
Internet of Things 22 (2023) 100729

A
2
(

R

A
T
G
a

b

A

M
6

K
T
M
E
A

1

l
r
s
l
a
w
c

M
n
t
t
o
d

(

h
R

Contents lists available at ScienceDirect

Internet of Things

journal homepage: www.elsevier.com/locate/iot

esearch article

n evaluation methodology to determine the actual limitations of a
inyML-based solution
iovanni Delnevo a,∗, Silvia Mirri a, Catia Prandi a, Pietro Manzoni b

Department of Computer Science and Engineering, University of Bologna, Via Dell’Università, Cesena, 47521, Italy
Department of Computer Engineering, Universitat Politècnica de València, Camino de Vera, València, 46022, Spain

R T I C L E I N F O

SC:
8T01

eywords:
inyML
achine learning algorithms

valuation methodology
ctual limitations

A B S T R A C T

Tiny Machine Learning (TinyML) is an expanding research area based on pushing intelligence
to the edge and bringing machine learning techniques to very small devices and embedded
systems applications. TinyML reduces energy expenditure, uses low bandwidth communications
technologies, and adds more privacy to the developed applications. This work, proposes an
evaluation methodology to determine the limitations of a TinyML-based solution starting from
creating and preparing the required dataset. Then, the training of the selected machine learning
algorithms is detailed, together with the consequent evaluation, and how the experiments
must be structured. Four metrics were usedto evaluate the performance of the machine
learning algorithms in the various tasks: precision, recall, f1-score, and accuracy. Finally, a
comparison ofthe performance of a wide range of machine learning algorithms (i.e., Random
Forest, Decision Tree, Support Vector Classifier, Logistic Regression, Gaussian Naive Bayes, and
Multi-Layer Perceptron) is presented.

. Introduction

Tiny Machine Learning (TinyML) is an expanding research area based on pushing intelligence to the edge and bringing machine
earning techniques to very small devices and embedded systems applications. The early definition by Warden and Situnayake [1]
efers to the use of MicroController Units (MCU) that can work at 1 mW of power, provided with a reduced amount of memory and
ome basic connectivity alternatives. Computation is less energetically costly than communication, and preprocessing of the data
ocally allows sending, only when necessary, some summary data. This increases the duration of batteries that power IoT devices and
llows the use of low-power, low-bandwidth communication technologies, such as those belonging to the LPWAN family (low-power
ide area networks) [2]. Moreover, running on-device ML inference increases the level of data security and user privacy [3]. Data

an be sensitive, and processing and analyzing them on-device do not require sending them over the Internet.
There are various examples of how TinyML is used in IoT contexts. In [4], the authors developed an IoT system based on

icro-Electro-Mechanical System (MEMS) sensor that collects acceleration data for machine learning training and, using a neural
etwork model can recognize the running state of rail vehicles. In [5], Diab et al. focus on health and care applications and analyze
he various challenges and specifications trade-offs associated with the existing hardware options and the newly developed software
ools when using MCUs as inference devices. In this endeavour, they consider TinyML as an enabling technology. Zaidi et al. [6] go
ne step further and present TMLaaS an architecture based on the idea of ML-as-a-Service (MLaaS) for future IoT deployments. They
escribe how a TMLaaS architecture, for example based on the TinyML approach, can be implemented, deployed, and maintained

∗ Corresponding author.
E-mail addresses: giovanni.delnevo2@unibo.it (G. Delnevo), silvia.mirri@unibo.it (S. Mirri), catia.prandi2@unibo.it (C. Prandi), pmanzoni@disca.upv.es

P. Manzoni).
vailable online 22 February 2023
542-6605/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.iot.2023.100729
eceived 14 December 2022; Received in revised form 14 February 2023; Accepted 14 February 2023

https://www.elsevier.com/locate/iot
http://www.elsevier.com/locate/iot
mailto:giovanni.delnevo2@unibo.it
mailto:silvia.mirri@unibo.it
mailto:catia.prandi2@unibo.it
mailto:pmanzoni@disca.upv.es
https://doi.org/10.1016/j.iot.2023.100729
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iot.2023.100729&domain=pdf
https://doi.org/10.1016/j.iot.2023.100729
http://creativecommons.org/licenses/by/4.0/

Internet of Things 22 (2023) 100729G. Delnevo et al.

n

w
e
M

l

for large-scale IoT deployment, demonstrating its feasibility. More related to the computation part, in [7], the authors present
a hardware–software framework to accelerate machine learning inference on edge devices using a modified TensorFlow Lite for
Microcontroller. They base their proposal on using a dedicated Neural Processing Unit (NPU) custom hardware accelerator, referred
to as MCU-NPU. Also, Kocacinar et al. [8] propose a lightweight real-time model as TinyML to evaluate the use of deep learning
approaches as a computational model. They compared the overall learning performance on small data and, using only full facial
images, proposed a model that allows only recognition from the eyes.

The examples above show that this area is very active, and the range of applications is broad. Therefore, we considered it
ecessary to propose an evaluation methodology to determine the limitations of a TinyML-based solution.

We based our methodology on a previous work [9] where, using a widely adopted device, an ‘‘Arduino Nano 33 BLE sense’’,
e evaluated the level of precision that can be obtained when detecting sounds, colors, and vibrations patterns. In this paper, we
xtend that previous work by considering more tasks, namely keyword spotting and hand-gesture recognition, we compare more
L algorithms, and we extend the tuning phase for each algorithm.

