct effect of reaching
and grasping execution on the size perception of a visual target.
They found that the change in size perception was larger after a
grasping action than after a reaching action and all participants
perceived objects to be smaller after the grasping compared to
the reaching. These results were consistent in both manual and
verbal reports, as is shown in Figure 6 (Bosco et al., 2017).
Sanz Diez et al. (2022) evaluated size perception after a grasping
movement performed toward a visual target that changed in size
during the execution of the movement. Although the perceptual
phase before and after grasping execution applied to the same
target that, in these two moments of the task, was identical in
size, they found that, after the grasping action, reports regarding
perceptual size showed significant differences that depended on
the type of size change that occurred during movement execution.
In fact, as shown in Figure 7, observers reported a smaller
size perception when the visual target was lengthened during
the grasping execution and no perception modification when

FIGURE 6

Size perception modification after reaching and grasping actions. (A)

Mean deviation of perceptual responses by grip aperture for

reaching (white column) and grasping (black column). (B) Mean

deviation of verbal perceptual reports for reaching (white column)

and grasping (black column). All data are averaged across

participants and sizes. Error bars are standard errors of the mean. *p

< 0.05, significance level (modified from Bosco et al., 2017).

the visual target was shortened during the grasping execution
(Sanz Diez et al., 2022). In both of the studies described above,
the perceptual modification occurred according to the type of
movement (i.e., reaching or grasping) and to the unpredictable
changes of target size during the movement itself, suggesting that
this modification can be considered to be a descriptive parameter
of the previous motor action (Bosco et al., 2017; Sanz Diez et al.,
2022).

An advantage of the effect of action execution on perception
is represented by changes to the motor system obtained with
skill learning. The formation and retrieval of sensorimotor
memories acquired from previous hand-object interactions are
fundamental for dexterous object manipulation learning (Westling
and Johansson, 1984; Johansson and Westling, 1988). This allows
the modulation of digit forces in a fashion that is anticipatory, i.e.,
before the lifting of the object (Gordon et al., 1993; Burstedt et al.,
1999; Salimi et al., 2000). In a task requiring participants to lift
an object while minimizing the roll caused by asymmetric mass
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FIGURE 7

Size perception modification after size-perturbed grasping execution. (A) Experimental task sequence. (B) Mean Deviation values of grip aperture

from the baseline averaged across size perturbation condition. Details as in Figure 5 (modified from Sanz Diez et al., 2022). *p < 0.05, significance

level.

distribution of an external torque, the implicit learning after action
execution led to minimization of object roll by a re-arrangement
of digit positions (Lukos et al., 2007, 2008) and a modulation of the
force distribution exerted by the fingers (Salimi et al., 2000; Fu et al.,
2010).

Within this perspective, it is also useful to describe the size-
weight illusion (SWI), for the first time described by Charpentier
(Charpentier, 1891). In fact, the SWI is visible when a subject
lifts two objects of different size, but of equal weight, and
reports the smaller object as being heavier. The SWI illusion is
robust (Murray et al., 1999; Flanagan and Beltzner, 2000; Kawai,
2002a,b, 2003a,b; Grandy and Westwood, 2006; Dijker, 2008;
Flanagan et al., 2008; Chouinard et al., 2009), and the effect is
still present when the lifter knows that both objects are of the
same weight (Flanagan and Beltzner, 2000). The SWI illusion has
been thoroughly studied to understand the mechanism of signal
integration for weight perception, and it is an example of how the
sensorimotor system works in a Bayesian manner. According to
this view, the nervous system combines prior knowledge regarding
object properties learned by previous experience (“the prior”) with
current sensory information (“the likelihood”), to appropriately
estimate object property (“the posterior”) for action and perception

functions (van Beers et al., 2002; Körding and Wolpert, 2006). In
most cases, the combination of prior and likelihood generates
correct perception and behavior, but perception can be misleading.
In the case of SWI, for example, the prior is perceived higher than
the likelihood, generating a perception that does not correspond
with the actual physical properties of the object. However, the
repetition of the lifting action recalibrates the perception of weight,
and the force distribution is adjusted according to the real weight
of the objects. Although there is still no consensus as to the process
that gives rise to the SWI, an objective aspect is that the execution
of the manipulation action on the objects has a pragmatic effect on
weight and size perception.

