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Models of musical string vibration
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Abstract: Musical string vibration has been the subject of scientific study for centuries. Recent
increases in computational power have allowed the exploration of increasingly detailed features of
perceptual significance through simulation approaches. The starting point for any simulation is a well-
defined model, usually framed as a system of differential equations, with parameters determined by
measurement and experiment. This review article is intended to take the reader through models of
string vibration progressively, beginning with well-known and well-studied linear models, and then
introducing new features that form the basis for the modern study of realistic musical string vibration.
These include, first, nonlinear excitation mechanisms, such as the hammer-string and bow-string
interaction, and then the collision mechanism, both for pointwise obstructions and over a distributed
region. Finally, the linear model of string vibration is generalized to include geometric nonlinear
effects, leading to typical nonlinear behaviour such as pitch glides and the appearance of so-called
phantom partials due to nonlinear mixing of modes. The article concludes with a general overview of
numerical simulation techniques for string vibration.

Keywords: String vibration, Collision modeling, Musical acoustics

1. INTRODUCTION

The vibration of a string is the basic sound production

mechanism, or resonator, at the heart of many musical

instruments, far too numerous to list here. Stringed

instruments have been built and played over thousands of

years, and in virtually all regions of the world. See [1–4]

for an overview. Modern research into musical string

vibration has a shorter (but still long) history, dating back

to the work of Helmholtz [5] and later Raman [6],

Friedlander [7], Keller [8] and others on bowed strings.

More recently, the field has been invigorated by

increases in computational power, allowing the exploration

of increasingly subtle audible features of musical string

vibration through simulation. Early computer simulation

work in the context of sound synthesis in the late 1960s

and early 1970s [9–11] was followed, over the next 25

years, by the investigation of progressively more sophis-

ticated models of linear string vibration [12–16]. The focus

broadened to include the problem of the hammer string

interaction, with work continuing apace on bowed string

dynamics [17–19], now including computer simulation

approaches [20]. Since approximately 2000, the scope has

further widened to include the modeling of strong non-

linearities, of both geometric type and due to unilateral

constraints (collisions) that occur in musical instruments

under playing conditions. Such developments have been

due in part to the need to validate experimental results,

but also because of the possibilities for greatly increased

realism in synthetically-produced sound.

This review article is intended as a survey of the state

of the art in musical string models. The point of view taken

here is model-based rather than experimental or perceptual,

following from the interests of the authors in simulation.

A well-defined model, framed in terms of a set of

differential equations, is the starting point for any computer

simulation, and it is hoped that through a presentation of

the many variants in a compact manner, readers will get

a unified picture of the dynamics of musical strings,

particularly if simulation is their goal.

Models of linear string vibration, beginning with the

simple one-dimensional wave equation, and progressively

adding effects of stiffness and loss, are covered in Sect. 2.

In Sect. 3, point-like excitation models, including the

bowed string and hammer are introduced, as well as a

model of both pointwise and distributed unilateral con-

straints on string vibration. In Sect. 4, the inherent geo-

metric nonlinearity of strings vibrating at high amplitudes,

as well as the resulting perceptual effects are explored, first
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through the simple Kirchhoff-Carrier model, and then

through a complete model involving coupling between

transverse and longitudinal string motion. In Sect. 5, some

very rudimentary aspects of numerical simulation tech-

niques for string vibration are discussed. Some concluding

remarks and perspectives appear in Sect. 6.

2. LINEAR STRING VIBRATION

Many (but not all) features of string vibration are

captured by a linear model, usually framed in terms of pure

transverse motion in a single polarisation. This includes

representations of the solution in terms of traveling waves,

as well as the key concept of the modal frequency, which is

related to the perceptual attribute of pitch.

2.1. The One-dimensional Wave Equation

The simplest possible model of the transverse vibration

of the string is given by the one-dimensional wave

equation:

�A@2t u� T@2xu ¼ 0: ð1Þ

Here, uðx; tÞ is the transverse displacement of the string, as

a function of spatial coordinate x 2 D � R, and time t � 0,

in s. (Here, for analysis purposes, the spatial domain D is

left unspecified, but ultimately it will be limited to a finite

interval D ¼ ½0; L�, for some string length L in m.) See

Fig. 1. @t and @x represent partial differentiation with

respect to t and x, respectively. Three constants appear

in (1): the material density �, in kg�m�3; the string cross

sectional area A, in m2 (set equal to �r2, for a string of

circular cross section and radius r m); and the nominal

string tension T , in N. The wave equation (1) is usually

written in terms of the consolidated parameter c ¼
ffiffiffiffiffiffiffiffiffiffiffi
T=�A
p

,

referred to as the wave speed. The derivation of the one-

dimensional wave equation for the string appears in many

texts. See, e.g., [21].

The wave equation, as given in (1) is a second order

(in time) partial differential equation, and two initial

conditions must be supplied:

uðx; 0Þ ¼ u0ðxÞ @tujx;t¼0 ¼ v0ðxÞ ð2Þ

Here, u0ðxÞ and v0ðxÞ are two distributions representing the

initial displacement and transverse velocity of the string

respectively. Initialisation is useful for analysis purposes,

but in any musical setting, the string is set into motion

through external forcing, and thus initial conditions may be

set to zero. See Sect. 3.

2.1.1. Dispersion relation and traveling wave solution

It is useful to examine the wave equation first in the

case of an infinitely long domain, so that D ¼ R. As a

shortcut to full Fourier transform analysis, one may

examine the behaviour of a monochromatic wave-like

solution of the form

uðx; tÞ ¼ ûejð!t�kxÞ ð3Þ

for some non-zero amplitude û. Here, ! is an angular

frequency, in rad.�s�1, and k is a wavenumber, in m�1.

