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Pre-transplant CD69+
extracellular vesicles are
negatively correlated with
active ATLG serum levels and
associate with the onset of
GVHD in allogeneic
HSCT patients
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Graft versus host disease (GVHD) is a major complication of allogeneic

hematopoietic stem cell transplantation (HSCT). Rabbit anti-T lymphocyte

globulin (ATLG) in addition to calcineurin inhibitors and antimetabolites is a

suitable strategy to prevent GVHD in several transplant settings. Randomized

studies already demonstrated its efficacy in terms of GVHD prevention,

although the effect on relapse remains the major concern for a wider use.

Tailoring of ATLG dose on host characteristics is expected to minimize its side

effects (immunological reconstitution, relapse, and infections). Here, day -6 to

day +15 pharmacokinetics of active ATLG serum level was first assayed in an

explorative cohort of 23 patients by testing the ability of the polyclonal serum

to bind antigens on human leukocytes. Significantly lower levels of serum

active ATLGwere found in the patients who developed GVHD (ATLG_AUCCD45:

241.52 ± 152.16 vs. 766.63 +/- 283.52 (mg*day)/ml, p = 1.46e-5). Consistent

results were obtained when the ATLG binding capacity was assessed on CD3+

and CD3+/CD4+ T lymphocytes (ATLG_AUCCD3: 335.83 ± 208.15 vs. 903.54 ±

378.78 (mg*day)/ml, p = 1.92e-4; ATLG_AUCCD4: 317.75 ± 170.70 vs. 910.54 ±

353.35 (mg*day)/ml, p = 3.78e-5. Concomitantly, at pre-infusion time points,

increased concentrations of CD69+ extracellular vesicles (EVs) were found in

patients who developed GVHD (mean fold 9.01 ± 1.33; p = 2.12e-5). Consistent

results were obtained in a validation cohort of 12 additional ATLG-treated HSCT

patients. SerumCD69+ EVs were mainly represented in the nano (i.e. 100 nm in
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diameter) EV compartment and expressed the leukocyte marker CD45, the EV

markers CD9 and CD63, and CD103, a marker of tissue-resident memory T

cells. The latter are expected to set up a host pro-inflammatory cell

compartment that can survive in the recipient for years after conditioning

regimen and contribute to GVHD pathogenesis. In summary, high levels of

CD69+ EVs are significantly correlated with an increased risk of GVHD, and

they may be proposed as a tool to tailor ATLG dose for personalized

GVHD prevention.
KEYWORDS

anti-T lymphocyte globulin, graft versus host disease, extracellular vesicles,
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Introduction

Graft versus host disease (GVHD) is a major complication of

allogeneic hematopoietic stem cell transplantation (HSCT).

Although risk factors for GVHD have been already described,

the prediction of GVHD occurrence at the single patient level is

still far from clinical practice. Several attempts have been done in

the recent years to decrease the incidence of GVHD, such as the

use of rabbit anti-thymocyte globulin (ATG)/anti-T lympho-

globulin (ATLG), post-transplant cyclophosphamide, m-TOR

inhibitors, and new ex vivo T- cell depletion strategies (1, 2). The

mechanisms of action of ATG/ATLG are still partially unknown:

in vivo T- and B-cell depletion and inhibition of inflammatory

cells and dendritic cells are regarded as putative mechanisms of

drug action (3–6). ATG/ATLG polyclonal serum contains at

least two IgG fractions: non-specific rabbit IgGs against non-

human antigens and specific (active) IgGs against a wide array of

human lymphocyte antigens (7–10). Active ATLG is expected to

elicit the depletion and anergy on both host and infused T cells

(3, 11, 12), and it can be measured by cytofluorimetric assays

that detect the capability of the polyclonal serum to bind

primary lymphocytes or lymphoblastoid cell lines (13–16). A

pharmacokinetic approach has been proposed as an appropriate

strategy to tailor the dose of polyclonal sera and to maximize the

benefit/risk ratio of such GVHD prevention (17–20). The

rationale of this approach relies on the tenet that the binding

of cellular ATG/ATLG targets can modify the free active

compartment of the drug and, ultimately, its overall clinical

impact (21). In fact, heterogeneity in the drug kinetics can

explain the inter-individual variability in drug response (15,

17, 18). Under this perspective, the pre-transplant host

inflammatory status, which depends upon the activation and

the burden of immune cells that survive the conditioning

regimen, is likely to play a role in GVHD pathogenesis and to

affect the efficacy of GVHD prophylaxis (22). Recent results

show that host tissue resident memory T cells (TRM_T cells) are
02
a pro-inflammatory compartment that is resistant to the

