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Reconstruction methods and the amplification of the inflationary spectrum

Leonardo Chataignier,∗ Alexander Yu. Kamenshchik,† Alessandro Tronconi,‡ and Giovanni Venturi§

Dipartimento di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
I.N.F.N., Sezione di Bologna, I.S. FLAG, viale B. Pichat 6/2, 40127 Bologna, Italy

We analyze the consequences of different evolutions of the Hubble parameter on the spectrum
of scalar inflationary perturbations. The analysis is restricted to inflationary phases described by
a transient evolution, when uncommon features arise in the inflationary spectra that may lead to
an amplitude enhancement. We then discuss how the spectrum is, respectively, amplified or blue-
tilted in the presence or absence of a growing solution of the Mukhanov-Sasaki equation. The cases
of general relativity with a minimally coupled inflaton and that of induced gravity are considered
explicitly. Finally, some remarks on constant roll inflation are discussed.

I. INTRODUCTION

The possibility that a large amount of the dark matter (DM) content in our Universe is made of (primordial) black
holes (PBHs) has been seriously considered in the past few years [1]. This idea seems compelling because it could
improve our understanding of cosmological evolution and, in particular, of inflation [2]. Moreover, the PBH hypothesis
is also intriguing due to the increasing amount of direct and indirect observations of black holes (BHs) out of the
astrophysical range, as well as the current lack of evidence for particle models of DM that go beyond the Standard
Model of particle physics.

According to the present observational bounds [3], it is possible that even the whole DM content of the Universe
today is composed of PBHs originated from the collapse of matter overdensities in a certain wavelength interval
of inflationary perturbations. In this scenario, the abundance of PBHs is related to the amplitude of the inflaton
fluctuations, the enhancement of which must be by several orders of magnitude with respect to (w.r.t.) the amplitude
probed by cosmic microwave background (CMB) radiation. Nonetheless, the microscopic physics that originate such
a mechanism of amplification is still debated. For example, the amplification needed can be generated by a phase
of ultraslow roll (USR) inflation in the presence of an inflection point of the inflaton potential [4]. This USR phase
is the consequence of a transient period of inflatonary evolution, when slow-roll conditions are violated, and the
inflaton then relaxes toward a de Sitter attractor. In contrast to the case of the fluctuations imprinted in the CMB,
the perturbations [5] do not freeze at horizon exit in this case, as a growing solution of the Mukhanov-Sasaki (MS)
equation is present, and it is responsible for the amplification of the modes. Other possibilities have been considered
in the literature, such as an inflationary model able to generate a blue-tilted spectrum without the presence of the
growing solution [6, 7].

In this article, these two mechanisms of amplification are considered. Instead of analyzing the possible consequences
of different inflationary models obtained by varying the form of the inflaton-gravity action, we shall here consider
different evolutions of the Hubble parameter and correspondingly obtain the inflaton action. Within this approach,
even if the inflaton potential cannot be exactly reconstructed, the features of the resulting spectra can still be
calculated, and one may verify whether their amplitude is amplified. For simplicity, our starting point is the case
of a minimally coupled inflaton, then some nonminimally coupled models are also investigated. Moreover, different
techniques for the reconstruction are adopted.

The article is organized as follows. In Sec. II, we review the general formalism of the dynamics of the inflationary
perturbations adopting a slightly unconventional formalism, and we derive the conditions for the existence of a growing
solution in the MS equation or simply a blue-tilted spectrum in the absence of this solution. Furthermore, a useful
relation between the odd and even slow-roll (SR) parameters in a certain hierarchy is obtained. This relation is valid
for transient periods described by a certain time evolution, and it will be employed across the entire article. In Sec.
III, different models are analyzed, and the procedure for reconstruction is illustrated. In Sec. IV, the application of
the formalism to constant roll inflation is studied. Finally, the conclusions are drawn in Sec. V.
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II. INFLATIONARY PERTURBATIONS

Let us first review the formalism of the inflationary perturbations. On adopting a slightly unconventional approach,
we find the conditions that must hold in order to have an amplification of the inflationary spectrum either as the wave
number k grows or as time evolves. In a realistic inflationary scenario, wherein amplification starts at some given time,
both mechanisms essentially lead to an enhancement of the shortest wavelength part of the spectrum (k > kCMB). The
conditions are then expressed in a model-independent form, which is valid provided the SR parameters are “constant”,
and we use it in what follows to discuss different scenarios.