Insertion of this solution into (1) leads to the following

dispersion relation:

! ¼ �ck ð4Þ

and the phase velocity for such waves is:

v� ¼
!

k
¼ �c: ð5Þ

Thus all waves travel to the left and right at the same

speed c.

Given that this is true for a wave at any frequency !

and wavenumber k, it must also be true for a general

solution. The famous d’Alembert solution [22] to the one-

dimensional wave equation may be written in terms of the

propagation of aribitrary distributions uþðxÞ and u�ðxÞ:

uðx; tÞ ¼ uþðx� ctÞ þ u�ðxþ ctÞ: ð6Þ

uþ and u� may themselves be written in terms of the initial

distributions u0ðxÞ and v0ðxÞ from (2) See Fig. 2. The

traveling wave solution above forms the basis for digital

waveguide approaches to string simulation [23].

2.1.2. Boundary conditions and modes

The wave equation (1) is of second order in space, and

thus two boundary conditions are required—one at each

end of the domain x 2 ½0; L�. The natural choice, if the

string is to be examined in isolation, is fixed terminations:

uð0; tÞ ¼ uðL; tÞ ¼ 0 8t � 0: ð7Þ

Under these conditions, and using the modal basis

functions �p ¼
ffiffiffiffiffiffiffiffi
2=L
p

sinðp�x=LÞ, for p ¼ 1; . . . a complete

solution to (1) follows as

uðx; tÞ ¼
X1
p¼1

Ap cosð2� fpt þ �pÞ�pðxÞ ð8Þ

for constants Ap and �p that can be determined from the

initial conditions (2), and at modal frequencies fp, defined

by
Fig. 1 Transverse displacement uðx; tÞ of a string over

the interval x 2 ½0;L�.
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fp ¼
cp

2L
p ¼ 1; . . . ð9Þ

The lowest of these frequencies, f1 ¼ c=2L, is referred to as

the fundamental frequency, and corresponds roughly to the

pitch of the sound produced. See Fig. 3, showing a Fourier

transformed output spectrum drawn from the solution to

the wave equation, and illustrating the equally-spaced set

of harmonics from (9) above.

2.2. Stiff String Vibration

The wave equation (1) describes the vibration of a

perfectly flexible (or very thin) string. As the string

thickness increases, effects of stiffness become non-

negligible. Stiffness effects in a tensioned string are well

described by the following equation:

�A@2t u� T@2xuþ EI@4xu ¼ 0: ð10Þ

Here, E is Young’s modulus for the string material, in Pa,

and I is the moment of inertia in m4 (and equal to �r4=4 for

a string of radius r). In the absence of tension, (10) reduces

to the Euler-Bernoulli model of transverse beam vibration;

similarly, for very thin strings, the one-dimensional wave

equation (1) is recovered. More refined models of the stiff

string have been studied in the context of musical

acoustics, including the Timoshenko model [24], employed

in models of piano strings [25]. For musical strings of

typical thicknesses, however, recent studies [26] suggest

that such refined models lead to negligible improvement

relative to the Euler-Bernoulli model at audible frequen-

cies.

2.2.1. Dispersion and inharmonicity

Employing the same analysis of a wave-like solution

as in Sect. 2.1.1, a distinct expression for phase velocity

results:

! ¼ �ck
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

EI

T
k2

r
! v� ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

EI

T
k2

r
� c:

ð11Þ

Wave propagation is thus dispersive in a stiff string, with

high frequency components traveling progressively faster

than low frequency components. This effect is most

pronounced in thick strings (as in the case of piano notes

in the low register [27]). See Fig. 4, showing a comparison

between the propagation of a pulse in a string, for different

degrees of stiffness (characterised by the parameter B, as

defined in (13) below). Short wavelength (high frequency)

components of the solution lead the main pulse. The

traveling wave solution (6) is no longer valid in the case

of the stiff string (or indeed any modification to the one-

dimensional wave equation (1)).

Equation (10) is now of fourth order (in space), and

thus requires two boundary conditions at each end of the

domain. There are many choices—for strings, it is natural

to retain the fixed end conditions (7). A good choice of

analytically tractable additional conditions is of those of

simply supported type:

@2xujx¼0;t ¼ @2xujx¼L;t ¼ 0 8t � 0: ð12Þ

In this case, the string is able to pivot about its endpoints.

Other conditions (such as, e.g., clamped [28]) are possible

as well, but given that the effects of stiffness are small

relative to that of tension in a string, the choice of simply

supported conditions over clamped conditions does not

Fig. 2 Time evolution of the solution to the wave
equation, at times as indicated, with c ¼ 100 m�s�1,
and with a localised initial displacement condition.

Fig. 3 Spectrum of output drawn from the solution to
the one-dimensional wave equation (1). Modal fre-
quencies, multiples of a fundamental frequency of
200 Hz, are shown as red lines for reference.

Fig. 4 Dispersion of a rightward traveling pulse on a
string, under non-stiff conditions (red), and for in-
creasing stiffness, characterised by the inharmonicity
parameter B (blue and green).
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lead to major differences in the behaviour of the model. See

[29] for a comparison of the two boundary condition

choices.

Under these conditions, the modal form of the solution

given in (8) in the case of the wave equation holds, but the

natural frequencies are modified as [29]:

fp ¼
cp

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Bp2

p
B ¼

EI�2

TL2
: ð13Þ

Here, the consolidated parameter B is referred to as the

inharmonicity (though slight variations of this expression

are sometimes employed [30]). The main effect is a

progressive ‘‘stretching’’ of the frequencies of partials

above baseline values at multiples of f1 ¼ c=2L. See

Fig. 5.