conditioning regimen and exert a primary role in GVHD (23–

25). TRM_T cells can be identified, among others, by the

expression of the type II transmembrane receptor CD69, aka

CLEC2C, a T-cell activation marker which belongs to the lectin

superfamily, which acts as regulator of T cell homeostasis and

tissue egress, and by CD103, aka ITGAE, an alpha integrin that

binds cadherin, a protein typically expressed on epithelial cells

(26–28). TRM_T cells are highly enriched in epithelial tissue

compartments, i.e. the skin and the gut, the body districts in

which GVHD mainly occurs (26–32). However, being tissue

cells, TRM_T cells are very difficult to detect in the peripheral

blood (28–32), even more during ATLG prophylaxis which

induces profound lymphopenia (23). In principle, it can be

assumed that if TRM_T specific markers can freely diffuse in

the plasma/serum, such molecules may be taken as surrogate

markers of the host TRM_T burden. Extracellular vesicles (EVs)

are suitable candidates to play a primary role in the scenario

described above, as they may originate from membrane budding

and may carry molecules on their surface that can identify the

cell of origin (33). Reasonably, TRM_T cells can be tracked by

assessing the cognate EVs in body fluids (33). Here we addressed

the issue of the relationship between the kinetics of serum CD69

+ EVs and ATLG pharmacokinetics in the pre-transplant phase

in order to investigate if CD69+ EVs represent a marker of

GVHD as well as ATLG pharmacokinetics.
Material and methods

Patient characteristics

All patients suffering from hematological malignancies

undergoing allogeneic HSCT at IRCCS AOU S. Orsola-

Malpighi of Bologna were enrolled in a prospective

monocenter observational study (MET_SCT_2018; 151/2018/
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Sper/AOUBO; NCT 03871269), aimed to find biological

markers of transplant complications. Inclusion criteria were

age (>17 years), any type of allogeneic HSCTs, and written

informed consent. In the present analysis, patients transplanted

from related and unrelated donors and receiving ATLG as

GVHD prophylaxis were included. GVHD prevention was

given with calcineurin inhibitor (cyclosporin or tacrolimus)

and antimetabolite (either methotrexate or mycophenolate

mophetil) and ATLG (Grafalon, Neovii, Switzerland) at a total

dose of 30 mg/kg from days -6 to -2 in a 12-h infusion via a high-

flow central catheter. Acute and chronic GVHD were graded

according to the standard criteria (34, 35). Patients with AML

and ALL in first remission were considered as early disease

phases; all the remaining patients were named as being in

advanced phase. Two cohorts of HSCT patients were studied

in this investigation: Group 1 (23 patients) was regarded as the

explorative cohort; Group 2 (12 patients) was regarded as the

validation cohort.
Serum samples sampling

In the explorative cohort, peripheral blood sample collection

was scheduled at 11 time points, as follows: days -6, -5, -4, -3, -2

(before HSCT); day 0 (the day of HSCT); and days +3, +6, +9,

+12, +15. In the validation cohort, peripheral blood sample

collection was scheduled at three time points, as follows: days -6
Frontiers in Immunology 03
and -3 (before HSCT) and day 0 (the day of HSCT). The samples

were centrifuged at 1500×g for 15 minutes within 4 h of blood

withdrawal. Sera were immediately anonymized and stored at

-80°C.
Active ATLG serum level quantification

A cytofluorimetric approach was set up in order to measure

the amount of serum active ATLG concentration as follows:

briefly, 10 ml of EDTA-anticoagulated whole blood was obtained

by venipuncture from pools for at least four healthy blood

donors at each time of assay. Samples were diluted 1:2 in

phosphate-buffered saline (PBS), gradient-separated by Ficoll-

Hypaque at 400×g for 25 min, and counted and resuspended in

PBS at a final concentration of 5e+5 cells/ml. The calibration

curve was obtained by serial dilutions of ATLG (200 mg/ml, 100

mg/ml, 50 mg/ml, 25 mg/ml, 12.5 mg/ml, 6.25 mg/ml, 3.125 mg/ml,

1.56 mg/ml) in PBS. Mononuclear cells were then incubated for

30 min at room temperature with 50 ml of each ATLG dilution or

with 50 ml of patients’ serum. After washing twice with sterile

PBS, 5 ml of FITC-conjugated swine-anti-rabbit IgG (Dakopatt,

Copenhagen, Denmark) was added to each sample, together

with anti CD45-PercP Cy5.5, CD3-PE, CD4-PE-Cy7, and mAbs

(Becton Dickinson, San Jose, CA). After 30 min the samples

were washed twice with PBS and finally resuspended in 500 ml of
PBS (see Figure 1A). Samples were analyzed on a FACS Lyric
A

B

FIGURE 1

Active ATLG binding assay. (A) Schematic representation of flow cytometry analysis to measure active ATLG. Serum from ATLG-treated patients
is incubated with healthy donor-derived leukocytes. Active ATLG is detected by FITC-conjugated swine anti-rabbit antibody on CD45+ cells,
CD3+, and CD3+/CD4+ lymphocytes. (B) Calibration curve [mean fluorescent intensity vs. ATLG concentration, (mg/ml)] on CD45+ cells, CD3+
and CD3+/CD4+ lymphocytes.
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equipment (Becton Dickinson, San Jose, CA). ATLG mean

fluorescence intensity (MFI) was assessed on CD45+ cells and

gated on CD3+ and CD4+ lymphocytes and therefore converted

into mg/ml by the calibration curve (see Figure 1B). The exposure

to ATLG was then expressed as area under the curve (AUC, 36)
Jurkat T cell line in vitro culture