In the proposed methodology, it is described how to collect the required dataset to conduct a sensitivity analysis of the practical
imitations of the TinyML solution being designed, employing an experimental approach. Data are collected under laboratory
conditions; for each task class, one-hundred samples are collected for training and validation, while twenty ones are collected for
evaluation. After completing the data collection process, the training of the selected machine learning algorithms and the consequent
evaluation is carried out. The experiments were structured as follows. For each task, the data set was divided into two parts. The
former, consisting of the 80% of the samples, are used for training; the latter 20% is used as the validation set. In order to maintain
the same proportion for each class, data were split in a stratified way. During the evaluation phase, different metrics were computed
to evaluate the performance of the machine learning algorithms in the various tasks. They are: (i) precision, (ii) recall, (iii) f1-score,
and (iv) accuracy. Finally, a comparison of the performance of a wide range of machine learning algorithms (i.e., Random Forest,
Decision Tree, SVC, Logistic Regression, Gaussian Naive Bayes, and Multi-Layer Perceptron) is presented .

The remainder of the paper is organized as follows. Section 2 lists some works in the field of TinyML. Section 3 details the
overall methodology, describing how the data collection, the model training, and the final evaluation are carried out. Then, Section 4
presents the results of the analysis of the sensitivity of sensors in the different tasks while Section 5 presents some reflections, also
on the memory consumption and the inference rate of the different algorithms. Finally, Section 6 closes the paper, highlighting
some future work.

2. Related works

Growing attention is being paid to the TinyML research field, with many studies that are investigating different aspects and
dimensions of it. Many TinyML-based applications are being developed. For example, Kocacinar et al. [10] proposed a TinyML
approach for masked face recognition. The authors fine-tuned some state-of-the-art convolutional neural network architectures,
namely ResNet, VGG-16, and MobileNet, to detect three classes: masked, unmasked, and incorrect masked usage. Then, they
adopted a fine-tuned low-dimensional model MobileNet architecture. Despite the significant reduction in model complexity, the
model continues to perform well, achieving an overall accuracy of 90%. Other studies, instead, addressed the need for the efficient
deployment of neural networks in edge devices. Manor and Greenberg [11] presented an efficient hardware–software framework
to accelerate machine learning inference on edge devices. At the hardware level, it employs a dedicated Neural Processing Unit
custom hardware accelerator. From the software point of view, a modified TensorFlow Lite for Microcontroller is used with the
aim of efficiently mapping the computational load onto hardware and software. In particular, it supports weight compression of
pruned quantized neural networks and exploits the sparsity of the pruned model to further reduce computational complexity.
Finally, new devices specifically designed for TinyML are being studied. Giordano et al. [12] proposed a proof-of-concept device
to continuously assess the usage of hand-held power tools and to detect possible construction working tasks. A TinyML algorithm
is used to distinguish among four classes of usage (i.e., tool transportation, no-load, metal, and wood drilling) taking as input the
three-axis accelerations.

Several software stacks have been released specifically for TinyML. Among them, we can list Tensorflow lite micro [13],
Edge2train [14], OpenNN [15], Edge Machine Learning library [16], and Resource Constrained Edge-Neural Networks [17]. Some
works, instead, focused on toolkits that take ML algorithms as input and generate code that can be executed on microcontrollers.
Wang et al. [18] presented FANN-on-MCU, an open-source toolkit to generate neural networks developed using the fast artificial
neural network library. The generated code can be run on both the ARM Cortex-M series and the novel RISC-V-based parallel
ultralow-power platform. Contextually, many benchmarks have been proposed to evaluate the performance of ML algorithms running
on tiny devices. Just to cite a few, there are TinyML Benchmark [19] and MLPerf Tiny Benchmark [20]. Sudharsan et al. [19]
designed three fully connected neural networks: the first with a single hidden layer composed of ten neurons, the second with
two hidden layers, respectively, with ten and fifty neurons, and the last one with ten hidden layers with ten neurons each. Each
model has been trained on ten freely available datasets, thus obtaining thirty neural networks. Then, they evaluated the onboard
models performance on seven of the most common MCU boards. Several aspects were analyzed: (i) the inference performance,
(ii) the onboard accuracy, (iii) the memory consumption on MCUs, and (iv) the price-performance ratio. Banbury et al. [20],
instead, proposed an application-level benchmark. It includes the following tasks: Keyword Spotting, Visual Wake Words, Image
Classification, and Anomaly Detection. The frameworks measure latency, accuracy, and energy. It is important to notice that both
the latency and the energy are evaluated five times and the median value is returned.

Anyway, the purpose of such benchmarks is to measure some aspects of the inference process of machine learning algorithms
such as accuracy, latency, and energy consumption. To our knowledge, no work in the literature has yet provided an evaluation
methodology to determine the limitations of a TinyML-based solution considering a sensitivity analysis of the combination of the
microcontroller sensors possibilities with machine learning algorithms.
2

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 1. Performance of the classifier in detecting six different sound frequencies (500 Hz, 1,000 Hz, 1,500 Hz, 2,000 Hz, 2,500 Hz, and 3,000 Hz).

3. Materials and methods

This Section describes the analyzed task, how the data collection and the training processes have been carried out, and the
implementation details.

3.1. Task

This study focuses on the recognition of the following tasks:

• Sound Frequencies in the range from 500 Hz to 3,000 Hz.
• Colors shade, with some slight differences.
• Vibration Patterns, which alternate periods of vibration and ‘‘silence’’.
• Vibration Intensities, generated by a vibration motor with different speeds.
• Keywords, from two to five words.
• Hand-gesture, depicting some alphabet letters.

3.2. Data collection process

For all the tasks, the data sets were collected using the sensors of the Arduino Nano 33 BLE. As already anticipated, the purpose
of this work is to carry out a sensitivity analysis of the practical limitations of TinyML, employing an experimental approach. For
this reason, data were collected under laboratory conditions, even if we are aware that real case studies applications will provide
practical challenges and further problems. For each class of each task, one-hundred and twenty samples are collected. Two different
splits for training and validation were evaluated. In the former one, one hundred samples are used for training and twenty ones for
validation while in the latter one, ninety samples are used for training and thirty ones for validation.