2.3. Loss

The stiff string model presented above is lossless—real

string vibration depends crucially on multiple loss mech-

anisms, leading to a characteristic frequency- or mode-

dependent decay time [31].

As a starting point, consider the simplest extension of

the stiff string equation (10) to include a dissipation

mechanism:

�A@2t u� T@2xuþ EI@4xuþ 2�A�0@tu ¼ 0 ð14Þ

in terms of the new parameter �0 � 0.

To analyse solutions to this equation, again consider an

infinite domain x 2 R, and examine damped wave-like

solutions of the form

uðx; tÞ ¼ ûest� jkx ð15Þ

for complex frequencies s ¼ j!þ �, where � represents

loss. Inserting (15) into (14) leads to the following

characteristic equation relating complex frequency s and

wavenumber k:

s2 þ c2k2 þ ðEI=�AÞk4 þ 2s�0 ¼ 0 ð16Þ

Separating this equation into real and imaginary parts

gives:

! u �ck
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

EI

T
k2

r
� ¼ ��0 ð17Þ

The rate of loss � is thus constant at all frequencies. In

addition, under low loss conditions (typical in strings), the

dispersion relation is only altered slightly, and thus mode

frequencies are little affected by the addition of loss. See

Fig. 6, illustrating the characteristic decay of waveforms,

and broadening of resonance peaks in the magnitude

spectrum due to loss.

Realistic loss models for strings are far more com-

plex—see Cuesta and Vallette for details [31]. The main

contributing mechanisms are air viscosity and internal

friction (which itself includes various effects such as

viscoelasticity of the string material, heat transport and

material dislocations). The model is often framed in terms

of a frequency-dependent quality factor Qð!Þ, that may be

related to the damping factor � ¼ �ð!Þ by Q ¼ �!=�. The

frequency dependence of Q depends in a non-trivial way on

material parameters, string radius and tension; for musical

strings, there is often a pronounced peak in the low kHz

range. See Fig. 7.

In the setting of time domain simulation, simplified

forms approximating frequency-dependent loss have been

employed by various authors. One choice is [32]:

�A@2t u� T@2xuþ EI@4xuþ 2�A�0@tu� 2�A�1@t@
2
xu ¼ 0

ð18Þ

Fig. 5 String spectra, for different values of inhamo-
nicity B, as indicated. The top panel, with B ¼ 0,
corresponds to the dispersionless case of the wave
equation (1). Nominal modal frequencies, for the wave
equation without stiffness, and at multiples of a
fundamental frequency of 200 Hz, are shown as red
lines for reference.

Fig. 6 Output waveforms (left) and magnitude spectra
(right) for output drawn from string displacement,
under different choices of the loss parameter �0, as
indicated. Here, the string has a fundamental frequency
of 200 Hz, and B ¼ 0:0001.
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which gives two parameter (�0 and �1) control over the

quality factor Q. Slightly different models, employing a

third time derivative, have been employed by other authors

[9,15].

3. EXCITATION AND COLLISION

Though initialisation of the string can be employed as

an analysis tool, in practice, a string should more properly

be assumed to be at rest initially, and subjected to an

external forcing, usually sharply localised at a particular

location on the string (i.e., the plucking or striking or

bowing position). Assuming a linear model of string

vibration, a generalisation of the linear string to include

forcing may be written as

Lu ¼ gðxÞ feðtÞ: ð19Þ

Here, L represents the ensemble of linear operators

appearing in any of the string models presented so far,

such as (1), (10), (14) or (18). The distribution gðxÞ
characterises the spatial extent of the excitation, and is

normally sharply localised. It is also helpful to assume that

it is of unit area, so thatZ L

0

gðxÞdx ¼ 1: ð20Þ

For practical purposes, and also in simulation, it is useful to

make use of the idealised case of forcing at a single point,

through the use of gðxÞ ¼ �ðx� xeÞ, where �ðx� xeÞ is a

Dirac delta function selecting the excitation location

x ¼ xe. Under the normalisation condition (20), fe has

units of N, and is the force applied, in the upward direction

over the distribution gðxÞ. fe will normally not be

independent of the string state u, and in general, Eq. (19)

is nonlinear. Depending on the model, fe may result from

coupling of the string with a system with its own internal

dynamics, as in the case of the hammer-string interaction.

See Fig. 8.

Equation (19), beyond modeling an excitation, also

models passive (unforced) interactions due to pointwise

collisions of the string with an obstacle (such as a fret),

and thus a unified presentation follows here. In the case

where such collisions occur over a distributed region (as

in, e.g., over a fretboard, or in instruments such as the

tanpura [33]), a generalisation of (19) is necessary. See

Sect. 3.4.

3.1. The Hammer-String Interaction

The hammer-string interaction can be modelled, in

the simplest case, as the collision of a mass M kg with a

string at a given location xe along its length (characterised

by a function gðxÞ peaked around x ¼ xe), and exerting

an upwards force fe N over the course of the interaction. In

this case, the vertical position of the hammer tip is uhðtÞ,
and its dynamics are described by Newton’s second law,

under the action of the equal and opposite force � fe:

M
d2uh

dt2
¼ � fe: ð21Þ

fe must always be positive, and one common model [15]

is in terms of the interpenetration of the string into the

hammer felt, with a power law compression characteristic

[34]:

fe ¼ K½uh � us�	þ usðtÞ ¼
Z L

0

gðxÞuðx; tÞdx: ð22Þ

Here, K is a stiffness constant, and 	 � 1 is a nonlinearity

exponent, to be determined by experiment. uh � us is a

measure of distance between the hammer tip and the

string at the striking location, with the finite excitation

width gðxÞ taken into account—many authors use a

pointwise excitation, so that gðxÞ is effectively a Dirac

delta function [30,35]. The operation ½��þ ¼ ð1=2Þð�þ
j�jÞ restricts the force to be non-zero only when there is

contact between the string and hammer. See Fig. 9 at left.