The Jurkat T cell line was cultured in RPMI (Euroclone,

Italy) supplemented with 10% FBS, penicillin/streptomycin 1%

and L-Glutamine 1%. Phytoaemagglutinin (PHA) was added at

1mg/ml and 5mg/ml for 72h. The culture supernatant was

harvested, centrifuged at 2500xg for 15 minutes to clear cell

debris, aliquoted and stored at -80°C until the day of analysis.
Extracellular vesicle FACS analysis

EVs were assessed and quantified by cytofluorimetric

assays performed on different platforms, i.e. Lyric (Becton

Dickinson, San Jose, CA, and Cytoflex (Beckman Coulter,

Brea, CA). On the former platform the EV protocol applied

refers to that described previously (33). Briefly, 5 ml of patients’
serum were added to 95 ml of filtered PBS and 95 ml of a mix of

fluorochrome conjugated moAbs, namely CD45-BV510 and

CD69-APC H7 (Becton Dickinson, San Jose, CA). FITC-

conjugated phalloidin and APC-conjugated Lipophilic

Cationic Dye (Becton Dickinson, San Jose, CA) were used to

exclude non-EV events from the analysis. The number of CD69

+ EV/ml was assessed using the TruCount BD system (Becton

Dickinson, San Jose, CA). The dimensional and phenotypic

analysis of the CD69+/CD103+ EVs (CD69 APC-H7 clone

FN50 and CD103 BV510 clone BerAC8; Becton Dickinson, San

Jose, USA) and CD9+ and CD63+ (CD9 PE and CD63-BV510

clone H5C6) Becton Dickinson, USA) EVs were analyzed

through flow cytometric analysis and carried out using the

Megamix-PLUS FSC Kit (BioCytex, Marseille, France)

following the manufacturer instructions.
Stochastic optical
reconstruction microscopy

Single-molecule super-resolution microscopy for CD69

+EVs serum-derived exosomes was performed as previously

described (37). Briefly, 1 ml of serum was serially centrifuged

for 10 min at 300×g and for 20 min at 1200×g in order to

eliminate cell debris. EVs were isolated by ad hoc anti-CD9

conjugated latex beads (Hansa_Biomed, Tallin, Estonia)

according to manufacturer instructions. EVs were fixed in
Frontiers in Immunology 04
3% PFA and stained in suspension with mouse anti-CD69

1:200 (1 h at RT), followed by AlexaFluor-647 Goat anti-Mouse

IgGs (Molecular Probes, Thermo Fisher) 1:100 (1 h at RT).

After each step the samples were centrifuged at 6,000×g for

10 min at RT. For acquisition, 5 ml of the labeled EV pool was

deposited in a petri dish (CellView) and air-dried under the

laminar hood for 30 min before adding 250 ml of freshly

prepared STORM buffer (Abbelight, France). Acquisitions

were performed on an N-STORM instrument (Nikon

Instruments, Milan, Italy) with a DU-897 EM-CCD camera

(Andor Technology) with ×100 TIRF (NA 1.49) objective,

coupled with 10-mW 647 excitation/reported laser

(CrystaLaser) used at 80% power for 10,000 frames/

acquisition. Data reconstruction was obtained with the

STORM analysis module of the NIS-Elements software v.5.31.
Transmission electron microscopy

For transmission electron microscopy analysis, 1 ml of serum

was serially centrifuged 10 minutes at 300×g and 20 min at

1200×g in order to eliminate cell debris. EVs were isolated by ad

hoc anti-CD9 conjugated latex beads (Hansa_Biomed, Tallin,

Estonia) according to manufacturer instructions. EVs were fixed

with 3% PFA in phosphate buffer and stained in suspension with

mouse anti-CD69 (1:200) followed by 5-nm gold-anti-mouse

(BBI International, 1:200); 5 µl of suspension was deposited on

200 mesh Formvar-carbon-coated grids and left to absorb for

20 min at room temperature. The observations were carried out

with a JEOLJEM-1011 (Jeol Jem, Peabody, MA, USA)

transmission electron microscope operated at 100 kV.
Luminex assay for class 1 HLA
antigen typization

We added 5 ml of Immuncor Class_I beads (Labscreen™

Single Antigen HLA Class I, One Lambda, CA, USA) to 20 ml of
serum ATLG-treated HSCT patients in a 96-well plate (Corning

