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Abstract
We prove the existence of a weak solution for boundary value problems driven by a
mixed local–nonlocal operator. The main novelty is that such an operator is allowed
to be nonpositive definite.
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1 Introduction

In this paper we are concerned with semilinear elliptic problems driven by a mixed
local–nonlocal operator of the form

Lαu := −�u + α(−�)su .

B Alberto Maione
alberto.maione@mathematik.uni-freiburg.de

Dimitri Mugnai
dimitri.mugnai@unitus.it

Eugenio Vecchi
eugenio.vecchi2@unibo.it

1 Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg,
Hermann-Herder-Strasse 10, 79104 Freiburg im Breisgau, Germany

2 Dipartimento di Scienze Ecologiche e Biologiche (DEB), Università degli Studi della Tuscia,
Largo dell’Università, 01100 Viterbo, Italy

3 Dipartimento di Matematica, ALMAMATER STUDIORUM - Università di Bologna, Piazza di Porta
San Donato 5, 40126 Bologna, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-023-00147-2&domain=pdf
http://orcid.org/0000-0003-1629-6670
http://orcid.org/0000-0001-8908-5220
http://orcid.org/0000-0002-6919-7564


944 A. Maione et al.

Here α ∈ R with no a priori restrictions, �u denotes the classical Laplace operator
while (−�)su, for fixed s ∈ (0, 1) is the fractional Laplacian, usually defined as

(−�)su(x) := C(n, s)P.V.
∫
Rn

u(x) − u(y)

|x − y|n+2s dy ,

where P.V. denotes the Cauchy principal value, that is

P.V.
∫
Rn

u(x) − u(y)

|x − y|n+2s dy

= lim
ε→0

∫
{y∈Rn : |y−x |≥ε}

u(x) − u(y)

|x − y|n+2s dy .

Clearly, when α = 0, one recovers the classical Laplacian, while, for α > 0, one is
led to consider a positive operator which can be considered as a particular instance of
an infinitesimal generator of a stochastic process involving a Brownian motion and a
pure jump Lévy process.

We briefly recall, focusing merely on the more recent (elliptic) PDEs oriented
literature, that problems driven by operators of mixed type, even with a nonsingular
nonlocal operator [19], have raised a certain interest in the last few years, for example
in connection with the study of optimal animal foraging strategies (see e.g. [23] and
the references therein). From the pure mathematical point of view, the superposition
of such operators generates a lack of scale invariance which may lead to unexpected
complications.

At the present stage, andwithout aim of completeness, the investigations have taken
into consideration interior regularity and maximum principles (see e.g. [2, 9, 14, 18,
26, 27]), boundary Harnack principle [16], boundary regularity and overdetermined
problems [10, 38], qualitative properties of solutions [3], existence of solutions and
asymptotics (see e.g. [6–8, 13, 17, 21, 22, 28, 35, 37]) and shape optimization problems
[4, 5, 29].

In this paper we deal with the following boundary value problem:

{Lαu = f (x, u) , in �

u = 0 , in Rn \ �
, (1.1)

where � ⊂ R
n , with n > 2, is an open and bounded set with C1-smooth boundary.

In particular, we consider two different sets of assumptions on the nonlinear term
f : � × R → R, which is always supposed to be a Carathéodory function: first,
we deal with the asymptotically linear case, and second with the superlinear and
subcritical case.

In the first setting, we assume that f has at most linear growth, according to the
following assumption: there exist a function a ∈ L2(�) and b ∈ R such that

| f (x, t)| ≤ a(x) + b|t | for all t ∈ R and for a.e. x ∈ � . (1.2)
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Variational methods for nonpositive... 945

In order to state our result, we also need the following measurable functions:

v(x) := lim inf|t |→+∞
f (x, t)

t
≤ lim sup

|t |→+∞
f (x, t)

t
=: v(x). (1.3)

A trivial example of such function f is given by f (x, t) = λt + a(x), where λ ∈ R

and a ∈ L2(�).
Instead, in the superlinear and subcritical case, we assume:

f (x, 0) = 0 for a.e. x ∈ � ; (i)

there exist a function a ∈ L∞(�)+, a number b ∈ R and r ∈ (2, 2∗) such that

| f (x, t)| ≤ a(x) + b|t |r−1 for all t ∈ R and for a.e. x ∈ � ; (ii)

there exist μ > 2, μ̃ > 2, R > 0, c > 0, A ∈ L∞(�) and d ∈ L1(�)+ such that

0 < μF(x, t) − μA(x)
t2

2
≤ f (x, t)t − A(x)t2 for all |t | ≥ R and for a.e. x ∈ �,

(iii)

F(x, t) ≥ c|t |μ̃ − d(x) for all t ∈ R and for a.e. x ∈ �,

where F(x, t) = ∫ t
0 f (x, σ ) dσ for any t ∈ R.