The leg domain

Walking interaction leads to a perception-action recalibration,
and it is typically investigated by the measurement of perceived
size or perceived distance. This is because, according to the
size-distance invariance hypothesis (Sedgwick, 1986), size and
distance perception are strictly coupled. Brenner and van Damme
(1999) found that perceived object size, shape, and distance are
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FIGURE 8

Summary of object/space perception modulation by action planning and action execution evoked by movement of di�erent e�ectors.

largely independent. Although object size, shape, and distance
estimations were similarly affected by changes in object distance
perception, modifications in perceived shape caused by motion
parallax did not affect perceived size or distance. This indicates their
independence. Although the direct relationship between size and
distance perception has been debated in this study, the judgements
of distance and size have been shown to be tightly linked in
other studies (Gogel et al., 1985; Hutchison and Loomis, 2006).
Results showing an improvement in judgments of distances after
the walking interaction were found byWaller & Richardson (Waller
and Richardson, 2008). The same authors showed that distance
judgments in a virtual environment were unaffected by interactions
in which participants viewed only a simulation of visual walking
(i.e., optic flow only). This suggested that a body-based movement
is necessary. Furthermore, perceptual reports of distance increased
in accuracy after participants performed a blind-walking task
consisting in the receipt of visual or verbal feedback (Richardson
and Waller, 2005; Mohler et al., 2006). The results showed the
sufficiency of body-based interaction. Kelly et al. (2013) found
that perceptual reports of object size improved after a walking
interaction, because an increase in perceived distance was observed.
The finding that perceptual reports regarding size improved after
the interaction indicates that walking leads to a rescaling of space
perception and not only to a simple recalibration of walked distance
(Siegel et al., 2017). In open-loop blind walking tasks, calibration
and recalibration of locomotion has been observed. In these tasks,
an observer views a target on the ground and, after closing his/her
eyes, he/she has to walk toward the target without seeing. In normal
conditions, blind walking performance is quite accurate and reflects
the perception of the target location (Rieser et al., 1990; Loomis and
Philbeck, 2008). After manipulation of the rate of environmental
optic flow in relation to the biomechanical rate of normal walking,
observers undershot the target when the environmental flow was
faster, and overshot the target when environmental flow was slower
compared to the perception of normal walking speed (Rieser et al.,
1995). Additionally, studies investigating the visual perception
of egocentric distances showed that perceptual judgments (e.g.,
verbal reports) showed a systematic underestimation of egocentric

distances (Foley, 1977; Li and Giudice, 2013), while blindfolded
walking toward a remembered target location was executed more
accurately (Loomis et al., 1992; Li and Giudice, 2013). Although the
former suggests that a systematic compression of physical distance
is visually perceived, visually directed walking is not affected by this
perceptual distortion.

Conclusions and future perspectives

A multitude of works have been presented showing the effect
of actions performed with the eyes, the hands, and the legs on
visual perception of objects and space using different approaches
and paradigms. The action influence is present before and after
execution of the movement, suggesting that visual perception,
when it is integrated with the action, is “ready to act” (before
execution) and is transformed by action execution (see Figure 8
for a summary). In both cases, the perceptual responses, collected
in different ways, are parameters that describe the subsequent
or previous motor responses. This suggests a mechanism which
exchanges information between the motor and perceptual system
when we are in a specific visuomotor contingency. At a behavioral
level, we can take advantage of these aspects because they can
be used as action intention predictors when they occur during
action planning and, interestingly, as a postdictive component that
specifies the previous motor experience when they occur after
action execution. In this latter case, the postdictive perceptual
component also updates the information that is necessary for a
potential subsequent action. The use of the action-based perceptual
information can be helpful in all those artificial intelligent (AI)
systems that are used with motor assistive devices. In fact, the
use of perceptual information during action planning can be
implemented with other parameters (e.g., neural signals) to extract
action intentions that exploit the residualmotor abilities of different
effectors that are necessary to give perceptual responses by pressing
a button, for example, or extending only certain fingers and not
others. The use of perceptual information after action execution can
be implemented in AI systems that are able to communicate with
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humans, with the objective of creating a mutual learning exchange.
In fact, the modification of perception following the execution of
a particular movement may be used as a feedback signal, in order
to correct a subsequent motor response and compensate for the
error due to previous AI action decisions. This allows the system
to improve the outcome of the action and, consequently, increases
the user’s trust in the AI system.
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