In general, after some manipulations, the MS equation takes the following form

v′′k +

(

k2 − z′′

z

)

vk = 0 , (1)

where the prime denotes the derivative w.r.t. conformal time η and z is a time-dependent function that depends on
the specific model of inflation. For example, in the case of general relativity (GR) with a minimally coupled inflaton,
one has z = a

√
ǫ1, which leads to (see, e.g., [8])

z′′

z
= a2H2

[

2− ǫ1 + ǫ2

(

3

2
+

ǫ2
4

− ǫ1
2

+
ǫ3
2

)]

≡ a2H2fMS(ǫi) , (2)

with ǫ1 = −Ḣ/H2, ǫi+1 = ǫ−1
i dǫi/dN for i > 0 and N = ln a. The infinite set of ǫi’s form the so-called hierarchy of

“Hubble flow functions” of SR parameters. It is important to note that, depending on the model of inflation, other
hierarchies are commonly used, and they are associated with the evolution of different (homogeneous) degrees of
freedom.

In general, one has

z′′

z
≡ a2H2fMS , (3)

where fMS is a dimensionless quantity that takes a different form depending on the inflationary model. It can then
be expressed as a function of the SR parameters ǫi’s.

It is now convenient to define the new independent variable ξ = k/(aH), where dξ/dη = −aH(1− ǫ1)ξ < 0 during
inflation. Due to

d

dη
= −aH(1− ǫ1)ξ

d

dξ
(4)

and

d2

dη2
= a2H2(1− ǫ1)

2

[

ξ2
d2

dξ2
+

ǫ1ǫ2
(1− ǫ1)2

ξ
d

dξ

]

, (5)

we are led to
[

ξ2
d2vk
dξ2

+
ǫ1ǫ2

(1 − ǫ1)2
ξ
dvk
dξ

]

+
ξ2 − fMS(ǫi)

(1− ǫ1)2
vk = 0 . (6)

On rewriting the MS equation in terms of ξ one eliminates its explicit dependence on aH .
In the regime where the SR parameters are constant and in the long wavelength limit (ξ → 0), Eq. (6) can be

algebraically solved and the features of the primordial spectra can be derived in a straightforward manner. Indeed,
in this limit, the two independent solutions of Eq. (6) have the form vk = ξα, where α satisfies the algebraic equation

α2 +

[

ǫ1ǫ2
(1− ǫ1)2

− 1

]

α− fMS(ǫi)

(1 − ǫ1)2
= 0 , (7)

with

α1,2 =
−
[

ǫ1ǫ2
(1−ǫ1)2

− 1
]

±
√

[

ǫ1ǫ2
(1−ǫ1)2

− 1
]2

+ 4 fMS(ǫi)
(1−ǫ1)2

2
. (8)
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For instance, when fMS is defined by Eq. (2), and in the pure de Sitter case (ǫi = 0), we obtain

α1,2 =
1± 3

2
. (9)

For this case, the positive solution, α1 = 2, decreases in time, while the negative solution, α2 = −1, increases, and it
remains nontrivial in the limit ξ → 0, which leads to

vk,dS ∼ k−1/2

(

k

aH

)−1

, Rk,dS ∼ k−3/2 aH

z
= k−3/2H , (10)

where Rk ≡ vk/z is the curvature perturbation (z = a in the de Sitter case), and the prefactor k−1/2 is essentially
fixed by the initial (Bunch-Davies) conditions. The quantity Rk is independent of time, and the spectral index can
be straightforwardly computed to be

ns − 1 =
d ln∆2

s

d ln k
, (11)

with ∆2
s ≡ |Rk,dS|2k3/(2π2), which leads to the well-known de Sitter result (ns − 1)dS = 0.

