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Abstract
We show that the moving energies of some well-known nonholonomic systems
are hidden among the first integrals that can be obtained by applying Noether’s
first Theorem to a suitable Lagrangian.
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1. Introduction

Nonholonomic systems are mechanical systems with constraints in the velocities that are not
derivatives of constraints in the positions. Therefore in nonholonomic systems not all the velo-
cities are permitted. The equations of motion of a nonholonomic system are not of variational
type [15]. Nevertheless energy is conserved for time-independent nonholonomic systems with
constraints that are linear or homogeneous functions of the velocities [16]. The situation is
different and the energy is typically not conserved if the nonholonomic constraint is a gen-
eric nonlinear function of the velocities [16]. The case in which the nonholonomic constraints
are affine functions of the velocities has been thoroughly studied [9]. The assumptions that
guarantee the conservation of the ‘generalized’ energy in nonholonomic systems with con-
straints that are affine functions of the velocities are very special [9]. However the so-called
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moving energy, which is a modification of the generalized energy, is conserved under suitable
conditions [8, 10, 14].

Although the equations ofmotion of a nonholonomic system are not variational, the reduced
equations may admit a Hamiltonian formulation (see e.g. [3, 5, 6] and references therein). On
the other hand the search for a Lagrangian is less investigated. Nevertheless the Lagrangian
structure is of great importance, becauseNoether’s first theorem can be directly appliedwithout
using the Legendre transform, and therefore even to systems with non-regular Lagrangians4.

In this work, after briefly recalling what Noether symmetries and moving energies are,
we show that the moving energies of three well-known nonholonomic systems are hidden
among the first integrals that can be obtained by applying Noether’s first theorem to a suitable
Lagrangian.

In section 3 we present the case of a homogeneous ball that rolls without sliding on a uni-
formly rotating horizontal table and find that the reduced equations of motion can be realized
as Lagrange equations. Then we apply Noether’s first theorem deriving eight first integrals and
among them a suitable combination yields the moving energy.

In section 4 we consider the free nonholonomic particle with affine constraint5, and show
that the moving energy is obtained by applying Noether’s first theorem to a suitable Lag-
rangian. A similar result is obtained by adding a potential force to the nonholonomic particle
with affine constraint.

In the final section comments and future perspectives are presented.

2. Preliminaries

2.1. Noether’s first theorem

Given any system of differential equations on an open subset of Rm, it is a classical question
to determine a Lagrangian for it.

For example, it is well-known [23] that if a time-independent Lagrangian L= L(q,_q) can
be determined for a system of n second-order ordinary differential equations, then L admits
the trivial Noether symmetry ∂t that through Noether’s first theorem yields the autonomous
first integral:

EL =
n∑

k=1

q̇k
∂L
∂q̇k

−L , (1)

also called generalized energy associated to L. Of course, if L is not the so-called natural
Lagrangian, i.e. the difference between kinetic energy and potential energy, then EL is not the
mechanical energy. However, EL may correspond to the Hamiltonian that can be obtained by
applying Legendre transformation to L. An example can be found in [22]. Moreover, the non-
uniqueness of the Lagrangian6 suggests to look for a Lagrangian L= L(t,q,_q) that admits the
maximal number of Noether point symmetries [11, 12], i.e.

Γ = ξ (t,q)∂t+
n∑

k=1

ηk(t,q)∂qk ,

4 A regular Lagrangian is such that its Hessian is invertible and consequently the Legendre transformation is well
defined.
5 The free nonholonomic particle with linear constraint has been presented in several works, see e.g. [1, 24].
6 In [19] many Lagrangians were determined for linear and nonlinear oscillators, and in [18] different Lagrangians
were presented for the system of n rotors.
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that yield the corresponding Noether first integrals [17, 23]

I= ξL+
n∑

k=1

∂L
∂q̇k

(ηk− q̇kξ)− f ,

where f = f(t,q) is a function to be determined by means of the condition

L
dξ
dt

+(Γ+ (ηk− q̇kξ)∂q̇k)(L) =
df
dt
.