Costar, NY, USA). After two washes with a specific buffer (Lab

Screen Wash Buffer 10X), 100 ml of swine anti-rabbit IgG PE

diluted 1:100 was added for 30 min. After three washes with

specific buffer, samples were analyzed with system Ponent

(Luminex, TX, USA) and analyzed using the Fusion Software

(One Lambda, CA, USA).
Capillary electrophoresis protein analysis

Capillary electrophoresis protein analysis of serum CD69+EV

was performed in the protein simple equipment (Biotechne, MN,
frontiersin.org
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USA). Briefly, 1 ml of HSCT patient-derived serum was serially

centrifuged, as follows: 1000×g for 15’, 2500×g for 15’, 20.000×g

for 2 h, and 100.000×g for 3 h). The pellet was immediately

extracted with RIPA buffer added with protease and phosphatase

inhibitors (Roche); 500 ng of protein extract was run and analyzed

for CD69 and CD63 protein content with specific antibodies

(Clone FN50, Milteniy Biotech, Germany; and clone TS63,

Thermo Fisher, respectively).
Statistical analysis

Continuous variables were analyzed by t-test and Pearson

correlation analysis. Repeated measures were analyzed using

generalized linear mode (GLM) for repeated measures. Analysis

of censored data was performed according to the Cox time-

dependent model. Dichotomous variables were summarized as

number and percentage and compared using the chi-square. All

analyses were performed using the SPSS software package

version 10 (SPSS Inc., Chicago, IL).
Results

Clinical outcome

Twenty-three consecutive patients were enrolled from

September 2020 to February 2022 for the analysis as the

explorative cohort. In this cohort median follow-up was 463

days (r: 48–645). Overall survival at 1 year was 82.6% (95% CI

60.1%–93.1%) while non-relapse mortality at 1 year was 13.0%

(95% CI 3.3%–29.7%); cumulative incidence of aGVHD was

47.8% (95% CI 26.8%–66.1%) while cGVHD cumulative

incidence was 17. 4% (95% CI 5.4%–35.0%). We then analyzed

12 patients enrolled from to July 2021 to January 2022 as the

validation cohort. Median follow-up in this cohort was 272 days

(r: 200–399). All patients were still alive at last follow-up.

Cumulative incidence of aGVHD was 41.7% (95% CI 19.9%–

73.0%) while cGVHD cumulative incidence was 17.5% (95% CI

4.7%–53.9%). The whole analyzed population included 35 patients

and median follow-up was 421 (r: 48–645). Overall survival and

non-relapse mortality at 1 year in the whole population were,

respectively, 87.1% (95% CI 68.5%–95.1%) and 8.6% (95% CI

2.1%–20.8%). Overall incidence of aGVHD and cGVHD were,

respectively, 45.9% (95% CI 28.6%–61.5%) and 18.7% (95% CI

3.8%–27.6%). The clinical and transplant characteristics of the

explorative and validation cohorts and of the whole population are

reported in Table 1. Factors univariately tested for correlation with

aGVHD were patient’s age, disease phase, sex mismatch, Sorror

score, BMI, HLA mismatches, and ALC pre ATLG infusion. The

only variable associated with aGVHD was the HLA

mismatch (Table 2).
Frontiers in Immunology 05
Reduced pre-transplant active ATLG
serum level is predictive of GVHD

The cytofluorimetric assay developed to quantify active ATLG

serum level is depicted in Figure 1. The analysis conveyed a

reduced active ATLG serum level in patients who developed any

GVHD (GLM for repeated measures F = 30.995, p = 1.59e-5,

Figure 2A, left panel). Consistently, reduced ATLG_AUCCD45 was

found in GVHD patients (ATLG_AUCCD45: 241.52 +/- 152.16 vs.

766.63 +/- 283.52 (mg*day)/ml, t-test, p = 1.46e-5, Figure 2A,

middle panel). Multivariate Cox analysis, including HLA

mismatch (see Table 2) showed that ATLG_AUCCD45 is

independently associated with GVHD (HR = 0.994, 95%CI,

0.990–0.998, p = 0.002). An ATLG_AUCCD45 below the median

level (490.00 (mg*day)/ml) yields a substantially high risk of

developing GVHD (HR = 19.509, 95% CI, 2.373–160.356,

p = 0.006). Moreover, receiving operating characteristic (ROC)

analysis showed that an ATLG_AUCCD45 = 349.50 mg/ml*day

discriminated patients with or without GVHD with sensibility =

81.8% and sensitivity = 91.9% (Figure 2A, right panel). Notably,

the cytofluorimetric assay was proven to be robust across different

lymphocytes populations to show reduced active ATLG serum

level in patients who developed GVHD: CD3+ T cells (GLM

repeated measures F = 23.191, p = 9.27e-5 (Figure 2B, left panel);