Here 2∗ denotes the classical Sobolev critical exponent, namely

2∗ = 2n

n − 2
.

A trivial example for f in this case is given by f (x, t) = λt + |t |p−2t , with λ ∈ R

and p ∈ (2, 2∗).

Remark 1 We remark that condition (i i i) means that f (x, t) − A(x)t satisfies the
Ambrosetti-Rabinowitz condition [1], where the growth from below is necessary, see
[33]. For the model just above we clearly have A = λ.

As for the asymptotically linear case, we need to introduce asymptotic functions,
which are now relevant as t → 0:

�(x) := lim inf
t→0

f (x, t)

t
≤ lim sup

t→0

f (x, t)

t
=: �(x) . (1.4)

Our aim is to prove the existence of weak solutions to problem (1.1) (see Section 2
for the precise definition). As partially expected, if α ≥ 0, our existence results (see
Theorem 1 and Theorem 2) are either known or applications of standard variational
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946 A. Maione et al.

methods (for instance, see [32] or [34] when α = 0, or [31] for the pure fractional
case). A similar behaviour happens to hold if we take

− 1

C
< α < 0 ,

where C > 0 is the constant of the continuous embedding H1
0 ⊂ Hs (see e.g. [20]),

i.e.

[u]2s :=
∫∫

R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy ≤ C

∫
�

|∇u|2 dx .

In this perspective, the probably more interesting case is for α ≤ − 1
C .

Indeed, the situation becomes suddenly more delicate, mainly because the local–
nonlocal operator is not more positive definite. As a consequence, the bilinear form
naturally associated to it does not induce a scalar product nor a norm, the variational
spectrum may exhibit negative eigenvalues and even the maximum principles may
fail, see e.g. [2].

Let {λk}k∈N be the sequence of eigenvalues of Lα , see Proposition 1 for details.
The main result in the asymptotically linear case states as follows.

Theorem 1 Assume that f satisfies (1.2) and that the limits in (1.3) are uniform in x.
If either

– v(x) < λ1 for a.e. x ∈ �, or
– there exists k ∈ N such that λk < v(x) ≤ v(x) < λk+1 for a.e. x ∈ �,

then problem (1.1) admits a weak solution.

Its counterpart in the superlinear and subcritical case states instead as follows.

Theorem 2 Assume f satisfies (i), (ii) and (iii) and that the limits in (1.4) are uniform
in x. If either

– �(x) < λ1 a.e. x ∈ � or
– there exists k ∈ N such that λk ≤ �(x) ≤ �(x) < λk+1 for a.e. x ∈ � and

F(x, t) ≥ λk
t2
2 for a.e. x ∈ � and for any t ∈ R , (1.5)

then problem (1.1) admits a weak solution.

We stress that, despite being slightly non-standard, the latter assumption (1.5) is
satisfied in the model case previously mentioned.

The paper is organized as follows: in Section 2 we collect all the assumptions and
preliminary results, including a description of the variational spectrum (Proposition 1).
In Section 3 we prove Theorem 1, while Theorem 2 is proved in Section 4.
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Variational methods for nonpositive... 947

2 Assumptions, notations and preliminary results

Let � ⊆ R
n , n > 2, be a connected and bounded open set with C1-smooth boundary

∂�. We define the space of solutions of problem (1.1) as

X(�) := {
u ∈ H1(Rn) : u ≡ 0 a.e. on Rn \ �

}
.

Thanks to the regularity assumption on ∂� (see [11, Proposition 9.18]), we can identify
the space X(�) with the space H1

0 (�) in the following sense:

u ∈ H1
0 (�) ⇐⇒ u · 1� ∈ X(�) , (2.1)

where 1� is the indicator function of �. From now on, we shall always identify a
function u ∈ H1

0 (�) with û := u · 1� ∈ X(�).
By the Poincaré inequality and (2.1), we get that the quantity

‖u‖X :=
(∫

�

|∇u|2 dx
)1/2

, u ∈ X(�) ,

endowsX(�)with a structure of (real) Hilbert space, which is isometric to H1
0 (�). To

fix the notation, we denote by 〈·, ·〉X the scalar product which induces the above norm
on X(�). We briefly recall that the space X(�) is separable and reflexive, C∞

0 (�) is
dense in X(�) and eventually that X(�) compactly embeds in L2(�) and in

Hs
0 (�) := {

Hs(Rn) : u ≡ 0 a.e. on R
n \ �

}

by [30, Theorem 16.1].