In this paper we consider Noether point symmetries only.

2.2. Moving energies

Moving energies have been introduced in [10] in terms of time-dependent changes of coordin-
ates that transform a nonholonomic systems with affine constraint in the velocity into a non-
holonomic systems with linear constraints. If the transformed nonholonomic system is time
independent then it admits a conserved energy, and the moving energy is nothing but the pull-
back of the conserved energy of the nonholonomic system with linear constraints via the time-
dependent change of coordinates. The moving energy is a first integral of the system with
affine constraints, and this fact is also related to the presence of symmetry in the system. In
[8, 14] moving energies have been thoroughly studied. In particular, a more general definition
has been introduced in [8]. If a nonholonomic system described by a natural Lagrangian L and
a constraint which is an affine function of the velocities is considered, then a moving energy
associated to a vector field Y on the configuration space is the restriction to the constraint man-
ifold of a function given by the difference between the energy and the momentum of the vector
field Y. Precisely let (L,Q,M) be a nonholonomic systems with affine constraints, where L is
the natural Lagrangian, Q the configuration space and M the constant rank (affine) distribu-
tion defined by the nonholonomic constraint. We regardM as a submanifold of TQ and name
it the constraint manifold. Then for any vector field Y on Q we define

EL,Y := EL−⟨p,Y⟩ ,

where p is the momentum vector p=∇q̇L. A function f :M−→ R is called a moving energy
for a nonholonomic system (L,Q,M) if there exists a vector field Y on Q, called generator of
f, such that f equals the restriction of EL,Y to the constrained manifold

f = EL,Y|M .

Not all moving energies defined in this manner are conserved, but only those whose associated
vector field satisfies certain conditions.

3. A rolling sphere on a turntable

We consider the system of an homogeneous sphere that rolls without sliding on a table that
uniformly rotates with uniform angular velocity Ω about an orthogonal axes. The system is
well-known (see e.g. [16]) and the equations of motion can be integrated explicitly and one
can easily see that the center of mass describes circles of a given frequency, that depends on
the velocity of rotation of the table and on the inertia of the sphere on a fixed reference frame.
We start by describing the holonomic system of a homogeneous sphere moving on a plane.
The configuration space of the system is diffeomorphic toR2 ×SO(3) endowed with coordin-
ates (x,y,ϕ,ψ,θ), where (x, y) are the coordinates of the center of mass of the sphere, and
(ϕ,ψ,θ) are Euler’s angles that parameterize SO(3). The phase space, upon left trivialization
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of the TSO(3) component, is diffeomorphic to R2 ×SO(3)×R2 ×R3 endowed with coordin-
ates (x,y,ϕ,ψ,θ, ẋ, ẏ,ωx,ωy,ωz), where (ẋ, ẏ) represent the velocities of the center of mass and
ω = (ωx,ωy,ωz) ∈ R3 represents the angular velocity of the sphere in the space representation.
The sphere is free to move and so the Lagrangian is, up to a factor m that is the mass:

L(x,y,ϕ,ψ,θ, ẋ, ẏ,ωx,ωy,ωz) =
1
2
(ẋ2 + ẏ2)+

1
2
ca2∥ω∥2 , (2)

where ∥ · ∥ is the Euclidean norm in R2, a is the radius of the sphere, and ca2 is the moment
of inertia divided by the mass.

Now we introduce the nonholonomic constraint of rolling without sliding, which is given
by the following two conditions:

ẋ= aωy−Ωy , ẏ=−aωx+Ωx , (3)

where, we recall,Ω is the angular velocity of uniform rotation of the table about an axis ortho-
gonal to the plane. The phase space of the nonholonomic system is then an eight-dimensional
manifoldM8 diffeomorphic to R2 ×SO(3)×R3 ∋ (x,y,ϕ,ψ,θ,ωx,ωy,ωz). The Lagrangian L
and the constraint (3) are invariant with respect to the attitude of the sphere, thus the equations
of motion define a vector field on the reduced spaceM5

∼= R2 ×R3, obtained fromM8 simply
by cutting the SO(3) factor. The reduced equations of motion of the system are then

ẋ= aωy−Ωy, ẏ=−aωx+Ωx,

a ω̇x =
α

c
(aωy−Ωy), a ω̇y =

α

c
(−aωx+Ωx), ω̇z = 0 ,

(4)

after substituting α= cΩ
1+c .