ATLG_AUCCD3: 335.83 ± 208.15 vs. 903.54 ± 378.78 (mg*day)/
ml, t-test, p = 1.92e-4, Figure 2B, middle panel); ROC analysis

showed that an ATLG_AUCCD3 = 475.50 mg/ml*day

discriminated patients with or without GVHD with

sensibility = 81.8% and sensitivity = 83.3%, (Figure 2B, right

panel); CD3+/CD4+ T cells (GLM repeated measures F = 24.848,

p = 6.21e-5, Figure 2C, left panel; ATLG_AUCCD4: 317.75 ± 170.70

vs. 910.54 ± 353.35 (mg*day)/ml, t-test, p = 3.78e-5, Figure 2C,

middle panel), ROC analysis showed that an ATLG_AUCCD4 =

394.5 mg/ml*day discriminated patients with or without GVHD

with sensibility = 81.8% and sensitivity = 91.7%, (Figure 2C, right

panel). Active ATLG serum levels were negatively correlated with

the absolute lymphocyte count (ALC) at pre-ATLG infusion time

point (day-6: ATLG_AUCCD45, r = -0.513, p = 0.015; ATLG-

AUCCD3, r = -0.499, p = 0.018; ATLG-AUCCD4, r = -0.492,

p = 0.020), but not with BMI age, phase of disease, sex

mismatch, HLA mismatch, and Sorror score (data not shown).
Serum CD69+EVs as potential tool to
measure the recipient TRM_T burden

Recent papers showed that recipient CD69+TRM_T cells are

predictive of GVHD in HSCT patients (24). We here investigated

whether CD69+EVs may be conceived as surrogate markers of

host CD69+ TRM_T cells burden in the pre-transplant phase and

thus regarded as predictive markers of GVHD in ATLG-treated

patients. Purposely, 100.000×g nano/small EVs and 20.000×g large
frontiersin.org
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TABLE 1 Clinical and transplant characteristics.

Training cohort Validation cohort Total

N° 23 12 35

Median age 55 years (r: 18-69) 50 years (r: 28-69) 55 years (r: 18-69)

Female (F)/Male(M) 8/15 6/6 14/21

Donor/Recipient sex mismatch (F/M) n=2 (8.7%) n=1 (8.3%) n=3 (8.6%)

Diagnosis

AML
ALL
MDS
LYMHOMAS
OTHERS

n=9 (39.1%)
n=4 (17.4%)
n=4 (17.4%)
n=2 (8.7%)
n=4 (17.4%)

n=5 (41.7%)
n=2 (16.7%)
n=1 (8.3%)
n=2 (16.7%)
n=2 (16.7%)

n=14 (40.0%)
n=6 (17.1%)
n=5 (14.2%)
n=4 (11.4%)
n=6 (17.1%)

Phase at transplant

Early
Advanced

n=13 (56.5%)
n=10 (43.5%)

n=4 (33.4%)
n=8 (66.6%)

n=17 (48.6%)
n=18 (51.4%)

HLA matching

HLA 10/10
HLA 9/10
HLA 8/10
HLA 8/8
HLA 7/8

n=14 (60.8%)
n=8 (34.8%)
n=1 (4.4%)
n=16 (69.6%)
n=7 (30.4%)

n=7 (58.3%)
n=3 (25.0%)
n=2 (16.7%)
n=7 (58.3%)
n=5 (41.7%)

n=21 (60.0%)
n=11 (31.4%)
n=3 (8.6%)
n=23 (65.7%)
n=12 (34.3%)

Donor type

Matched Related
Matched Unrelated*
Mismatched Unelated

n=1 (4.4%)
n=13(56.5%)
n=9 (39.1%)

n=1 (8.3%)
n=6 (50.0%)
n=5 (41.7%)

n=2 (5.7%)
n=19 (54.3%)
n=14 (40.0%)

Stem Cell Source

PBSC n=23 (100%) n=12 (100%) n=35 (100%)

Conditioning intensity:

myeloablative
reduced intensity

n=12 (52.2%)
n=11 (47.8%)

n=7 (58.3%)
n=5 (41.7%)

n=19 (54.3)
n=16 (45.7%)

GVHD Prophylaxis

CSA-MTX-rATLG
CSA-MMF-rATLG

n=21 (91.3%)
n=2 (8.7%)

n=12 (100%)
n=0

n=33 (94.3%)
n=2 (5.7%)

Acute GVHD n=11 (47.8%) n=6 (50.0%) n=17 (48.7%)

Grade 1
Grade 2
Grade 3
Grade 4
Median time of onset (range)

n=3 (13.0%)
n=3 (13.0%)
n=3 (13.0%)
n=2 (8.8%)

36 days (r: 11-157)

n=2 (16.7%)
n=3 (25.0%)
n=1 (8.3%)

n=0
34 days (r: 17-129)

n=5 (14.3%)
n=6 (17.1%)
n=4 (11.4%)
n=2 (5.7%)

36 (r: 11-157)

Chronic GVHD n=4 (17.4%) n=2 (16.7%) n=6 (17.1%)