More complete models of the hammer-string interaction

take into account damping processes [36] in, e.g., the

hammer felt.

In simple models [15], for a single strike, the hammer

is assumed to have an initial displacement uhð0Þ ¼ uh;0

and upward velocity duh=dtjt¼0 ¼ vh;0. Shown at right in

Fig. 7 Quality factor Q, as a function of frequency f in
Hz, for a steel string of radius 0.2 mm, and under a
tension of 20 N. Fig. 8 String subject to an external force fe over a

spatial distribution gðxÞ.
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Fig. 9 are force histories feðtÞ for strikes at different

velocities vh;0, as indicated, and with uh;0 ¼ 0. Notice the

appearance of humps in the force histories, due to multiple

reflections of waves from the string endpoints back to the

hammer while the hammer is in contact with the string.

Perceptually, the main effect of increased strike velocity

is increased brightness, due to the nonlinearity of the

hammer-string contact.

The plucking mechanism (in, e.g., the guitar or harp) is

significantly more complex—see, e.g. [37]. It has also been

modeled using (19), where the dynamics of the nonlinear

plucking mechanism are bypassed through the use of a

short externally-supplied function feðtÞ [38].

3.2. The Bowing Mechanism

As mentioned in the introduction, bowed string

vibration is a topic of longstanding interest in musical

acoustics. Early experimental observations were carried

out by Helmholtz using a self-made experimental machine

that he called the ‘‘vibration microscope’’ [5]. He observed

that motion undergoes a sticking phase, where the string is

dragged by the bow, followed by a slipping phase, where

the string slides across the bow, once per period. These

phases repeat cyclically and give rise to a type of motion

often referred to as ‘‘Helmholtz motion’’ [39], or ‘‘stick-

slip’’ motion.

These observations were consolidated into a mathe-

matical theory by Raman [6]. He considered an undamped

string with no stiffness, excited by a force dependent on the

relative velocity between the bow and the string at one

point. With these assumptions, Raman obtained an analyti-

cally tractable system of equations. Schelleng extended

the results by Raman to produce ‘‘Schelleng diagrams’’

[39]: these are regions of the bow force - bow position

plane in which musical tones are produced. Guettler

diagrams are similar, but consider bow acceleration instead

of bow position [40].

Raman’s work paved the way for many successive

works, by framing the string-bow interaction in terms of a

friction force depending on the relative velocity between

string and bow. In this framework, the equation of the

bowed string may be cast in the form of (19) with

fe ¼ �FB�ðvrelÞ: ð23Þ

Just as in the case of the hammer-string interaction, gðxÞ
may be assumed to be a Dirac distribution �ðx� xBÞ, where

xB is the bow position, though finite-width effects have

been shown to play a role in determining the torsional

motion of the string [41]. In Eq. (23), the function �

describes the friction force normalised by the normal load,

and is referred to as friction curve (it is, in fact, a

dimensionless friction coefficient). The relative velocity is

defined as

vrel ¼
Z L

0

gðxÞ@tu dx� vB; ð24Þ

where vB is the velocity of the bow, assumed known.

Finally, FB is the normal bow force, also assumed known.

Various friction characteristic curves have been stud-

ied, and examples are shown in Fig. 10. A classic dry

friction model, as per the Coulomb theory, is shown in

Fig. 10(a): here, the absolute value of the force is

independent of the relative velocity. A more refined

approximation is due to Smith and Woodhouse, who

performed experimental studies of the motion of a mass

on a rosin-coated conveyor belt [42]; see Fig. 10(b) [42].

Here, during the first instants of slipping the magnitude

of the friction force decreases as the relative velocity

becomes larger, until it attains a steady value. This curve

is sometimes called the ‘‘classical’’ friction curve in the

Fig. 9 Left: hammer configuration, side view, with
hammer tip position uh, and the string position us

indicated in blue. Right: force histories fe as a function
of time, for a steel piano string tuned to C4, and under
hammer and string parameters as given in [16]. Force
histories are shown for different initial hammer
velocities vh;0, as indicated.
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Fig. 10 Bow friction coefficient functions, as a function
of relative velocity. (a): Coulomb dry friction; (b):
‘‘classical’’ friction curve (from [42]); (c): ‘‘recon-
structed’’ friction curve (from [43]); (d): soft friction
curves (from [28]).
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context of the bow-string interaction [43]. Curves analo-

gous to this had in fact been employed in earlier works,

such as those by Friedlander [7] and by McIntyre and

Woodhouse [18]. Galluzzo proposed the curve in

Fig. 10(c), after measuring the force drop at the bridge

during the slip phase: this curve has been called the

‘‘reconstructed’’ friction curve [43]. In the context of

numerical simulation, a family of friction curves as shown

in Fig. 10(d) has been proposed, where a free parameter

allows control over the steepness of the central slope [28].

The friction curve models constitute a useful frame-

work for understanding the bowing mechanism. Indeed,

when these models are used for simulation, it is possible to

reproduce most of the main features observed in practice:

these include Helmholtz motion, raucous motion, multi

stick-slip motion, anomalous low-frequency waves, and

others [44]. See also Fig. 11. However, detailed exper-

imental evidence suggests that these models are in fact

too simple for an accurate representation of the bow-string

interaction. Note that in (23), it is assumed that the friction

coefficient � depends exclusively on the relative velocity.

The friction properties of rosin, however, show some

dependence on temperature, and for this reason Smith and

Woodhouse have proposed a model incorporating thermal

exchanges [42]. This model is able to reproduce the

hysteretic behaviour of the friction curve observed exper-

imentally, but nonetheless discrepancies with respect to

experiment remain [43].