The sound frequencies were generated using the Frequency Generator, an Android mobile app. This mobile app can generate
sound frequencies from infra-sound (i.e., 1 Hz) to ultra-sound (i.e., 22,000 Hz). It is possible to choose among single or
multifrequency, specifying several sound waves (e.g., sinusoidal, sawtooth, triangle, and square). The MP34DT05 digital microphone
from Arduino Nano was used to record the different sound frequencies. The feature used consists of an array of 32 values. Each
value is computed as the Root Mean Square (RMS) of 256 readings, recorded continuously with a sampling rate of 16 KHz, after
a pulse density modulation. Between each sample, a delay of twenty milliseconds is applied. Hence, each feature is relative to a
640 ms period. During the data collection process, a threshold is applied to avoid background noise and silence, recording only
sounds.

The color shades were considered to only be printed on paper. In fact, some experiments have shown that, if visualized on a
screen, it is possible to discriminate among colors with a simple if. In particular, slight variations of green were considered. The
APDS-9960 sensor from the Arduino Nano is employed. It is a sensor for digital proximity, ambient light, RGB, and gesture sensor.
The feature vector is composed of five values. Three are relative to the three RGB components. The other two values are the ambient
light intensity and proximity since the light in the room and the distance between the sensor and the paper/screen can significantly
affect the sensed color values.
3

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 2. Performance of the classifier in detecting six different sound frequencies (2,000 Hz, 2,200 Hz, 2,400 Hz, 2,600 Hz, 2,800 Hz, and 3,000 Hz).

Also, for the generation of vibration patterns, an Android mobile app, Vibrate Pattern Maker, was employed. It allows to create
patterns alternating periods of vibration and ‘‘silence’’. For both periods, silence and vibration, it is possible to set their duration
in milliseconds. Unfortunately, it does not allow one to specify the intensity of the vibrations. Once a pattern is created, it can be
repeated indefinitely.

With regard to the detection of vibration intensities, a vibration motor with five different speed settings was used. Patterns with
no periods of silence were considered, just varying the intensity of vibrations, and changing the speed of the motor.

In both cases, detection of vibration patterns and vibration intensities, the LSM9DS1 sensor, which is an acceleration sensor,
was used. It provides the accelerations in the three dimensions (i.e. x, y, and z). The feature vector is composed of sixty values,
consisting of twenty samples for each dimension, with a delay of fifty milliseconds between each sample. Thus, the feature vector
covers one second of the data.

The recordings of keywords were made by the same person who repeated one hundred times each keyword. To record them,
the MP34DT05 microphone was always employed. Also, in this case, a period of 640 ms has been set for capturing the words, as
happened for the sound frequencies.

Finally, for the hand-gesture recognition, the dataset was generated by people that, keeping the sensor in their hands, drew on
air the letters of the alphabet. During the drawing, the movements were retrieved using the accelerometer sensor (i.e., LSM9DS1).
For each letter, the feature vector consists of forty-two values that represent fourteen samples for x, y, and z dimensions. A delay
of fifty milliseconds was added between each sample. Hence, the resulting feature vector covers a time span of 700 ms.

3.3. Model training and evaluation

After completing the data collection process, the selected machine learning algorithms have been trained and evaluated. The
training phase has been carried out on a general-purpose PC. The experiments were structured as follows. For each task, the data
set is divided into two parts. The former, consisting of 80% of the samples, is used for training while the latter 20% is used as the
validation set. To maintain the same proportion for each class, the data were split in a stratified way.

During training, a tuning phase for each algorithm was conducted. In particular, the ten-fold cross-validation was used on the
training set, varying the hyperparameters considered. We did not report all the details of the main parameters considered for each
algorithm, since we are just interested in understanding the overall sensitivity of machine learning models and for the sake of
conciseness.

Also, in this work, the accuracy of the model was evaluated directly on the Arduino Nano. This is because, from a TinyML
perspective, we are interested in evaluating its limitations in several tasks, and determining the maximum accuracy achievable by
a machine learning model running on the device. In fact, having the Arduino Nano limited computational resources, it is possible
that the performance of machine learning algorithms that run on it differs from the one if they run on a more powerful device. To
compare the performance of several machine learning algorithms directly on the device, during the evaluation of the first algorithm,
the samples were collected and then used for the evaluation of the further algorithms. In this way, it is possible to evaluate the
accuracy of the model directly on the Arduino Nano with the same set of data. During the various evaluations, twenty samples for
each class were collected as the test set.

During the evaluation phase, different metrics was evaluated to measure the performance of the machine learning algorithms in
the various tasks : (i) precision, (ii) recall, (iii) f1-score, and (iv) accuracy.
4

Internet of Things 22 (2023) 100729G. Delnevo et al.

s
S

d
t
l

c

Table 1
Performance of the classifier in detecting eleven different sound frequencies (2,000 Hz, 2,100 Hz, 2,200 Hz,
2,300 Hz, 2,400 Hz, 2,500 Hz, 2,600 Hz, 2,700 Hz, 2,800 Hz, 2,900 Hz, and 3,000 Hz).