Mild
Moderate
Severe
Median time of onset (range)

n=2 (8.7%)
n=1 (4.9%)
n=1 (4.9%)

119 days (r: 53-328)

n=0 (0.0%)
n=0 (0.0%)
n=2 (16.7%)

183 days (r: 139-227)

n=2 (5.7%)
n=1 (2.8%)
n=3 (8.6%)

158 (r: 56-328)

Acute/Chronic GVHD combination

Acute or Chronic GvHD
Acute and Chronic GvHD

n=12
n=3 (25.0%)

n=6 (50.0%)
n=2 (16.7%)

n=18 (51.4%)
n=5 (14.3%)

(Continued)
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EV fractions were separated by ultracentrifugation from three

GVHD and three noGVHD serum samples. By means of capillary

electrophoresis protein analysis, we show higher CD69 protein

level (expressed as ratio over the EV marker CD63) in the small/

nano EV fraction of GVHD patients’ serum, compared to the

same EV compartment in noGVHD serum samples (Figure 3A).

Notably, the difference is not detectable in the large EV serum

fraction (see Figure 3A). We then obtained representative pictures

of CD69+ EVs from a GVHD patient’s serum EVs captured by

anti-CD9-conjugated latex beads, assessed by STORM and TEM

analysis: the pictures show a diameter range of about 100 nm for

CD69+ EVs, confirming that they belong to the nano EV fraction

(Figures 3B, C). Thereafter, we set up cytofluorimetric assays to

specifically detect CD69+ EVs (33). We first aimed at verifying

that CD69+ T cells are capable to release CD69+ EVs. Purposely

Jurkat T cells were cultured in the presence/absence of PHA for

72 h, a stimulus that triggers CD69 expression on the cell plasma

membrane. The assay revealed a CD69+ EV population in the

Jurkat cell culture supernatant, particularly in the PHA stimulated

ones and that CD69+ EVs are predominantly CD45+, revealing

their leukocytes origin (Figure 4A). The same protocol allowed us

to show higher amounts of CD69+ EVs in GVHD patients’ serum

samples (Figure 4B). Then, by means of the Cytoflex platform that

easily discriminates nano (100 nm), small (160–500 nm), and

large (900nm) EV fractions (Supplementary Figure 1), we found
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that CD69+ EVs co-express the EV markers CD9 and CD63, and

that CD69+ EVs are more represented in GVHD patients serum

samples, particularly in the nano EV compartment (Figures 4C,

D). We then tested the hypothesis that CD69+ EVs also express

the TRM-T marker CD103 (26–32). FACS analysis revealed that

CD69+ EVs also carry the CD103 protein, and that the double-

positive CD69+ CD103+ subset is the most represented EV

population across the three EV compartments (Figure 5A).

Consistent with the data above, the increased number of

double-positive CD103+ CD69+ EVs in GVHD patients’

samples was predominately observed in the nano EV

compartment (Figure 5B). Overall, we regarded these data as

sufficient information to consider the serum level of CD69+ EVs

as potential surrogate markers of the host CD69+ TRM_T burden.

Prompted by the results above, we evaluated CD69+ EVs in the

serum of the ATLG-treated HSCT patients (see Table 1). At all

time points CD69+ EVs were significantly higher in patients who

developed GVHD (mean fold 9.01 +/- 1.33; p = 2.1e-5, GLM for

repeated measure, F = 11.381, p = 0.003, Figure 5C). ROC analysis

showed that a concentration of CD69+ EVs = 238.5 particles/ml
allows to discriminate patients who will developed GVHD with

sensibility = 81.8% and sensitivity = 91.9%. (Figure 5D). Notably,

the significant negative association between the concentration of

CD69+ EVs at pre-ATLG administration time point (day -6) and

active ATLG serum levels (ATLG_AUCCD45, r = -0.469, p = 0.024;
TABLE 1 Continued

Training cohort Validation cohort Total

Only Acute GvHD
Only Chronic GvHD

n=8 (66.7%)
n=1 (8.3%)

n=4 (33.3%)
n=0

n=12 (34.3%)
n=1 (2.8%)

Median Follow Up time(range) 463 days (r: 48-645) 272 days (r: 200-399) 421 (r: 48-645)

AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; HLA, human leukocyte antigen; GVHD, graft versus host disease; CSA,
Ciclosporin; MTX, methotrexate; rATLG, rabbit anti-T –lymphoglobulin.
TABLE 2 Multivariate analysis.

Factor HR CI 95% p VALUE

Donor age 0.970 0.901-1.045 0.424

Recipient age 1.007 0.952-1.065 0.816

Sex mismatch 2.462 0.316-19.147 0.389

HLA mismatch 0.309 0.097-0.986 0.047

Disease phase 0.904 0.290-2.816 0.862

HCT-CI 1.212 0.390-3.764 0.739

ALC pre-rATLG 1.236 0.889-1.717 0.207

HLA, Human Leukocyte Antigen; HCT-CI, Hematopoietic Cell Transplantation-specific Comorbidity Index; ALC, Absolute Lymphocyte Count; rATLG, rabbit anti-T –

lymphoglobulin. Bold means statistically significant.
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ATLG_AUCCD3, r = -0.436, p = 0.038; ATLG_AUCCD4, r =

-0.455, p = 0.029, respectively) conveys that high CD69+ EV levels

are a recipient’s feature that pre-exists ATLG prophylaxis.