Definition 1 A function u ∈ X(�) is called a weak solution of (1.1) if

∫
�

〈∇u,∇ϕ〉 dx + α

∫∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dxdy =
∫

�

f (x, u)ϕ dx

for every ϕ ∈ X(�).

As usual, weak solutions of (1.1) can be found as critical points of the functional
J : X(�) → R defined as

J (u) := 1

2

∫
�

|∇u|2 dx + α

2

∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy −

∫
�

F(x, u) dx .

Here

F(x, t) :=
∫ t

0
f (x, σ ) dσ, t ∈ R.
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The functional J is Fréchet differentiable and

J ′(u)(ϕ) =
∫

�

〈∇u,∇ϕ〉 dx + α

∫∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dxdy

−
∫

�

f (x, u(x))ϕ(x) dx for every ϕ ∈ X(�) .

Definition 2 Consider the bilinear form Bα : X(�) × X(�) → R, defined by

Bα(u, v) :=
∫

�

〈∇u,∇v〉 dx + α

∫∫
R2n

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2s dxdy

for any u, v ∈ X(�). We say that u and v are B-orthogonal if

Bα(u, v) = 0.

The terminology adopted above is justified by the fact that, for α > 0, the bilinear
form Bα becomes a true scalar product.

We conclude this section dealing with the eigenvalue problem associated to the
operator Lα , that is the following boundary value problem

{Lαu = λu , in �

u = 0 , in Rn \ �
(2.2)

where λ ∈ R. According to Definition 1, we give the following definition.

Definition 3 A number λ ∈ R is called a (variational) eigenvalue of Lα if there exists
a weak solution u ∈ X(�) of (2.2) or, equivalently, if

∫
�

〈∇u,∇ϕ〉 dx + α

∫∫
R2n

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dxdy = λ

∫
�

uϕ dx

for every ϕ ∈ X(�). If such function u exists, we call it eigenfunction corresponding
to the eigenvalue λ.

The next result permits a complete description of the eigenvalues and related
eigenfunctions of Lα .

Proposition 1 The following statements hold true:

(a) Lα admits a divergent, but bounded from below, sequence of eigenvalues {λk}k∈N,
i.e., there exists C > 0 such that

−C < λ1 ≤ λ2 ≤ . . . ≤ λk → +∞ , as k → +∞.

Moreover, for every k ∈ N, λk can be characterized as

λk = min
u∈Pk‖u‖L2(�)

=1

{∫
�

|∇u|2 dx + α

∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy

}
, (2.3)
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Variational methods for nonpositive... 949

where

P1 := X(�),

and, for every k ≥ 2,

Pk := {
u ∈ X(�) : Bα(u, u j ) = 0 for every j = 1, . . . , k − 1

} ;

(b) for every k ∈ N there exists an eigenfunction uk ∈ X(�) corresponding to λk ,
which realizes the minimum in (2.3);

(c) the sequence {uk}k∈N of eigenfunctions constitutes an orthonormal basis of L2(�).
Moreover, the eigenfunctions are B-orthogonal;

(d) for every k ∈ N, λk has finite multiplicity.

Proof If α = 0 the result is the classical spectral theorem for the Laplace operator (see
e.g. [11]). As already mentioned in the Introduction, the case α > − 1

C (with C > 0
being the constant of the continuous embedding H1

0 ⊂ Hs) is also pretty standard.
Therefore, in what follows we assume α ≤ − 1

C .
By [12, Theorem 1], there exists a positive constant C such that

[u]2s ≤ C‖u‖2(1−s)
L2(�)

‖u‖2sH1(�)

for any u ∈ X(�). We remind that the optimal constant C can be explicitly computed
with the help of Fourier transform (see e.g. [15]).