Model Class Precision Recall F1 Score Accuracy

RF

2000 83% 100% 91%

65%

2100 100% 95% 97%
2200 50% 35% 41%
2300 100% 85% 92%
2400 55% 30% 39%
2500 43% 45% 44%
2600 100% 90% 95%
2700 56% 70% 62%
2800 52% 55% 54%
2900 50% 60% 55%
3000 42% 55% 48%

DT

2000 79% 55% 65%

52%

2100 86% 95% 90%
2200 22% 20% 21%
2300 68% 85% 76%
2400 25% 15% 19%
2500 24% 25% 24%
2600 80% 80% 80%
2700 46% 60% 52%
2800 41% 35% 38%
2900 43% 50% 47%
3000 50% 55% 52%

SVC

2000 62% 25% 36%

55%

2100 100% 85% 92%
2200 70% 35% 47%
2300 93% 70% 80%
2400 20% 90% 32%
2500 86% 60% 71%
2600 100% 55% 71%
2700 87% 65% 74%
2800 44% 35% 39%
2900 79% 75% 77%
3000 50% 10% 17%

MLP

2000 50% 10% 17%

34%

2100 53% 100% 69%
2200 23% 15% 18%
2300 74% 70% 72%
2400 50% 30% 37%
2500 0% 0% 0%
2600 30% 100% 46%
2700 33% 25% 29%
2800 10% 10% 10%
2900 6% 10% 8%
3000 0% 0% 0%

3.4. Machine learning algorithms and implementation details

In this work, the performance of almost all the machine learning algorithms supported by the micromlgen package of the
EloquentTinyML library [21] were compared: Random Forest, Decision Tree, Support Vector Classifier, Logistic Regression, Gaussian
Naive Bayes, and Multi-Layer Perceptron.

A Random Forest (RF) is a meta-estimator that combines the prediction of several decision trees on different subsamples of the
training set with the aim of improving the prediction accuracy and preventing overfitting [22]. We employed its implementation in
the Scikit-learn library [23], sklearn.ensemble.RandomForestClassifier.

A Decision Tree (DT) is a tree-based technique in which any path beginning from the root is described by a data separating
equence until the classification outcome is provided in the leaf node [24]. For this algorithm, we also took advantage of the
cikit-learn library.

A Support Vector Classifier (SVC) is a classifier based on support vector machines. They are a machine learning algorithm that
etermines a decision boundary to separate the classes in a transformed space, maximizing the margins (i.e., the distance between
he decision boundary and the objects belonging to the different classes) [25]. We used its implementation within the Scikit-learn
ibrary, sklearn.svm.SVC.

In the Logistic Regression (LR), the classes are modeled as a linear combination of features of a logistic model [26]. Also in this
5

ase, we take advantage of the Scikit-learn library (sklearn.linear_model.LogisticRegression).

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 3. Green color scale used in the experiments.

The Gaussian Naive Bayes (GNB) belongs to the family of probabilistic classifiers based on the Bayes theorem with strong
(naive) independence assumptions between the features [27]. The GNB assumes that continuous values are distributed according
to a Gaussian distribution [28]. We took advantage of the class sklearn.naive_bayes.GaussianNB within the Scikit-learn
library.

Finally, a Multilayer Perceptron (MLP) is a fully connected feedforward artificial neural network [29]. We implemented them
employing the Tensorflow framework [30].

All the experiments were conducted using Python, version 3.6.13. The following Python libraries, with the specific version, were
used:

• Tensorflow, version 2.3.0;
• Scikit-learn library, version 0.21.3;
• Pandas, version 1.1.5;
• Micromlgen, version 1.1.27;
• Tinymlgen, version 0.2.

To import the trained models on the Arduino Nano, the EloquentTinyML library [21] was used. It is a library for the deployment
of machine learning algorithms, developed using the Scikit-learn and the Tensorflow libraries.

4. Results

This Section presents the results obtained using several machine learning algorithms in the different tasks.

4.1. Sound frequency

The experiments for the evaluation of the sensitivity of the microphone startedy training the models to discriminate among
sound frequencies from 500 Hz to 3,000 Hz, varying them by 500 Hz. For each frequency, 20 samples were collected. The results
are reported in Fig. 1. The RF, the DT, and the SVC got excellent performance on the test, with an overall accuracy of over 98%.
The MLP got lower, but still good performance, with an accuracy of 78%. Instead, poor performance was obtained by the LR and
GNB.

In the next experiments, the range was narrowed between 2,000 and 3,000 Hz, but the frequencies were varied by 200 Hz. Also,
in these experiments, twenty samples per class were collected. Fig. 2 illustrates the performance of the various classifiers. Given
their poor performances in the previous experiment, the LR and the GNB were no more evaluated. The RF maintained the same
level of performance, while the DT and the SVC performed slightly worse. Finally, the MLP increases the overall accuracy, passing
from 78% to 85%.

In the last experiment, the same frequency range (i.e., from 2,000 Hz to 3,000 Hz) was considered, but the step was further
reduced from 200 Hz to 100 Hz. In line with previous experiments, twenty examples per class were used. The results are reported
in Table 1. As shown, the models are no longer able to distinguish well among the various frequencies. The results are similar to
those of the previous experiment. RF still performs better than the other algorithms, reaching an accuracy of 65%. The DT and the
SVC have slightly worse performance, whereas poor performance was obtained by the MLP. Analyzing the various metrics on each
class obtained by the RF, it is interesting to notice that has excellent performance in some classes (2,000 Hz, 2,100 Hz, 2,300 Hz,
and 2,600 Hz) and poor performances in the other ones, with no intermediate performance between them.
6

Internet of Things 22 (2023) 100729G. Delnevo et al.

#
i

A
a

w
i
7
o

4

a
p
w

Table 2
Performance of the classifier in detecting colors.