We first observe that the last equation of (4) yields the trivial first integral I0 = ωz and
consequently we can consider the restriction of the equations (4) to the level sets of I0, i.e.:

ẋ= aωy−Ωy, ẏ=Ωx− aωx, a ω̇x =
α

c
(aωy−Ωy), a ω̇y =

α

c
(Ωx− aωx), (5)

in the four unknowns x,y,ωx,ωy. If we solve ωx and ωy from the first two equations of (5), then
following system of two second-order equations in x and y is obtained:

ẍ=−α ẏ, ÿ= α ẋ . (6)

Since system (6) is linear in ẋ, ẏ, then we can use the relationship between the Jacobi last
multiplier M and the Lagrangian L as derived in [25], i.e.:

Mij =
∂2L
∂u̇i ∂u̇j

. (7)

We recall that the equation of the Jacobi last multiplier [13, 20, 25] for an arbitrary system of
two second-order equations ẍ= f1(t,x,y, ẋ, ẏ), ÿ= f2(t,x,y, ẋ, ẏ), is

dM
dt

=−M
(
∂f1
∂ẋ

+
∂f2
∂ẏ

)
.

Since system (6) has null divergence, then a Jacobi last multiplier is a constant, say 1, and
consequently we may consider M11 =M22 = 1,M12 = 0 in (7) that yields the following Lag-
rangian of system (6):

L=
1
2
(ẋ2 + ẏ2)+α ẋy , (8)
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which is a particular case of the Lagrangian of n rotors as determined in [18]. If we apply
Noether’s first theorem to this Lagrangian, then we obtain eight Noether symmetries (the max-
imum possible number [11, 12]), i.e.:

Γ1 = ∂t,

Γ2 = cos(α t)∂t− α
2 [ycos(α t)+ xsin(α t)]∂x+ α

2 [xcos(α t)− ysin(α t)]∂y,

Γ3 = sin(α t)∂t+ α
2 [xcos(α t)− ysin(α t)]∂x+ α

2 [ycos(α t)+ xsin(α t)]∂y,

Γ4 = ∂y, Γ5 = ∂x, Γ6 = cos(α t)∂x+ sin(α t)∂y,

Γ7 = sin(α t)∂x− cos(α t)∂y, Γ8 = y∂x− x∂y,

(9)

and consequently the following eight first integrals of system (6) are derived, i.e.:

I1 = 1
2 (ẋ

2 + ẏ2), I2 =
[
α
2 (yẋ− xẏ)− ẋ2+ẏ2

2

]
cos(α t)+ α

2 (xẋ+ yẏ)sin(α t) ,

I3 =−α
2 (xẋ+ yẏ)cos(α t)+

[
α
2 (yẋ− xẏ)− ẋ2+ẏ2

2

]
sin(α t) ,

I4 =−ẏ+αx, I5 =−ẋ−αy, I6 =−ẋcos(α t)− ẏsin(α t) ,

I7 =−ẋsin(α t)+ ẏcos(α t) , I8 = −α
2 (x2 + y2)+ (xẏ− yẋ).

(10)

Four first integrals depend on time explicitly. However, we can suitably combine them in
order to obtain two further first integrals independent of time, i.e.:

I22 + I23 = I21 −α I1I8 , I26 + I27 = 2I1. (11)

Obviously, only three autonomous first integrals are functionally independent from each other,
e.g. I1, I4, I5. In fact,

I8 =
1
2α

(2I1 − I24 − I25).