We now combine the previous interpolation estimate with the Young inequality
(with exponents 1

s and
1

1−s ), i.e. for any ε ∈ R
+ there exist positive constants cε, c1, c2,

depending on s and ε, such that

|α|[u]2s ≤ |α|C
(
(1 − s)cε‖u‖2L2(�)

+ sε‖u‖2H1(�)

)

= |α|c1ε‖u‖2
X(�) + |α|c2‖u‖2L2(�)

for any u ∈ X(�). Therefore, by choosing ε = 1
2c1|α| , we get

|α|[u]2s ≤ 1

2
‖u‖2

X(�) + γ ‖u‖2L2(�)

for any u ∈ X(�), where γ only depends on s, ε and α, and so

Bα(u, u) + γ ‖u‖2L2(�)
≥ 1

2
‖u‖2

X(�) for any u ∈ X(�) . (2.4)

At this point, in a standard fashion (for instance, see [24, Chapter 6]) one can prove
the existence of an increasing sequence of eigenvalues {λk}k of Lα , with λk → ∞
as k → ∞, such that every λk has finite multiplicity and is given by the variational
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characterization in (2.3). Moreover, if ek is the eigenfunction associated to λk , we have
that {ek}k is an orthonormal basis of L2(�) with

Bα(ek, e j ) = λk(ek, e j )L2(�) = 0 for every j �= k ,

that is, ek and e j are also Bα-orthogonal. ��
By [25, Theorem 5.2.4] and Proposition 1 (a), we can also infer the existence of

a positive integer N0 ∈ N such that λN0 is the first (not necessarily simple) positive
eigenvalue. Of course, λk > 0 for every k > N0.

We further notice that

λk+1

∫
�

u2 dx ≤
∫

�

|∇u|2 dx + α

∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy (2.5)

for every u ∈ span(u1, . . . , uk)⊥ = Pk+1 and

∫
�

|∇u|2 dx + α

∫∫
R2n

|u(x) − u(y)|2
|x − y|n+2s dxdy ≤ λk

∫
�

u2 dx (2.6)

for every u ∈ span(u1, . . . , uk) =: Hk .
While (2.5) directly follows from the variational characterization (2.3), the latter

(2.6) can be proved as follows: by assumption, let u = ∑k
i=1 ci ui . Then,

Bα(u, u) = Bα(

k∑
i=1

ciui ,
k∑
j=1

c j u j ) =
k∑

i, j=1

ci c jBα(ui , u j ) =
k∑

i=1

c2i Bα(ui , ui )

=
k∑

i=1

c2i λi

∫
�

u2i dx ≤ λk

∫
�

u2 dx .

3 The asymptotically linear case

In this section we prove Theorem 1.

Proof of Theorem 1 Case 1: v(x) < λ1 for a.e. x ∈ �.
We claim that

lim inf‖u‖X→+∞
J (u)

‖u‖2
X

> 0 . (3.1)

Once this is established, we have that functionalJ is coercive and sequentially weakly
lower semicontinuous in X(�), since

– the map u �→ ‖u‖X is sequentially weakly l.s.c. in X(�) (being a norm);
– the map u �→ [u]s is continuous, because X(�) compactly embeds in Hs

0 (�);
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– the map u �→ ∫
�
F(x, u) dx is continuous by (1.2).

By the very definition of v, for every ε > 0 there exists R > 0 such that

f (x, σ ) < (v(x) + ε)σ for every |σ | > R . (3.2)

On the other hand, assumption (1.2) readily gives that

f (x, σ ) ≤ a(x) + bR for every |σ | ≤ R . (3.3)

Combining (3.2) with (3.3), we then get that

lim sup
|σ |→+∞

F(x, σ )

σ 2 ≤ v(x) + ε

2
for every ε > 0

and, passing to the limit as ε → 0+, we finally get that

lim sup
|σ |→+∞

F(x, σ )

σ 2 ≤ v(x)

2
. (3.4)

Let us now proceed with the proof of (3.1). We take a sequence {u j } j ⊂ X(�) such
that ‖u j‖X → +∞ as j → +∞ andwe define the normalized sequencew j := u j

‖u j‖X .
Then, possibly passing to a subsequence, we can assume the existence of a function
u0 ∈ X(�) such that w j → u0 weakly in X(�), strongly in L2(�) and a.e. in �.
Moreover, ‖u0‖X ≤ 1 and, by (1.2), it holds that

F(x, u j )

‖u j‖2X
≤ a(x)|u j | + b

|u j |2
2

‖u j‖2X
→ b

2
u20(x) in L1(�) .

Now, write

� = {
x ∈ � : u j (x) is bounded

} ∪ {
x ∈ � : |u j (x)| → +∞} =: �1 ∩ �2 .