In order to account for the hysteretic behaviour of the

friction curve, a different class of models has also been

proposed, incorporating the effects of the bristle-string

interaction. These include the Dahl model, the LuGre

model, and an elasto-plastic model; see Serafin for a review

[45].

3.3. Collision with a Point Obstacle

Various timbres generated by stringed instruments

rely on a collision mechanism. In some cases, such as

the hammer-string interaction discussed in Sect. 3.1, the

colliding object is moving. In many other cases, such as the

string-fretboard interaction in the guitar, the string collides

against immovable point obstacles.

As a useful starting point, here a single lumped obstacle

occupying a small region around xc 2 D is considered. The

mathematical model given in (19) applies again in this

case. Here, the spatial distribution of the obstacle is

described by the function gðxÞ, which satisfies the normal-

isation property (20). Again, in practice, such a distribution

may take the form of a Dirac delta function �ðx� xcÞ, or

any other strongly localised function centered around xc.

Let b denote the obstacle’s height measured from the string

rest position, with the obstacle placed below the string. An

expression for the force experienced by the string is

fe ¼ K½b� us�	þ usðtÞ ¼
Z L

0

gðxÞuðx; tÞdx: ð25Þ

This form resembles (22), but the physical interpretation is

different. In the hammer-string interaction, the power law

(22) can be viewed as permitting some level of deformation

of the hammer felt. In the string-obstacle interaction, both

objects are undeformable, and the interpenetration ½b�
us�þ is spurious. In the context of numerical simulation,

model (25) has nonetheless proven useful in treating the

string-obstacle interaction. Issanchou et al. [46] showed

that this model yields a very close match to the analytic

results given by Cabannes [47], for a string colliding

against a fret placed halfway along the string. Indeed, one

can make the the spurious interpenetration as small as

desired by increasing the value of the stiffness constant

K—see Bilbao et al. [48]. In Fig. 12, snapshots of a string

colliding against a rigid obstacle are shown. In Fig. 13, the

time history of the string displacement at the obstacle

location xc is given, under various choices of the stiffness

constant K. Note that the resulting dynamics are strongly

nonlinear, including a strong biasing effect on the string

displacement during collision.

Extensions of model (25) to the case of multiple point

obstacles is immediate: the total force experienced by the
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Fig. 11 Simulated displacement at the bowing point and
relative velocity for a bowed string at different bowing
forces. At a low force (green), the string does not stick
to the bow, and raucous motion is observed. For higher
bowing forces (blue), the string presents the typical
‘‘stick-slip’’ behaviour associated with Helmholtz
motion. At even higher bowing forces (red), multiple
stick-slip phases are observed.
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string is just the sum of the contributions coming from a

each of the obstacles. See Fig. 14.

Model (25) has served as the basis for many works

simulating the string-obstacle interaction, see e.g.

[46,48–50], but various other methods exist in the

literature. Evangelista and Eckerholm proposed a digital

waveguide method incorporating collision scattering junc-

tions [51] (see also Sect. 5.1 for a review on digital

waveguides). Debut and Antunes made use of the Udwa-

dia-Kalaba formalism to frame the finger-string interaction

in terms of a constrained modal system [52].

3.4. Distributed Collisions

In many musical stringed instruments, the string

collides against objects with a finite spatial extent. In

traditional Indian instruments, such as the sitar and the

tanpura, the string wraps against a bent bridge, resulting in

a characteristic droning sound.

Many works have studied the effects of collisions of

the string against distributed objects. Burridge et al. [53],

inspired by the works of Raman [6], gave analytic results

for the case of a thin string wrapping against a bent bridge,

when the string is initialised in the first mode of vibration

and the collisions are inelastic. Successive works have

considered the problem of the string-bridge interaction:

Alsahlani and Mukherjee presented a semi-analytic model

for bridges of circular and elliptical cross sections [54];

Mandal and Wahi gave analytic results for the natural

frequencies and mode shapes of the string in the presence

of the bridge [55].
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Fig. 12 Snapshots of string-fret collision, at times
indicated (in ms). Here, the string is described by the
simple wave equation (1), with c ¼ 175:9 m/s. The
fret is located at the centre of the string, of length
L ¼ 0:7 m. The barrier coefficients are stiffness K ¼
1017, exponent 	 ¼ 1:1, and b ¼ �1 mm. The string is
initialised in its first mode of vibration, given by
u0ðxÞ ¼ U0 sinð�x=LÞ, with U0 ¼ 3 mm.

Fig. 13 String-fret collision, role of the barrier stiffness
constant. Here, the string and the barrier are as per
Fig. 12, except for the barrier stiffness constant, which
is chosen here as K 2 f0; 103; 1017g. (a): time domain
solutions, recorded at the barrier location. In this plot,
the blue line corresponds to the case K ¼ 0; the red
line to K ¼ 103; the green line to K ¼ 1017; the shaded
area represents the barrier. The role of the nonlinear
collision is clearly represented in the spectra. (b):
K ¼ 0 (no barrier) the string vibrates in its first mode.
(c): K ¼ 103 (soft barrier), other modes are activated
by the collision (note that here the string is able to
interpenetrate the barrier by a finite amount). (d):
K ¼ 1017 (hard collision), the collisions produce strong
wideband modal couplings.
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Fig. 14 Snapshots of string-bridge collision, at times
indicated (in ms) in the presence of frets separated by
a semitone. Here, the ith fret is located at xbi ¼ Lð1�
2�

i
12 Þ, and i ¼ 1; . . . ; 12. The string and obstacle

parameters are the same as Fig. 12.
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Mathematically, the problem of distributed collisions

can be framed in a very similar fashion as (19), that is

Lu ¼ Feðx; tÞ; ð26Þ

where

Feðx; tÞ ¼ K½bðxÞ � uðx; tÞ�	þ: ð27Þ

Here, height of the distributed barrier is described by the

function bðxÞ. The right-hand side of (26) represents a force

density, in N/m, distributed along x. This model served as

the basis for numerous works dealing with the numerical

simulation of distributed collisions is strings: these include

Chatziioannou and van Walstijn [33]; Bilbao et al. [48];

Issanchou et al. [46]; Ducceschi et al. [50]. See also

Fig. 15.