If we make the substitutions ẋ= aωy−Ωy, ẏ=Ωx− aωx into the three first integrals
I1, I4, I5, then we obtain three autonomous first integrals of system (4), the last two already
known [10]:

I1 =
1
2

[
(aωy−Ωy)2 +(Ωx− aωx)

2
]
, I4 = aωx−

α

c
x, I5 =−aωy+

α

c
y. (12)

In [10] the following first integral of system (4) was derived by introducing the so-called
moving energy:

EL,M5 =
1
2

[
(aωy− yΩ)2 +(xΩ− aωx)

2
]
+

1
2
ca2(ω2

x +ω2
y +ω2

z )

−Ω2(x2 + y2)+Ωa(xωx+ yωy)− ca2Ωωz, (13)

that is:

EL,M5 =−1+ c
c

(
I1 −

1+ c
2

I24 −
1+ c
2

I25

)
+

1
2
ca2I20 − ca2Ω I0. (14)

Thus, the moving energy is just a combination of the autonomous first integrals I1, I4, I5 in (12),
that one can find by means of Noether’s first Theorem applied to the Lagrangian (8), and the
trivial integral I0.
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4. A nonholonomic particle with affine constraint

In this section we generalize the classical nonholonomic particle [24]. In the first example
we consider a nonholonomic constraint affine in the velocities, in the second one we add a
potential force acting on the particle.

4.1. Nonholonomic free particle with affine constraint

Consider a free particle in R3, with kinetic Lagrangian L= 1
2 (v

2
1 + v22 + v23), where (x1,x2,x3)

are Cartesian coordinates on R3 and (v1,v2,v3) the corresponding velocities. The particle is
subjected to the affine nonholonomic constraint

v3 = v1x2 +µ, (15)

where µ ∈ R is a fixed parameter. The phase space is then the subset M∼= R5 of R6 defined
by (15) and can be parameterized by (x1,x2,x3,v1,v2). The equations of motion are the restric-
tion to M of Lagrange equations for L with Lagrange multiplier and read

ẋ1 = v1 , ẋ2 = v2 , ẋ3 = v1x2 +µ, v̇1 =−x2v1v2
1+ x22

, v̇2 = 0 . (16)

One can easily check that the energy is not conserved, however the moving energy

EL,Y|M =
1
2

[
(v21 + v22 + v23)−µv3

]∣∣
M =

1
2

(
v21(1+ x22)+ v22 −µ2

)
, (17)

where Y= µ∂x3 is the infinitesimal generator of the translation along the x3 direction, is
conserved.

We now show that the moving energy also in this case can be obtained as a Noether sym-
metry for a suitable Lagrangian that yields part of the equation (16). We first observe that
the existence of the first integral defined by the last equation of (16), allows to integrate the
second equation: x2(t) = v2,0 t+ x2,0, where x2(0) := x2,0 and v2(0) := v2,0 are constants of
integration. Then by substituting in the remaining three equation one obtains

ẋ1 = v1 , ẋ3 = v1(v2,0t+ x2,0)+µ, v̇1 =−v1v2,0(v2,0 t+ x2,0)
1+(v2,0 t+ x2,0)2

. (18)

Now deriving the first equation of (18) with respect to time and substituting into the last
equation yields the following second-order ordinary differential equation on x1:

ẍ1 =− ẋ1v2,0(v2,0 t+ x2,0)
1+(v2,0 t+ x2,0)2

. (19)

We recall that the Jacobi last multiplier [13] of a second-order differential equation ẍ=
f(t,x, ẋ) is any solution of the following equation

dM
dt

=−M ∂f
∂ẋ
, (20)

and that a Lagrangian can be obtained by means of the following formula

M=
∂2L
∂ẋ2

. (21)

Consequently, a Jacobi last multiplier of equation (19) is

M0 =
√
1+(v2,0 t+ x2,0)2 , (22)

6
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that yields (by double integration) the Lagrangian

L=
1
2
ẋ21

√
1+(v2,0 t+ x2,0)2 . (23)

By applying Noether’s first theorem to this Lagrangian we obtain five Noether symmetries and
then five first integrals. One can easily realize that the symmetry√

1+(v2,0 t+ x2,0)2∂t

generates the first integral

I1 =
1
2
ẋ21(1+(v2,0 t+ x2,0)

2) ,

that in the original coordinates reads

I1 =
1
2
v21(1+ v22) ,

and then coincides with the moving energy (17) up to an addictive constant.