Of course, if x ∈ �1, then

lim
j→+∞

F(x, u j )

‖u j‖2X
= 0 (3.5)

while, if x ∈ �2, thanks to (3.4), we get

lim sup
j→+∞

F(x, u j )

‖u j‖2X
= lim sup

j→+∞
F(x, u j )

u2j (x)

u2j (x)

‖u j‖2X
≤ v(x)

2
u20(x) . (3.6)
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By the generalized Fatou Lemma, combined with (3.5) and (3.6), we have that

lim sup
j→+∞

∫
�

F(x, u j )

‖u j‖2X
dx ≤

∫
�

lim sup
j→+∞

F(x, u j )

‖u j‖2X
dx ≤

∫
�

v(x)

2
u20(x) dx . (3.7)

On the other hand, by the definition of λ1, we have

1

‖u j‖2X

(
1

2

∫
�

|∇u j |2 dx + α

2

∫∫
R2n

|u j (x) − u j (y)|2
|x − y|n+2s dxdy

)

≥ λ1

2

∫
�

u2j (x)

‖u j‖2X
dx → λ1

2

∫
�

u20(x) dx , as j → +∞.

(3.8)

To prove the validity of (3.1), we have to consider two possible situations: either
u0 �= 0 or u0 = 0 a.e. in �. If the first happens to be true, then we combine (3.7) and
(3.8) with the standing assumption v < λ1 (a.e. in �), getting that

lim inf
j→+∞

J (u j )

‖u j‖2X
≥

∫
�

(
λ1

2
− v(x)

2

)
u20(x) dx > 0 .

On the contrary, if u0 = 0 a.e. in �, we notice that, by compactness,

1

‖u j‖2X

∫∫
R2n

|u j (x) − u j (y)|2
|x − y|n+2s dxdy → 0 , as j → +∞ ,

and therefore we have that

lim inf
j→+∞

J (u j )

‖u j‖2X
≥ 1

2
.

In any case, (3.1) holds and an application of theWeierstrass Theorem closes the proof
of Case 1.

Case 2: there exists k ∈ N such that λk < v(x) ≤ v(x) < λk+1 for a.e. x ∈ �.
Note that, reasoning as in the proof of (3.4) in Case 1, we have that

lim inf|σ |→+∞
F(x, σ )

σ 2 ≥ v(x)

2
for a.e. x ∈ � . (3.9)

Take a sequence {u j } j ⊂ Hk (recall its definition in (2.6)) such that ‖u j‖X → +∞
as j → +∞. Since Hk is finite dimensional, we can infer the existence of a function
u0 ∈ Hk , with ‖u0‖X = 1, and such that the normalized sequence

u j
‖u j‖X → u0

strongly in X(�), strongly in L2(�) and a.e. in �. Exploiting now (2.6), combined
with the standing assumption on λk and (3.9), we get

lim sup
j→+∞

J (u j )

‖u j‖2X
≤

∫
�

(
λk

2
− v(x)

2

)
u20(x) dx < 0 ,
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Variational methods for nonpositive... 953

which implies that

lim sup
u∈Hk , ‖u‖X→+∞

J (u)

‖u‖2
X

< 0 . (3.10)

Moreover, once again mimicking the argument adopted in Case 1, we have that

lim inf
u∈Pk+1, ‖u‖X→+∞

J (u)

‖u‖2
X

> 0 . (3.11)

It follows from (3.11) that for any positive constant M > 0, there exists a positive
constant R > 0 such that if u ∈ Pk+1 with ‖u‖X ≥ R, then J (u) ≥ M . On the other
hand, if u ∈ Pk+1 with ‖u‖X ≤ R, a direct application of (1.2), (2.5), Hölder’s and
Poincaré’s inequalities gives

J (u) ≥ λk+1

2
‖u‖2L2(�)

− ‖a‖L2(�)‖u‖L2(�) − b

2
‖u‖2L2(�)

≥ −C ,

where C = C(R,�, ‖a‖L2(�), b) > 0 is a positive constant. Therefore, we have that

J (u) ≥ M − C, for every u ∈ Pk+1.

On the other hand, by (3.10), we can choose a positive number T > 0 such that

sup
u∈Hk , ‖u‖X=T

J (u) < M − C .

It readily implies that

sup
u∈Hk , ‖u‖X=T

J (u) < M − C ≤ inf
u∈Pk+1

J (u) ,

which in turn proves the validity of the topological requirements to apply the Saddle
Point Theorem.