4. NONLINEAR STRING VIBRATION

All of the models presented in Sect. 3 include a

nonlinearity, either in the definition of the excitation

mechanism, or through a unilateral constraint. The under-

lying string model, however, remains linear. Under high

amplitude vibration, the behaviour of a vibrating string

departs from linear, even in the case of free vibration. In

this section, two such geometrically nonlinear models are

presented—both generalise the one-dimensional wave

equation (1), and, for simplicity, effects of linear stiffness

are not included here (though they can be reintroduced in

a subsequent step).

The theory of the nonlinear elastic vibration of a string

was the subject of extensive research for more than a

century, dating back as far as the work of Kirchhoff [56].

Major contributions were due to Carrier [57], Oplinger

[58], Anand [59], Narasimha [60] and O’Reilly and

Holmes [61]. See the texts of Morse and Ingard [62] and

the chapter by Vallette [63] for an overview.

4.1. Kirchhoff-Carrier Model

The simplest nonlinear model of string vibration is

often ascribed to Kirchhoff [56] and Carrier [57]:

�A@2t u� T 1þ
EA

2TL

Z L

0

@xuð Þ2dx
� �

@2xuþ 2�A�0@tu ¼ 0:

ð28Þ
The main difference, with respect to the linear wave

equation (1) is the multiplication of the tension by a scalar

amplitude-dependent factor, always greater than 1. Gross-

ly-speaking, this factor leads to an increase in the wave

speed with solution amplitude. An additional loss term has

been included, in line with (14), so as to illustrate the effect

of so-called pitch glides (see below). The Kirchhoff-Carrier

model has seen extensive theoretical investigation outside

of musical acoustics [58,64,65], and later, in the context of

musical strings [66,67]. The Kirchhoff-Carrier model was

the first geometrically nonlinear string model to be used for

synthesis purposes [68–72], partly due to the simple scalar

form of the nonlinearity.

The most important perceptual effect of the Kirchhoff-

Carrier nonlinearity is the pitch glide, audible under struck

or plucked conditions at high amplitudes. See Fig. 16.

Here, towards the start of a note, the effective wave speed

is increased, and gradually decreases to the nominal

(linear) wave speed as dissipation effects reduce vibration

Fig. 15 Snapshots of string-bridge collision, at times
indicated (in ms) in the presence of a curved bridge.
The string parameters are the same as Fig. 12. The
barrier is given here by bðxÞ ¼ �10�4 � 2 � 10�1x2.

Fig. 16 Spectrograms of output grawn from the Kirchh-
off-Carrier model, under low amplitude excitation
(top) and high amplitude excitation (bottom), illustrat-
ing the characteristic pitch glide in the latter case. In
this case, the string is made of steel, and is of radius
r ¼ 0:1 mm, and is under a tension of T ¼ 100 N.
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amplitude. As such, the particular loss model employed,

including its frequency dependence, as discussed in

Sect. 2.3, is strongly related to the pitch trajectory of the

glide itself.

4.2. Full Geometrically Nonlinear Model

The Kirchhoff-Carrier is a crude first approximation to

the nonlinear dynamics of a string. Moving to a full model

of nonlinear string vibration necessarily requires introduc-

ing coupling between transverse displacement, written here

as uðx; tÞ, and longitudinal displacement, written here as

wðx; tÞ. A general model is of the form of a pair of coupled

partial differential equations [62]:

�A@2t u� EA@2xuþ @x
EA� Tð Þ@xuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð@xuÞ2 þ ð1þ @xwÞ2
p

 !
¼ 0 ð29aÞ

�A@2t w� EA@2xwþ @x
EA� Tð Þ 1þ @xwð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@xuÞ2 þ ð1þ @xwÞ2

p
 !

¼ 0 ð29bÞ

The model now exhibits amplitude-dependent effects. See

Fig. 17, illustrating the time evolution of an initial trans-

verse displacement condition at different amplitudes.

At low displacements, the two equations uncouple into

two distinct one-dimensional wave equations:

�A@2t u� T@2xu ¼ 0 �A@2t w� EA@2xw ¼ 0: ð30Þ

The first is simply the one-dimensional wave equation in

transverse displacement (1), with wave speed c ¼
ffiffiffiffiffiffiffiffiffiffiffi
T=�A
p

.

The second is a one-dimensional wave equation with wave

speed cðlÞ ¼
ffiffiffiffiffiffiffiffi
E=�
p

. This equation governs longitudinal

wave propagation. In general, cðlÞ � c for musical strings.

As a result, under fixed boundary conditions for both u and

w, and under low amplitude conditions, two sets of modal

frequencies are present:

fp ¼
cp

2L
f ðlÞp ¼

cðlÞp

2L
p ¼ 1; . . . ð31Þ

When the equations are coupled, as in (29), wave

propagation undergoes distortion with respect to the linear

model—see Fig. 18. A primary perceptual effect is the

introduction of new frequency components, at sum and

difference frequencies between the two modal frequency

series given in (31). See Fig. 19, illustrating the spectra of

struck strings under increasing strike amplitudes. It has

been proposed [73] that the nonlinear coupling between

longitudinal and transverse motion of the string is the

origin of so-called phantom partials in piano tones. Though

the model (29) does indeed produce additional inharmonic

partials due to nonlinear mixing, it has been suggested

recently that this effect may not be the major contributor

to observed phantom partials in the piano, which may be

due to interaction between the strings and structural

components [74].