4.2. Nonholonomic particle with affine constraint and potential force

Consider now the example above of a particle subjected to the affine nonholonomic con-
strained (15), that moves in R3, but now under the action of a force of potential energy
V= V(x2). The Lagrangian is then L= 1

2 (v
2
1 + v22 + v23)−V(x2), LetM∼= R5 ⊂ R6 be the con-

straint manifold defined by (15). The equations of motions are then

ẋ1 = v1 , ẋ2 = v2 , ẋ3 = v1x2 +µ, v̇1 =−x2v1v2
1+ x22

, v̇2 =−V ′(x2) . (24)

As above one can easily verify that the energy is not conserved, however the moving energy

EL,Y|M =
1
2

[
(v21 + v22 + v23)+V(x2)−µv3

]∣∣
M =

1
2

(
v21(1+ x22)+ v22 −µ2

)
+V(x2) , (25)

where Y has been defined in the previous example, is conserved.
We now show that also in this case the moving energy is obtained as a Noether sym-

metry of a suitable Lagrangian. We take x2 as newindependent variable, thus obtaining the
non-autonomous system of equations

x ′1 =
v1
v2
, x ′3 =

x2v1 +µ

v2
, v ′1 =− x2v1

1+ x22
, v ′2 =−V ′(x2)

v2
, (26)

where ′ denote the derivation with respect to x2. The last equation of (26) yields

v22(x2) = 2(V0 −V(x2)) ,

where V0 is a constant of integration. Then system (26) reduces to

x ′1 =
v1√

2(V0 −V(x2))
, x ′3 =

x2v1 +µ√
2(V0 −V(x2))

, v ′1 =− x2v1
1+ x22

. (27)

From the first equation of (27) we obtain v1 = x ′1
√
2(V0 −V(x2)), that substituted in the third

equation yields the following non-autonomous ordinary differential equation:

x ′ ′1 =− x ′1x2
(1+ x22)

+
x ′1V

′(x2)
2(V0 −V(x2))

. (28)

7
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We then compute the Jacobi last multiplier of (28):

M0 =
√
(V0 −V(x2))(1+ x22) ,

which upon double integration with respect to x ′1 yields the Lagrangian

L=
(x ′1)

2

2

√
(V0 −V(x2))(1+ x22) . (29)

As in the previous case, the Lagrangian (29) admits five Noether symmetries and consequently
five first integrals. In particular, the symmetry√

(V0 −V(x2))(1+ x22)∂x2

generates the first integral

I1 = (x′1)
2
(
(V0 −V(x2))(1+ x22)

)
,

which is the moving energy (25) in the original coordinates up to an addictive constant.

5. Conclusions and future perspectives

In 1931, Bateman [2] determined Lagrangians of both ordinary and partial differential
equations by adding a suitable set of complementary equations. In his classical work [7],
Douglas provided several examples of two-dimensional systems of second-order differential
equations that do not admit a Lagrangian. However, it was shown in [21] that one could determ-
ine a different sets of equations compatible with those of Douglas and yet derivable from a
variational principle.

Recently, in [4] the classical system of the nonholonomic particle was studied using quasi-
velocities and a Jacobi last multiplier was determined. Consequently, one could have eas-
ily derived the corresponding Lagrangian (21), which admits the maximum number (five) of
Noether symmetries.

In this paper, we have determined a Lagrangian for some classical nonholonomic systems
by following Bateman’s dictum [2], namely to look for different sets of equations compatible
with the original problem and derivable from a variational principle, without recourse to any
additional set of equations. The theory of the Jacobi last multiplier allowed us to determine
the Lagrangian with the maximal number of Noether symmetries, and therefore we were able
to show that the moving energy of each system is obtained from the corresponding Noetherian
first integrals.

We conjecture that other nonholonomic systems could be equally framed into a suitable
variational problem. Work in this direction is currently in progress.
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