It now remains to show the validity of the Palais-Smale condition. Since the
space X(�) compactly embeds in L2(�), it is enough to prove that the Palais-Smale
sequences are bounded. Arguing by contradiction, assume that the sequence {u j } j is
unbounded, define the normalized sequence w j := u j

‖u j‖X and assume the existence
of u0 ∈ X(�) such that w j → u0 (up to subsequences) as j → +∞, weakly in
X(�), strongly in L2(�) and a.e. in �. Since {J ′(u j )} j is bounded, we can infer the
existence of a positive constant M > 0 such that

|J ′(u j )(ϕ)|
‖u j‖X =

∣∣∣∣Bα(w j , ϕ) −
∫

�

f (x, u j )

‖u j‖X ϕ dx

∣∣∣∣ ≤ M
‖ϕ‖X
‖u j‖X for any ϕ ∈ X(�) .

(3.12)
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Recalling the standing assumption (1.2) on f , we have that

| f (x, u j )|
‖u j‖X ≤ a(x)

‖u j‖X + b
|u j |

‖u j‖X , (3.13)

and we notice that the r.h.s. of (3.13) is bounded in L2(�). Therefore, there exists
β ∈ L2(�) such that (up to subsequences)

f (x, u j )

‖u j‖X weakly converges to β in L2(�) , as j → +∞ .

Claim A: there exists a measurable function m : � → R such that

(i) β(x) = m(x)u0(x) for a.e. x ∈ �;
(ii) v(x) ≤ m(x) ≤ v(x) for a.e. x ∈ �.

In order to prove the claim, we first notice that, if x ∈ � is such that u0(x) > 0,
then u j = w j‖u j‖X → +∞ and then, recalling (1.3),

lim inf
j→+∞

f (x, u j )

‖u j‖X = lim inf
j→+∞

f (x, u j )

u j

u j

‖u j‖X ≥ v(x)u0(x) ,

while

lim sup
j→+∞

f (x, u j )

‖u j‖X = lim sup
j→+∞

f (x, u j )

u j

u j

‖u j‖X ≤ v(x)u0(x) .

If x ∈ � is such that u0(x) < 0, both inequalities are reversed. Now, recall that, if
{v j } j weakly converges to v in L2(�), g j ≤ v j and g j converges to g strongly in
L2(�) and a.e. in �, then g ≤ v a.e. in �. In this way, setting

m(x) :=

⎧⎪⎨
⎪⎩

β(x)

u0(x)
, if u0(x) �= 0

v(x) + v(x)

2
, if u0(x) = 0

we complete the proof of (i i), and thus of Claim A, since, if u0(x) = 0, then from
(3.13) we have

| f (x, u j )|
‖u j‖X ≤ a(x)

‖u j‖X + b
|u j |

‖u j‖X → 0 , as j → +∞ .

Then, by passing to the limit in (3.12), we get

Bα(u0, ϕ) −
∫

�

m(x)u0(x)ϕ(x) dx = 0 for every ϕ ∈ X(�) . (3.14)
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Claim B: u0 = 0 a.e. in �. Since u0 ∈ X(�), we can write

u0 = u1 + u2, u1 ∈ Hk, u2 ∈ Pk+1.

Now, take ϕ = u1 and then ϕ = u2 in (3.14). Comparing, we get

Bα(u1, u1) −
∫

�

m(x)u21(x) dx = Bα(u2, u2) −
∫

�

m(x)u22(x) dx . (3.15)

Keeping in mind (2.5) and (2.6), from (3.15) we find

0 ≥
∫

�

(λk − m(x))u21(x) dx ≥ Bα(u1, u1) −
∫

�

m(x)u21(x) dx

= Bα(u2, u2) −
∫

�

m(x)u22(x) dx ≥
∫

�

(λk+1 − m(x))u22(x) dx ≥ 0 ,

but this is impossible unless u1 = u2 = 0 a.e. in �, and this proves Claim B.
We now test (3.12) with ϕ = w j , getting

∣∣∣∣∣1 + α
[u j ]2s
‖u j‖2X

−
∫

�

f (x, u j )

u j

u j

‖u j‖X

∣∣∣∣∣ ≤ M

‖u j‖X for every j ∈ N .

Passing to the limit as j → +∞ we finally reach the contradiction ”1=0" and this
closes the proof. ��

4 The superlinear and subcritical case

In this section we prove Theorem 2. We first need the following preliminary result
inspired by Rabinowitz [36].