Model Class Precision Recall F1 Score Accuracy

RF

#229658 79% 65% 71%

70%

#30A161 60% 97% 74%
#3DAB6B 72% 33% 45%
#49B675 83% 50% 62%
#55C17F 61% 82% 70%
#60CC89 60% 68% 64%
#6BD793 95% 97% 96%

DT

#229658 69% 68% 68%

68%

#30A161 67% 78% 72%
#3DAB6B 52% 40% 45%
#49B675 82% 45% 58%
#55C17F 61% 82% 70%
#60CC89 57% 70% 63%
#6BD793 95% 93% 94%

SVC

#229658 79% 57% 67%

68%

#30A161 69% 78% 73%
#3DAB6B 55% 53% 54%
#49B675 66% 47% 55%
#55C17F 62% 80% 70%
#60CC89 57% 68% 62%
#6BD793 93% 93% 93%

LR

#229658 38% 30% 33%

38%

#30A161 39% 28% 32%
#3DAB6B 26% 40% 32%
#49B675 32% 78% 45%
#55C17F 14% 3% 4%
#60CC89 46% 30% 36%
#6BD793 82% 57% 68%

GNB

#229658 100% 5% 10%

26%

#30A161 71% 30% 42%
#3DAB6B 0% 0% 0%
#49B675 10% 3% 4%
#55C17F 36% 95% 52%
#60CC89 15% 53% 23%
#6BD793 0% 0% 0%

MLP

#229658 67% 5% 9%

51%

#30A161 51% 97% 67%
#3DAB6B 42% 45% 43%
#49B675 30% 45% 36%
#55C17F 90% 23% 36%
#60CC89 50% 65% 57%
#6BD793 86% 75% 80%

4.2. Color

The sensitivity of the sensor to detect colors was evaluated using seven shades of green. Their hexadecimal RGB code are:
229658, #30A161, #3DAB6B, #49B675, #55C17F, #60CC89, and #6BD793. A set of squares filled with these colors are reported

n Fig. 3.
In the first experiment, various models were used to distinguish among all the shades of green. The results are reported in Table 2.

lthough the differences between the different shades of green are minimal, some models (i.e. RF, DT, and SVC) can differentiate
mong them with acceptable accuracy, while the other models have poor performance.

A further experiment was carried out to understand if the performance improves using less similar colors. Only three colors
ere used. The extremes of the green scales, that are #229658 and #6BD793, and the one in between (i.e., #49B675). As shown

n Fig. 4, the GNB continues to perform poorly. The LR and the MLP have acceptable performance, with an accuracy of more than
0%. Finally, the RF, the DT, and the SVC continued to be the most accurate algorithms, since they achieved an average accuracy
f over 90%.

.3. Vibration pattern

In the evaluation of the sensitivity of the Arduino Nano in detecting vibration patterns, several patterns were evaluated,
lternating periods of vibration and silence. Firstly, three different patterns were used, in which the vibrations last like the pause
eriod, respectively 100 ms, 150 ms, and 200 ms. The model is able to perfectly discriminate among the different patterns, as
7

itnessed by the metrics reported in Fig. 5.

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 4. Performance of the classifier in detecting colors among three shades of green (#229658, #49B675, and #6BD793).

Fig. 5. Performance of the classifier in detecting vibration patterns of 100 ms, 150 ms, and 200 ms.

In the next experiment, three additional patterns were added, always with equal periods of the vibrations and pauses. They
last respectively 10 ms, 25 ms, and 50 ms. As highlighted by the results reported in Fig. 6 , all algorithms are able to perfectly
discriminate among the different patterns, with the only exception of the GNB. It is important to notice that the results for the SVC
are not reported. The reason is that the sketch with the model weighed too much to be loaded on Arduino and it was therefore not
possible to evaluate the test set with it directly on the device.

Then, patterns composed of periods of vibrations and pauses with different durations were considered. In the former, vibrations
of 25 ms are followed by pauses of 50 ms. In the latter, the durations are reversed. Vibrations last 50 ms, while pauses are just
25 ms. As shown in Fig. 7 , all algorithms have perfect performance, with the only exception of the SVC that committed few errors.

In the final experiment, an extreme test was conducted using patterns with very small pause periods and vibrations, 1 ms and
2 ms, respectively. As shown in Fig. 8, the RF and MLP still obtained excellent performances. The DT still got a good accuracy while
the LR and the GNB got bad performance. Also, for this experiment, the resulting SVC cannot be loaded in the Arduino because of
the weight of the relative sketch.

4.4. Vibration intensity

Considering the detection of different vibration intensities, the aim of the experiment was to distinguish among the five-speed
settings available in a vibration motor. The results are illustrated in Table 3. Even in this task, many classifiers (i.e., RF, SVC, and
8

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 6. Performance of the classifier in detecting vibration patterns of 10 ms, 25 ms, 50 ms, 100 ms, 150 ms, and 200 ms.

Fig. 7. Performance of the classifier in detecting vibration patterns of 25 ms and 50 ms with pauses of 50 ms and 25 ms.

MLP) got excellent performances with accuracy values of over 90%. The DT got lower performance while the LR and the GNB have
the worst ones.

4.5. Keyword

With regard to the keyword spotting task, the first experiment had the aim of distinguish between two different keywords, yes
and no. The results are summarized in Table 4. As shown, only the RF can cross the threshold of 80%. The MLP and the DT are
slightly lower, respectively 77% and 78%. The SVC got performance slightly better than a random classifier, while GNB and LR got
very poor performance.

In further experiments, more words were gradually added to the initial two ones. The words were the following ones: ok, start,
and stop. After adding each word, the various models were trained to distinguish among the words, respectively three, four, and
five. The results using three, four and five words are reported respectively in Figs. 9, 10, and 11. Generally, the performance of all
algorithms was reduced. The algorithm with the highest is still the RF, whose accuracy remains in the range from 60% to 69%.
Then, there is the SVC with slightly lower accuracy. The other algorithms have an accuracy of 50% or less. It is interesting to note
that the LR with three and five words got an accuracy of more than 60%, higher than the one obtained using only two words.
9

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 8. Performance of the classifier in detecting vibration patterns of 1 ms and 2 ms.

Table 3
Performance of the classifier in detecting different vibration intensities.