Interestingly, no difference was found when total CD45+ EVs

were compared between the two patients’ groups (Figure 5E).
Validation of ATLG kinetics and CD69+
EVs as markers of GVHD onset

To validate the observations above, we assessed a validation

cohort of 12 ATLG-treated HSCT patients. In the latter, the pre-

transplant kinetics of ATLG (measured by three pre-transplant

time points i.e. days -6, -3, and 0) showed the same pattern as in

the explorative cohort, i.e., the serum level of active ATLG was

lower in those patients who later developed GVHD (Figure 6A).
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Consistently, the concentration of pre-transplant serum CD69+

EVs, but not CD45+ EVs was higher in patients who developed

GVHD, compared to noGVHD patients (Figures 6B, C). ROC

analysis showed that CD69+ EV concentration of 384.50 EV/ml
was able discriminate patients who developed GVHD with a

sensibility of 100% and a sensitivity of 100%. These data confirm

the capability of CD69+EVs in the pre-transplant phase to

predict the GVHD onset in HSCT patients, even when

measured in the pre-transplant phase.
Discussion

Here we show that pre-transplant active ATLG serum

levels follow different kinetics depending on whether patients

will develop GVHD or not, i.e. lower active ATLG serum level
A

B

C

FIGURE 2

Pharmacokinetic analysis of active ATLG. (A), Pharmacokinetic analysis (left panel), AUC (middle panel) and ROC analysis (right panel) of active
ATLG bound to CD45+cells from day -6 to day +15. (B), Pharmacokinetic analysis (left panel), AUC (middle panel) and ROC analysis (right panel)
of active ATLG bound to CD3+ lymphocytes from day -6 to day +15. (C), Pharmacokinetic analysis (left panel), AUC (middle panel) and ROC
analysis (right panel) of active ATLG bound CD3+/CD4+ lymphocytes from day -6 to day +15. The data are expressed as mean +/- S.D. p values
refer to GLM for repeated measures, Left panels, and t-test for right panels.
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is found in GVHD patients. As the administered dose of ATLG

is the same among individuals, being based on body weight, the

reduced serum levels of active ATLG in GVHD patients is

likely to be the telltale of a higher amount of active ATLG

sequestered by tissue antigens. A clear-cut demonstration of

the phenomenon can be obtained by comparing the levels of

Rabbit IgGs against the anti-HLA-A3 allele in HLA-A3 positive

and negative patients after ATLG administration. Indeed, since

that ATLG is obtained by rabbit immunization with the HLA-

A3 homozygous Jurkat T cell line (Supplementary Figure 2), it
Frontiers in Immunology 09
is easy to demonstrate the presence of high levels of rabbit anti-

HLA-A3 IgGs in the ATLG product and in the serum of HLA-

A3 negative patients, as well as the almost complete absence of

the rabbit IgGs in HLA-A3 positive ones (See Supplementary

Figure 2) (38). These findings indicate that specific rabbit IgGs

have been withdrawn from the active ATLG serum pool due to

the binding to HLA in the tissues. Consequently, the presence

of a tissue antigen for which ATLG possesses an affinity is able

to almost completely deplete the cognate IgGs from the active

ATLG serum pool. As previously reported, in this work we
A

B C

FIGURE 3

Detection of serum CD69+ EVs. (A), Capillary electrophoresis protein analysis of EVs separated by ultracentrifugation at 100.000×g
(small/nano EVs fraction) and 20.000×g (Large EVs fraction). (B) STORM analysis of serum EVs isolated by anti-CD9-conjugated latex
beads pull-down. (C), Immunogold-specific CD69 electron microscopy analysis of EVs isolated by anti-CD9-conjugated latex beads
pull-down. ns, not significant.
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found a negative correlation between active ATLG serum levels

and pre-infusion circulating lymphocyte count (21). On the

basis of this relationship, ATLG administration has been

proposed to be corrected by the number of circulating

lymphocyte counts (18, 20). Circulating lymphocytes are a

small subset (about 2 out of 100) of the overall lymphocyte

burden in the body (39, 40). Circulating lymphocytes are likely

to be in balance with their tissue counterparts; thus, it can

speculated that recipients who show high levels of circulating

lymphocytes might also be endowed with high burden of the

cognate tissue-resident populations. By definition, tissue

resident lymphocytes are very difficult to be assessed in the

peripheral blood, especially after lymphodepletion when

patients show profound lymphopenia. In this regard, it has

been shown that TRM-T is resistant to conditioning regimens

and persists in the recipients’ tissues for a long time, being able

to set off GVHD (23–25). In particular, recent investigations

revealed that recipient CD69+ TRM_T cells can promote
Frontiers in Immunology 10
GVHD upon the interaction with donor immune cells (23).