Lemma 1 Let k ∈ N be such that

λk ≤ �(x) ≤ �(x) < λk+1 for a.e. x ∈ �,

and decompose the space X(�) as X(�) = Hk ⊕ Pk+1, where Hk :=
span(u1, . . . , uk). Then, there exists a positive constant β such that

Bα(u, u) −
∫

�

�(x)u2dx ≥ β‖u‖2
X(�) for any u ∈ Pk+1 (4.1)

or, equivalently,

inf
u∈Pk+1\{0}

{
1 + α[u]2s − ∫

�
�(x)u2dx

‖u‖2
X(�)

}
> 0 .
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Proof By contradiction, assume the existence of a sequence {un}n ⊂ Pk+1 \ {0}
satisfying

1 + α[un]2s − ∫
�

�(x)u2ndx

‖un‖2X(�)

≤ 0 for any n ∈ N

and denote vn = un‖un‖X(�)
for any n ∈ N. Then, the sequence {vn}n is bounded in Pk+1

and, by reflexivity, weakly convergent (up to subsequences) to v in Pk+1. Therefore,
up to a further subsequence, {vn}n strongly converges to v in L2(�) and in Hs(Rn),
and so

1 + α[vn]2s −
∫

�

�(x)v2ndx → 1 + α[v]2s −
∫

�

�(x)v2dx ≤ 0. (4.2)

Therefore, by (2.5) and (4.2),

0 ≤
∫

�

(λk+1 − �(x))v2dx ≤ Bα(v, v) −
∫

�

�(x)v2dx ≤ 0.

Since � < λk+1 a.e. in �, we get v = 0 and so, by (4.2)

1 = 1 + α[v]2s −
∫

�

�(x)v2dx ≤ 0 ,

which yields a contradiction. ��
Proof of Theorem 2 We decompose X(�) = Hk ⊕ Pk+1, and we show the existence
of �, α̃ > 0 such that

inf
u∈S�∩Pk+1

J (u) = α̃ .

We first we claim that for any ε > 0 there exists Cε > 0 such that

F(x, t) ≤ 1

2
(�(x) + ε)t2 + Cε|t |r a.e. x ∈ � and for all t ∈ R . (4.3)

Indeed, if we fix ε > 0, by (1.4), there exists δ = δ(ε) > 0 such that

F(x, t) ≤ 1

2
(�(x) + ε)t2 a.e. x ∈ � for all |t | ≤ δ . (4.4)

Moreover, by (ii)

F(x, t) ≤
∣∣∣∣
∫ t

0
(a(x) + b|σ |r−1) dσ

∣∣∣∣ ≤ a(x)|t | + b
|t |r
r

a.e. x ∈ � for all t ∈ R .

(4.5)
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Combining (4.4) (for |t | ≤ δ) and (4.5) (for |t | ≥ δ), we finally get

F(x, t) ≤ 1

2
(�(x) + ε)t2 + a(x)|t | |t |

r−1

|t |r−1 + b

r
|t |r

≤ 1

2
(�(x) + ε)t2 + (

a(x)

δr−1 + b

r
)|t |r

≤ 1

2
(�(x) + ε)t2 + Cε|t |r a.e. x ∈ � for all t ∈ R .

Notice that, by (4.3) and the Sobolev inequality, we also have

∫
�

F(x, u) dx ≤ 1

2

∫
�

(�(x) + ε)|u|2 dx + Cε

∫
�

|u|r dx

≤ 1

2

∫
�

(�(x) + ε)|u|2 dx + Cε‖u‖r
X

(4.6)

for any u ∈ X(�).
Now, take u ∈ Pk+1. Then, by (4.1), (4.6) and the Poincaré inequality

J (u) = 1

2
Bα(u, u) −

∫
�

F(x, u) dx

≥ 1

2
Bα(u, u) − 1

2

∫
�

(�(x) + ε)|u|2 dx − Cε‖u‖r
X

≥ 1

2
β‖u‖2

X
− ε

2
‖u‖2L2(�)

− Cε‖u‖r
X

≥
(
1

2
β − ε

2μ1
− Cε‖u‖r−2

X

)
‖u‖2

X
,

where μ1 denotes the first eigenvalue of −� in �. Now we choose ε and � > 0 so
small that

inf
u∈S�∩Pk+1

J (u) = α̃ > 0 .