Model Class Precision Recall F1 Score Accuracy

RF

1 100% 99% 100%

99%
2 99% 100% 100%
3 100% 99% 100%
4 99% 97% 98%
5 97% 99% 98%

DT

1 83% 87% 85%

79%
2 80% 78% 79%
3 83% 75% 79%
4 72% 74% 73%
5 79% 82% 81%

LR

1 38% 30% 34%

52%
2 38% 51% 43%
3 86% 98% 92%
4 18% 8% 11%
5 55% 71% 62%

GNB

1 0% 0% 0%

20%
2 0% 0% 0%
3 20% 100% 33%
4 0% 0% 0%
5 0% 0% 0%

MLP

1 91% 96% 93%

92%
2 96% 97% 96%
3 96% 97% 96%
4 88% 76% 82%
5 87% 92% 90%

4.6. Hand-gesture

Finally, the sensitivity in the task of hand-gesture recognition was evaluated. In the first experiment, the model had to
discriminate among five different hand gestures, made to represent the vowels (that is, a, e, i, o, and u) in air. An example of
gestures made to depict them is reported in Fig. 12. Fig. 13 illustrates the results. As shown, all the algorithms are able to perfectly
discriminate among the various vowels. In fact, the lowest accuracy value, achieved by the GNB, was 85%.

Then, more hand gestures for depicting some consonants were added: b, d, g, l, and m. The relative gestures are shown in Fig. 14.
Also in this case, the various classifiers continued to perform well, as shown by the various metrics reported in Table 5.

To conclude the experiments on the hand-gesture recognition, the gestures relative to the remaining consonants of the alphabet
were added, whose gestures are pictured in Fig. 15. In this experiment, both the RF and the SVC sketches are too heavy to be loaded
10

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 9. Performance of the classifier in spotting three keywords: yes, no, and ok.

Fig. 10. Performance of the classifier in spotting four keywords: yes, no, ok, and start.

Table 4
Performance of the classifier in spotting two keywords: yes and no.

Model Class Precision Recall F1 Score Accuracy

RF no 83% 83% 83% 83%yes 83% 83% 83%

DT no 79% 77% 78% 78%yes 77% 80% 79%

SVC no 60% 90% 72% 65%yes 80% 40% 53%

LR no 33% 33% 33% 33%yes 33% 33% 33%

GNB no 50% 100% 67% 50%yes 0% 0% 0%

MLP no 77% 77% 77% 77%yes 77% 77% 77%
11

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 11. Performance of the classifier in spotting five keywords: yes, no, ok, start, and stop.

Fig. 12. Hand-gestures of vowels.

Fig. 13. Performance of the classifier in detecting hand-gestures, that depicts the five vowels.

Fig. 14. Hand-gestures of the five consonants added to the vowels.
12

Internet of Things 22 (2023) 100729G. Delnevo et al.
Table 5
Performance of the classifier in detecting hand gestures that depict five vowels and five consonants.

Model Class Precision Recall F1 Score Accuracy

RF

A 94% 80% 86%

91%

B 83% 95% 88%
D 86% 95% 90%
E 85% 85% 85%
G 95% 90% 92%
I 91% 100% 95%
L 88% 75% 81%
M 100% 90% 95%
O 87% 100% 93%
U 100% 95% 97%

DT

A 81% 65% 72%

75%

B 58% 75% 65%
D 83% 75% 79%
E 50% 60% 55%
G 100% 80% 89%
I 78% 90% 84%
L 55% 55% 55%
M 83% 75% 79%
O 89% 85% 87%
U 90% 90% 90%

SVC

A 86% 95% 90%

94%

B 90% 90% 90%
D 100% 100% 100%
E 89% 80% 84%
G 100% 95% 97%
I 95% 100% 98%
L 90% 95% 93%
M 100% 90% 95%
O 91% 100% 95%
U 100% 95% 97%

LR

A 94% 80% 86%

88%

B 73% 80% 76%
D 90% 95% 93%
E 71% 85% 77%
G 100% 85% 92%
I 95% 95% 95%
L 84% 80% 82%
M 90% 90% 90%
O 86% 95% 90%
U 100% 90% 95%

GNB

A 14% 100% 24%

28%

B 0% 0% 0%
D 100% 10% 18%
E 0% 0% 0%
G 0% 0% 0%
I 63% 95% 76%
L 0% 0% 0%
M 100% 10% 18%
O 0% 0% 0%
U 74% 70% 72%

MLP

A 94% 80% 86%

91%

B 89% 80% 84%
D 95% 90% 92%
E 81% 85% 83%
G 95% 95% 95%
I 83% 100% 91%
L 91% 100% 95%
M 95% 90% 92%
O 90% 95% 93%
U 100% 95% 97%
13

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 15. Hand-gestures of the remaining consonants.

into the device, hence it is not possible for them to evaluate the test set. The other algorithms continue to perform well, with the
highest accuracy value that is achieved by the MLP, as shown in Fig. 16.

5. Discussion

In this study, a sensitivity analysis of the practical limitations of TinyML using an experimental approach was presented. The
Arduino Nano 33 BLE sense was chosen as the TinyML device and the precision that can be obtained with it in several classification
tasks was evaluated: frequencies, colors, vibration patterns, vibration intensities, keywords, and hand gestures.

For each task considered, it was possible to train an ML algorithm capable of discriminating among the various classes. In all the
tasks, the GNB has the worst performance. This is probably due to the fact that it based its prediction on the assumption that each
class follows a Gaussian distribution. Even if it is the most simple algorithm, the Logistic Regression in some cases has performances
in line with the ones obtained by the other algorithms. The MLP generally performs worse than the RF, the DT, and the SVC probably
because of the limited number of examples in the datasets (that is, one hundred per class). Furthermore, for some tasks like the
frequency detection one, it would work better if use the raw sound data directly as input. Finally, the RF, the DT, and the SVC have
similar performances but in general, RF performs slightly better than the other two algorithms.

It is also interesting to evaluate the memory occupancy and the inference time of each algorithm in the various experiments.
They are reported respectively in Tables 6 and 7. In particular, the memory occupancy consists of the weight (expressed in KiloBytes)
of the sketch containing the model, that is loaded into the Arduino Nano 33 BLE Sense. Instead, the inference time represents the
time (expressed in milliseconds) taken by the different algorithms to evaluate the test sets. It is important to recall that each test
set is composed of 20 samples per class.