Notably, we observed that ATLG contains IgGs that are able to

bind CD69 antigen on T-cell surface (Supplementary Figure 3).

It can be therefore hypothesized that lymphocytes are harbored

in different tissues (such as the skin and the gut) and can be

targeted by ATLG and that this phenomenon may differ among

patients, thus impinging upon the chance of these cells to

promote GVHD. In regard to this issue, we recently observed

that CD69+ EVs take part to a complex EVs signature that

characterizes GVHD patients even in the post-transplant phase

(Burrello et al., manuscript in preparation). The major

limitations of this study are the reduced number of patients,

the monocentric design, and the heterogeneity of the diseases

and conditioning. However, these latter variables are not

predictive of GVHD occurrence, while GVHD prophylaxis

was indeed homogeneous. Here, we show in two separate

cohorts of HSCT patients that the pre-transplant kinetic of

serum CD69+ EVs is predictive of GVHD. By means of
A

B

C

D

FIGURE 4

Phenotypic characteristics of CD69+ EVs in HSCT samples. (A) Representative gating strategy for EV detection from un-stimulated CD69+
Jurkat T cells and upon stimulation with PHA (1 or 5 mg/ml) for 72 h. Bar graphs represent the concentration of CD69+ EVs and CD45+ EVs in
the culture supernatants. (B) Representative gating strategy for EV detection in the serum of HSCT patients. (C) Cytoflex analysis of serum EV in
a representative GVHD patient. Plots refer to the concentration of CD69+, CD69+CD63+, CD69+CD9+, CD63+CD9+CD63+ among large (900
µm), small (160–500 nm), and nano (100 nm) EV fraction (see Supplementary Figure 1). (D), Graphs charts of serum CD69+, CD69+CD63+,
CD69+CD9+, CD63+CD9+CD63+ EVs according to size distribution in GVHD (n = 2) and noGVHD patients (n = 2). Values are expressed as
number of EV/ml. Data are represented as mean +/- S.D. NS, Not Significant.
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different techniques, we demonstrated that serum CD69+EVs

co-express classical EV markers (i.e. CD9 and CD63), are

particularly enriched in the nano EVs compartment (around

100nm), and are of leukocyte origin (i.e. expressed the pan-
Frontiers in Immunology 11
leukocytes CD45+). Importantly, we also show that CD69+

EVs are CD103+, which represent a clear origin from TRM-T

cells (31, 41). The striking negative correlation between CD69

+EVs and free active ATLG serum level reinforces the notion
A

B

D EC

FIGURE 5

Evaluation of CD69+ EVs in HSCT samples. (A) Representative FACS analysis of serum EV size distribution and CD69/CD103 expression, in
GVHD and noGVHD patients at -2 day. (B), Dot Plot of serum CD69+/CD103-, CD69+/CD103+, CD69-/CD103+ EVs according to size
distribution in GVHD (n = 2) and noGVHD (n = 2) patients at day-2. (C) FACS analysis of day -6 to day 0 serum CD69+ EVs in GVHD (n = 12)
and noGVHD (n = 11) patients. (D), ROC analysis of serum CD69+ EVs in GVHD and noGVHD patients. (E) FACS analysis of day -6 to day 0
serum CD45+ EVs in GVHD (n = 12) and noGVHD (n = 11) patients. Values are expressed as number of EVs/ml. Data are reported as mean +/-
S.D.; p refers to GLM analysis for repeated measures. NS, Not Significant.
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that those patients who later developed GVHD are likely to be

endowed with a burden of TRM-T cells, among which CD69+

cells may constitute a substantial compartment, and a potential

target for ATLG. Hence, the measurement of serum CD69+

EVs can be considered a potential tool to tailor GVHD
Frontiers in Immunology 12
prophylaxis in ATLG-treated patients. A validation of our

data in a larger case set and in a prospective larger study is

warranted to confirm this hypothesis and to properly assess the

sensibility and the sensitivity of CD69+ as predictors

of GVHD.
A

B C

FIGURE 6

Validation of ATLG kinetics and CD69+ EVs as markers of GVHD onset. (A), Pharmacokinetic analysis (left panel) and AUC (right panel) at day -6,
day -3, and day 0 of active ATLG bound to: CD45+cells, CD3+ and CD3+/CD4+ lymphocytes; (B) FACS analysis of day -6 and day 0 serum
CD69+ EVs in GVHD (n = 6) and noGVHD (n = 6) patients. (C) FACS analysis of day -6 and day 0 serum CD45+ EVs in GVHD (n = 6) and
noGVHD (n = 6) patients. NS, Not Significant.
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