The model (29) has been employed, including linear

stiffness and losses, and using series-approximated forms

of the nonlinearity, for sound synthesis purposes [75,76],

and the full model has been used in a complete model of
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Fig. 17 Snapshots of the time evolution of solutions to
the linear (blue line) and nonlinear (red line) wave
equations, at times indicated (in ms). Here, the string
is initialised with a triangular distribution with large
peak amplitude (100 mm). The key features of non-
linear wave propagation relative to linear are increased
wave speed, as well as a progressive flattening of the
wavefront with time.
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Fig. 18 Linear, transverse nonlinear and longitudinal
nonlinear output waveforms, for a steel string of length
L ¼ 1 m, radius r ¼ 0:3 mm, tension T ¼ 30 N. The
string is struck with a hammer-like force. Note the
pulse distortion of the wavefront in the nonlinear
transverse case compared to linear, as well as the high-
frequency vibration of the longitudinal waves.
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the piano [77], and more recently as the basis for fast

numerical simulation techniques [78].

5. NUMERICAL SIMULATION TECHNIQUES

This article is concerned with models of string

vibration. In all but the most trivial cases, analytic solutions

are not available, and thus numerical approximation is an

essential tool, whether the goal is the validation of

experimental results, or to generate synthetic sound. The

number of numerical techniques that have been applied to

different string models is large, and a full theoretical

development is not possible here. The basics of some well-

known approaches are presented below.

5.1. Digital Waveguides

In the context of sound synthesis, perhaps the best

known numerical approximation technique is the digital

waveguide method, due to Smith [23,79]. The digital

waveguide is extremely efficient as a simulator of linear

strings, and is essentially a discrete emulation of the

traveling wave solution to the one-dimensional wave

equation, as given in (6). Digital waveguides can be

viewed as a powerful physical interpretation of the earlier

efficient (but non-physical) Karplus-Strong string

synthesis method [80], and drew on earlier results on

excitation/resonator representations of musical instruments

[81].

As mentioned above, the starting point for waveguide

methods is the traveling wave solution to the one-dimen-

sional wave equation (6). At any location x, the solution

may be represented in terms of values drawn from the two

distributions uþðxÞ and u�ðxÞ, assumed known. Assume

now a sample rate Fs, and an associated time step T ¼
1=Fs. Suppose now that these initial distributions are

sampled, spatially to yield the sequences uþ½l� and u�½l�,
as:

uþ½l� ¼ uþðx ¼ lcTÞ u�½l� ¼ u�ðx ¼ lcTÞ ð32Þ

The discrete time solution un½l� may thus be written as

un½l� ¼ uþ½l� n� þ u�½lþ n� ð33Þ

This representation is exact in the case of the one-

dimensional wave equation, and has the interpretation of

a pair of digital delay lines, requiring only shifts of data

and minimal arithmetic—the key to the performance

advantage of digital waveguides. When the string is of

finite length, a termination condition is required at either

end of the domain (usually reflection with inversion),

feeding values from uþ to u� and vice versa. See Fig. 20.

More realistic string modeling requires the introduction

of the effects of stiffness and loss, as in Sects. 2.2 and 2.3.

In this case, the traveling wave solution no longer holds,

but it is possible to ‘‘lump’’ such effects using carefully-

designed terminating filters at the string ends. See, e.g.,

[82,83]. Digital waveguides have been employed for

synthesis for a variety of stringed instruments beyond

bowed strings [84] (their first use [79]), including the guitar

[51,85,86], harpsichord [87], piano [32,88], the Clavinet

[89] and the Finnish kantele [71] among many others.

5.2. Modal Methods

Modal simulation techniques for physical modeling

synthesis developed at roughly the same time as digital

waveguide methods. Time-invariance and linearity allow

the description of a spatially-distributed system, such as a

Fig. 19 Output transverse spectra of the geometrically
exact nonlinear string, for a string with fundamental
frequency of 63 Hz, and physical parameters typical of
piano strings. At low amplitude, the peaks correspond
to the linear natural frequencies of the string. As the
strike force increases, ‘‘phantom partials’’ appear as a
consequence of the nonlinear coupling between trans-
verse and longitudinal waves (visible in the shaded
areas).

Fig. 20 Graphical representation of the digital wave-
guide: the physical solution u is a sum of traveling
wave components uþ and u�, here represented over a
spatial grid.
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string, in terms of eigenfunctions and frequencies, called

the modes of the system. Such modal shapes and

frequencies may be either determined experimentally, or

starting from a suitable mathematical model. The solution

uðx; tÞ of a given model problem, defined over a finite

domain such as x 2 ½0; L�, such as one of the linear string

models described in Sect. 2, is written as the sum of

‘‘modes’’, i.e.

uðx; tÞ ¼
X1
p¼1

�pðxÞqpðtÞ: ð34Þ

Here, �pðxÞ, p ¼ 1; . . . , is the series of modal shapes,

normally an orthonormal set over the problem domain.

qpðtÞ is the corresponding time-dependent amplitude. For

example, modal shapes resulting from fixed boundary

conditions in the case of the linear non-stiff string were

described in Sect. 2.1.2 are are illustrated in Fig. 21. Under

unforced conditions, the amplitudes qpðtÞ have the form of

pure sinusoids, as in (8).