To verify that J satisfies the geometric condition of the Linking theorem, we show
the existence of a radius ρ > � such that

sup
u∈∂Hk⊕span(uk+1)�

J (u) ≤ 0 ,

where � := (Bρ ∩ Hk) ⊕ {tuk+1 : t ∈ [0, ρ]}.
For this, first let us notice that J (u) ≤ 0 for any u ∈ Hk , as we easily get by

combining (2.6) with the assumption (1.5). Therefore,

sup
Hk

J = 0 .
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Moreover, notice that there exists a positive constant c1 (if α < 0, then c1 = 1) such
that

Bα(u, u) ≤ c1‖u‖2
X

for any u ∈ X(�). (4.7)

Now take t > 0 and u ∈ X1. Then, by (iii) and (4.7) we have

J (u + tuk+1) = 1

2
Bα(u + tuk+1, u + tuk+1) −

∫
�

F(x, u + tuk+1) dx

≤ c1t2

2
‖u
t

+ uk+1‖2X − ct μ̃‖u
t

+ uk+1‖μ̃

Lμ̃(�)
+ ‖d‖L1(�) → −∞

as t → ∞, having assumed μ̃ > 2.
In this way the geometric assumptions of the Linking Theorem are satisfied. Notice

that, letting k = 0, we recover the geometric situation of the Mountain Pass Theorem
when �(x) < λ1 a.e. x ∈ �.

We conclude by showing the validity of the Palais-Smale condition, that is, that
every Palais-Smale sequence, i.e. every sequence {u j } j in X(�) such that {J (u j )} j
is bounded and J ′(u j ) → 0 in X(�)−1 as j → ∞, has a strongly converging
subsequence in X(�).

So, let {u j } j ⊂ X(�) be a Palais-Smale sequence. We first prove that {u j } j is
bounded in X(�).

Assume, by contradiction, that {u j } j is unbounded in X(�). Then, there exists
u ∈ X(�) such that (up to subsequences)

u j

‖u j‖X → u weakly in X(�) and strongly in Hs
0 (�), in Lμ̃(�) and a.e. in �.

Now, take η ∈ (2, μ). Then, by (i i) and (i i i), there exists a positive constant DR such
that

0 ← ηJ (u j ) − J ′(u j )u j

‖u j‖2X
=

(η

2
− 1

) Bα(u j , u j )

‖u j‖2X
+

∫
{|u j |>R}( f (x, u j )u j ± A(x)u2j − ηF(x, u j ))dx

‖u j‖2X
−

∫
{|u j |≤R}(ηF(x, u j ) − f (x, u j )u j )dx

‖u j‖2X
≥

(η

2
− 1

) (
1 + α

[u j ]2s
‖u j‖2X

)
+ (μ − η)

‖u j‖2X

∫
�

F(x, u j ) dx

+
(
1 − μ

2

) ∫
�
Au2j dx

‖u j‖2X
− DR

‖u j‖2X
.

(4.8)
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By Young’s inequality, for every ε > 0, there exists a constant D̃ > 0 such that

∣∣∣
(
1 − μ

2

)∣∣∣ ‖A‖L∞(�)‖u j‖2L2(�)
≤ ε

∫
�

|u j |μ̃dx + D̃. (4.9)

By (4.8), (4.9) and (i i i) we get

0 ← ηJ (u j ) − J ′(u j )u j

‖u j‖2X
≥

(η

2
− 1

) (
1 + α

[u j ]2s
‖u j‖2X

)

+ [(μ − η)c − ε]
∫

�

|u j |μ̃
‖u j‖2X

dx + o(1) ,

(4.10)

where o(1) → 0 as j → ∞. Choosing ε < (μ − η)c, we immediately get that

1 + α[u]2s ≤ 0,

so that u �= 0 if α < 0, while it is already a contradiction if α ≥ 0. On the other hand,
if in (4.10) we divide by ‖u j‖μ̃−2

X
and pass to the limit, we get u = 0, which yields a

contradiction.
Thus, {u j } j ⊂ X(�) is bounded inX(�) and, by reflexivity and Rellich’s theorem,

there exists u ∈ X(�) such that (up to subsequences)

u j → u weakly in X(�) and strongly in Hs
0 (�), in L p(�) (p < 2∗) and a.e. in �.

Now, it is standard to prove that u j → u strongly in X(�).
Hence the Mountain Pass Theorem (if �(x) < λ1) or the Linking Theorem can be

applied and Theorem 2 holds. ��
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