It is possible to notice that the DT, the LR, and the GNB are the most lightweight algorithms and also the fastest in the evaluation
of the test set in many cases. The SVC is the algorithm that takes up the most memory space, followed by the RF and MLP. Parallelly,
SVC is significantly the slowest algorithm, followed by the MLP and then the RF.
14

Internet of Things 22 (2023) 100729G. Delnevo et al.
Fig. 16. Performance of the classifiers in detecting hand-gestures, that depict all the letters of the alphabet.

Table 6
Memory occupancy (KB) of the algorithms for the different tasks.

Task Experiment Algorithm

RF DT SVC LR GNB NN

SF
6 (500 Hz) 108 97 201 101 101 289
6 (200 Hz) 114 97 216 101 101 276
11 315 115 880 117 117 299

C 3 115 85 112 85 86 190
7 149 88 222 88 89 197

VP

3 224 191 254 194 195 339
6 467 281 – 284 283 466
2 (25–50) 222 209 410 210 211 344
2 (1–2) 741 261 – 256 258 391

VI 5 755 277 – 273 273 443

K

2 119 90 235 90 91 225
3 156 95 275 95 96 230
4 202 100 366 100 100 346
5 761 106 449 104 104 278

HG
5 209 99 215 102 102 250
10 364 117 403 122 122 271
26 – 111 – 118 118 271

With respect to these data, it can be deduced that RF represents the best combination in terms of performance, memory
occupancy, and inference time. Instead, for some tasks, the use of DT can also be evaluated. Even if the SVC generally obtained
excellent accuracy in many tasks, it requires a lot of memory space and is significantly the slowest algorithm in predictions.

A final consideration regarding the use of MLP is needed. Even if in the analyzed tasks it had performance similar, or slightly
lower, than other algorithms, for more complex cases that require, for example, the analysis of images or in which there is more
data, they are the best solution.

6. Conclusion

In this paper, we proposed an evaluation methodology to determine the limitations of a TinyML-based solution. Such a
methodology can be used to evaluate the limitations of an ‘‘Arduino Nano 33 BLE sense’’. The evaluated classification tasks were
sound frequencies, colors, vibration patterns and intensities, keywords, and hand gestures. Several algorithms were compared,
including Random Forest, Decision Tree, SVC, Logistic Regression, Gaussian Naive Bayes, and Multi-Layer Perceptron. Finally, the
results were discussed along with some reflections on the memory occupancy and inference rate of each algorithm.
15

Internet of Things 22 (2023) 100729G. Delnevo et al.

t

D

A

R

Table 7
Inference time (ms) for the test set evaluation of the algorithms for the different tasks.

Task Experiment Algorithm

RF DT SVC LR GNB NN

SF
6 (500 Hz) 19 1 3661 17 88 559
6 (200 Hz) 22 1 4191 17 88 482
11 84 3 99999 54 287 992

C 3 6 1 1240 1 7 72
7 23 1 10465 11 43 226

VP

3 139 5 28800 58 299 1166
6 384 13 – 204 1095 3689
2 (25–50) 221 7 138529 26 234 1029
2 (1–2) 382 12 – 34 337 1379

VI 5 635 17 – 160 837 2939

K

2 13 1 3320 1 14 117
3 27 1 6092 6 31 180
4 44 1 12642 10 54 883
5 266 1 19951 16 87 590

HG
5 55 1 7639 15 82 270
10 140 3 32215 58 304 592
26 – 1 – 74 395 376

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgment

The authors are deeply grateful to Luigi Borriello for his precious support.

eferences

[1] P. Warden, D. Situnayake, Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers, O’Reilly Media, 2019.
[2] W. Mao, Z. Zhao, Z. Chang, G. Min, W. Gao, Energy efficient industrial internet of things: Overview and open issues, IEEE Trans. Ind. Inform. (2021).
[3] M.S. Islam, H. Verma, L. Khan, M. Kantarcioglu, Secure real-time heterogeneous iot data management system, in: 2019 First IEEE International Conference

on Trust, Privacy and Security in Intelligent Systems and Applications, TPS-ISA, IEEE, 2019, pp. 228–235.
[4] S. Zhou, Y. Du, B. Chen, Y. Li, X. Luan, An intelligent IoT sensing system for rail vehicle running states based on TinyML, IEEE Access 10 (2022)

98860–98871, http://dx.doi.org/10.1109/ACCESS.2022.3206954.
[5] M.S. Diab, E. Rodriguez-Villegas, Embedded machine learning using microcontrollers in wearable and ambulatory systems for health and care applications:

A review, IEEE Access 10 (2022) 98450–98474, http://dx.doi.org/10.1109/ACCESS.2022.3206782.
[6] S.A.R. Zaidi, A.M. Hayajneh, M. Hafeez, Q.Z. Ahmed, Unlocking edge intelligence through tiny machine learning (tinyml), IEEE Access 10 (2022)

100867–100877, http://dx.doi.org/10.1109/ACCESS.2022.3207200.
[7] E. Manor, S. Greenberg, Custom hardware inference accelerator for TensorFlow lite for microcontrollers, IEEE Access 10 (2022) 73484–73493, http:

//dx.doi.org/10.1109/ACCESS.2022.3189776.
[8] B. Kocacinar, B. Tas, F.P. Akbulut, C. Catal, D. Mishra, A real-time CNN-based lightweight mobile masked face recognition system, IEEE Access 10 (2022)

63496–63507, http://dx.doi.org/10.1109/ACCESS.2022.3182055.
[9] G. Delnevo, C. Prandi, S. Mirri, P. Manzoni, Evaluating the practical limitations of TinyML: an experimental approach, in: 2021 IEEE Globecom Workshops