Modal simulation methods result from the projection of

(34) onto the modal shapes �p, and the truncation to a finite

number (say M) of modes, in preparation for discrete time

simulation. Orthogonality of the modal shapes leads to an

uncoupled system of ordinary differential equations:

€qpðtÞ ¼ �!2
pqpðtÞ � 
pqpðtÞ þ fpðtÞ p ¼ 1; . . . ;M: ð35Þ

In the above, !p and 
p are the natural frequencies and the

decay constants of the pth mode. Finally, fp is a driving

term, resulting from the projection of a source distribution

onto the pth modal shape. The uncoupled second order

equations above are easily transferred to discrete time

through various numerical integration techniques.

This approach lends itself naturally to the efficient

simulation of mechanical vibrations, and thus to sound

synthesis via physics-based modelling. Modal synthesis

began in earnest in the 1990s, when frameworks such as

Mosaic [90] emerged. Due to their efficiency, as well as

ease of control over natural frequencies and damping,

modal methods gained some popularity, and early modal

synthesis software such as Modalys [91] is still being

developed today.

Modal methods are best suited to treat problems where

the modal shapes and frequencies are known analytically—

a small (but important) fraction of the typical systems

encountered in musical acoustics. Dynamic rendering and

control are also problematic, since each input/output

requires the storage of the corresponding array of modal

weights. Furthermore, extensions of modal methods to

nonlinear cases are difficult (see e.g. [46,92]), as is the

treatment of system with complex geometries or space-

variant parameters.

5.3. Time Domain Methods

Mainstream time-stepping methods, such as the finite

difference time domain method (FDTD) [93,94] sacrifice

the efficiency advantage of digital waveguides, but at the

same time allow for the simulation of much more general

string vibration problems, including all of the features

described in this article. The key distinction with regard

to a method such as modal synthesis, is that all operations

occur locally; there is no projection stage. This simplifies

the treatment of phenomena best modelled locally, such as

excitations, and also boundary conditions. Pioneering work

using FDTD was carried out by Ruiz [9], and Hiller and

Ruiz [10,11], and major advances were made by Chaigne

[14] and Chaigne and Askenfelt [15,16]. Many applications

to string vibration appear in [28].

As a simple example, consider the linear model of

string vibration with frequency-dependent loss, as in (18).

Suppose uðx; tÞ is approximated over a grid, at spatial

locations x ¼ lX, where integer l is the grid index, and X is

the grid spacing, in m, and at times t ¼ nT , where integer

n is the time index, and T is the time step, in s. A finite

difference scheme approximating (18) can be written in

terms of the grid function un½l�, as:

unþ1½l� ¼ a0u
n½l� þ a1ðun½lþ 1� þ un½l� 1�Þ ð36Þ

þ a2ðun½lþ 2� þ un½l� 2�Þ

þ b0u
n�1½l� þ b1ðun�1½lþ 1� þ un�1½l� 1�Þ:

Here, the constants a0, a1, a2, b1 and b2 may be written in

terms of the defining parameters for (18), as well as T

and X [32]. This is a two-step explicit finite difference

scheme, allowing the direct recursive calculation of the

grid function from previously computed values. Here,

unþ1½l� is computed in terms of neighbouring values of

the grid function at time steps n and n� 1 only. See

Fig. 22.

The major differences here with respect to digital

waveguides are first: generality—the FDTD scheme does

Fig. 21 First six modes for a fixed-fixed string.
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not rely on particular features of the solution (i.e., a

traveling wave decomposition) in order to operate, and

second: computational cost, which is significantly higher

for the FDTD scheme. In general, an FDTD method will be

slightly more computationally costly than a modal ap-

proach. Not discussed here is the major issue of ensuring

numerical stability for the scheme (36). In this case of a

linear system, Fourier techniques such as von Neumann

analysis [93] are available and lead, ultimately, to a lower

bound on the grid spacing X in terms of the time step T

(and, for the one-dimensional wave equation, to the famous

Courant-Friedrichs-Lewy condition X � cT [95]). For

systems involving nonlinearity, however, energy-based

techniques are necessary. See, e.g., [25,28,48].

6. CONCLUDING REMARKS

Models of musical vibration of a string can be viewed

as a series of successively more refined approximations—

much like a set of Russian dolls—with the one-dimensional

wave equation (1) at its core. Some of the more exotic

variants, such as those including distributed collision and

geometric nonlinearities, have only recently begun to see

serious scientific investigation, and there remains much to

learn. Beyond this, many important features of string

vibration have not been covered in this short review article.

In this article, the motion of a string has been restricted

to a single plane (perhaps including longitudinal motion, as

in Sect. 4.2). However, a full model of string vibration will

necessarily include the effects of precession of the plane of

vibration, often referred to as ‘‘whirling’’ [61,96,97]. Such

fully three-dimensional motion has seen very little research

from the point of view of musical acoustics. The torsional,

or twisting motion of the string has similarly not been

discussed here, but has seen some investigation in the

context of bowed string dynamics [98,99].

Furthermore, the string has only been studied in

isolation; in all musical instruments, there is necessarily a

coupling, through the string terminations, to a bridge

mechanism and an instrument body that is ultimately the

mechanism responsible for radiating sound. In some

numerical studies (of the guitar [38] and piano [25]), a

complete model has been successfully built, including

acoustic radiation into the 3D space surrounding the

instrument. In order to model coupling between the strings

and the instrument body, simple boundary conditions such

as (7) and (12) must be replaced by conditions allowing

the two-way transfer of energy between the string and

body. This coupling has been studied for many instrument

types. For the piano soundboard, the mechanism for sound

radiation, the connection gives rise to subtle phenomena

such as the coupling between strings for multiply-strung

notes, leading to ‘‘two-stage’’ decay [100]. From a

computational standpoint, in the setting of digital wave-

guides, measured bridge admittances and radiation char-

acteristics are often modeled through a consolidated filter

termination [84].
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