(GC Wkshps), IEEE, 2021, pp. 1–6.
[10] B. Kocacinar, B. Tas, F.P. Akbulut, C. Catal, D. Mishra, A real-time CNN-based lightweight mobile masked face recognition system, IEEE Access 10 (2022)

63496–63507.
[11] E. Manor, S. Greenberg, Custom hardware inference accelerator for TensorFlow lite for microcontrollers, IEEE Access 10 (2022) 73484–73493.
[12] M. Giordano, N. Baumann, M. Crabolu, R. Fischer, G. Bellusci, M. Magno, Design and performance evaluation of an ultra low-power smart IoT device

with embedded TinyML for asset activity monitoring, IEEE Trans. Instrum. Meas. (2022).
[13] R. David, J. Duke, A. Jain, V.J. Reddi, N. Jeffries, J. Li, N. Kreeger, I. Nappier, M. Natraj, S. Regev, et al., Tensorflow lite micro: Embedded machine

learning on tinyml systems, 2020, arXiv preprint arXiv:2010.08678.
[14] B. Sudharsan, J.G. Breslin, M.I. Ali, Edge2train: A framework to train machine learning models (svms) on resource-constrained iot edge devices, in:

Proceedings of the 10th International Conference on the Internet of Things, 2020, pp. 1–8.
[15] OpenNN, https://www.opennn.net/. (Accessed 08 May 2021).
[16] D.K. Dennis, Y. Gaurkar, S. Gopinath, S. Goyal, C. Gupta, M. Jain, S. Jaiswal, A. Kumar, A. Kusupati, C. Lovett, S.G. Patil, O. Saha, H.V. Simhadri, EdgeML:

Machine Learning for resource-constrained edge devices. URL https://github.com/Microsoft/EdgeML.
16

http://refhub.elsevier.com/S2542-6605(23)00052-5/sb1
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb2
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb3
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb3
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb3
http://dx.doi.org/10.1109/ACCESS.2022.3206954
http://dx.doi.org/10.1109/ACCESS.2022.3206782
http://dx.doi.org/10.1109/ACCESS.2022.3207200
http://dx.doi.org/10.1109/ACCESS.2022.3189776
http://dx.doi.org/10.1109/ACCESS.2022.3189776
http://dx.doi.org/10.1109/ACCESS.2022.3189776
http://dx.doi.org/10.1109/ACCESS.2022.3182055
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb9
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb10
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb11
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb12
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb12
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb12
http://arxiv.org/abs/2010.08678
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb14
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb14
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb14
https://www.opennn.net/
https://github.com/Microsoft/EdgeML

Internet of Things 22 (2023) 100729G. Delnevo et al.
[17] B. Sudharsan, J.G. Breslin, M.I. Ali, RCE-NN: a five-stage pipeline to execute neural networks (cnns) on resource-constrained iot edge devices, in: Proceedings
of the 10th International Conference on the Internet of Things, 2020, pp. 1–8.

[18] X. Wang, M. Magno, L. Cavigelli, L. Benini, FANN-on-MCU: An open-source toolkit for energy-efficient neural network inference at the edge of the Internet
of Things, IEEE Internet Things J. 7 (5) (2020) 4403–4417.

[19] B. Sudharsan, S. Salerno, D.-D. Nguyen, M. Yahya, A. Wahid, P. Yadav, J.G. Breslin, M.I. Ali, TinyML benchmark: Executing fully connected neural networks
on commodity microcontrollers, in: IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, Louisiana, USA, 2021.

[20] C. Banbury, V.J. Reddi, P. Torelli, J. Holleman, N. Jeffries, C. Kiraly, P. Montino, D. Kanter, S. Ahmed, D. Pau, et al., MLPerf tiny benchmark, 2021,
arXiv preprint arXiv:2106.07597.

[21] EloquentTinyML, 2022, https://github.com/eloquentarduino/EloquentTinyML. (Accessed 22 May 2022).
[22] G. Biau, E. Scornet, A random forest guided tour, Test 25 (2) (2016) 197–227.
[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine

learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[24] B. Charbuty, A. Abdulazeez, Classification based on decision tree algorithm for machine learning, J. Appl. Sci. Technol. Trends 2 (01) (2021) 20–28.
[25] S. Suthaharan, Support vector machine, in: Machine Learning Models and Algorithms for Big Data Classification, Springer, 2016, pp. 207–235.
[26] D.G. Kleinbaum, K. Dietz, M. Gail, M. Klein, M. Klein, Logistic Regression, Springer, 2002.
[27] I. Rish, et al., An empirical study of the naive Bayes classifier, in: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Vol. 3, No. 22,

2001, pp. 41–46.
[28] A.H. Jahromi, M. Taheri, A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features, in: 2017 Artificial Intelligence

and Signal Processing Conference, AISP, IEEE, 2017, pp. 209–212.
[29] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations by Error Propagation, Tech. rep., California Univ San Diego La Jolla Inst

for Cognitive Science, 1985.
[30] P. Goldsborough, A tour of tensorflow, 2016, arXiv preprint arXiv:1610.01178.
17

http://refhub.elsevier.com/S2542-6605(23)00052-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb17
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb18
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb19
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb19
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb19
http://arxiv.org/abs/2106.07597
https://github.com/eloquentarduino/EloquentTinyML
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb22
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb23
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb24
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb25
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb26
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb27
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb27
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb27
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb28
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb29
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb29
http://refhub.elsevier.com/S2542-6605(23)00052-5/sb29
http://arxiv.org/abs/1610.01178

	An evaluation methodology to determine the actual limitations of a TinyML-based solution
	Introduction
	Related Works
	Materials and Methods
	Task
	Data Collection Process
	Model Training and Evaluation
	Machine Learning Algorithms and Implementation Details

	Results
	Sound Frequency
	Color
	Vibration Pattern
	Vibration Intensity
	Keyword
	Hand-gesture

	Discussion
	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	References