In the SR case (|ǫi| ≪ 1), the SR parameters can be approximated by constants and the expressions (8) are still
valid but must be expanded to first order for consistency. One then obtains

α1,2 =
1±

√
9 + 12ǫ1 + 6ǫ2

2
≃ 1± (3 + 2ǫ1 + ǫ2)

2
, (12)

which implies (ns − 1)SR = −2ǫ1 − ǫ2.
We note that there is a caveat one must take into account for USR. In this case, one finds the same solutions for

the α’s as the de Sitter case, but the definition of the curvature perturbations is different, since zUSR ∝ a
√
ǫ1 → 0.

Then, the amplitude of primordial curvature perturbations depends on time and is amplified. In the USR case, the
spectral index cannot be calculated analytically with the same procedure as illustrated for de Sitter and SR.

One can better illustrate the differences among the three cases just mentioned by solving the equation for Rk,

R′′
k + 2

z′

z
Rk + k2Rk = 0 . (13)

In terms of ξ, Eq. (13) can be conveniently rewritten as

ξ2
d2Rk

dξ2
+

[

ǫ1ǫ2 − 2 (1− ǫ1)
d ln z
dN

(1− ǫ1)
2

]

ξ
dRk

dξ
+

ξ2

(1− ǫ1)
2Rk = 0 . (14)

In GR with a minimally coupled inflaton, we have d ln z/dN = 1 + ǫ2/2. Then, for constant SR parameters and in
the long wavelength limit, the last term is negligible, and the equation admits a constant solution and a solution
proportional to ξβ , where

β =
3− 4ǫ1 + ǫ2 + ǫ1 (ǫ1 − 2ǫ2)

(1− ǫ1)
2 . (15)

If ξβ decreases in time, the constant solution dominates in the ξ → 0 limit. This is what happens for de Sitter and
SR. In contrast, if ξβ increases in time, it dominates in the ξ → 0 limit. This is what occurs for USR leading to
results that are very different from de Sitter and SR, namely, an amplitude of the spectrum that increases in time.
The nonconstant solution is

Rk ∝
(

k

aH

)β

∼ e−β(1−ǫ1)N , (16)

and it increases or decreases depending on the sign of

Φ ≡ β (1− ǫ1) =
3− 4ǫ1 + ǫ2 + ǫ1 (ǫ1 − 2ǫ2)

(1− ǫ1)
, (17)
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increasing if Φ < 0 and decreasing if Φ > 0. Only in the latter case can the spectral index of the primordial spectrum
be analytically calculated by using the definition (11). For a general inflationary model, one finds

∆2
s ∝ k2+2α2 = k

2−
[

ǫ1ǫ2
(1−ǫ1)2

−1
]

−
√

[

ǫ1ǫ2
(1−ǫ1)2

−1
]2

+4
fMS(ǫi)

(1−ǫ1)2 , (18)

and

ns − 1 = 2−
[

ǫ1ǫ2
(1− ǫ1)2

− 1

]

−

√

[

ǫ1ǫ2
(1− ǫ1)2

− 1

]2

+ 4
fMS(ǫi)

(1− ǫ1)2
. (19)

A. Evolutions with “constant” SR parameters

Let us now illustrate an important point. The results obtained above are exact when the SR parameters are
constant. However, given the recursive definition of the SR parameters (ǫi+1 = ǫ−1

i dǫi/dN), a constant set of ǫi’s
corresponds to either H = const and ǫi = 0 (de Sitter case) or ǫ1 = const and ǫi = 0 for i > 1 (power law inflation). It
may thus seem redundant to present the general formalism for such a restricted range of applications. Nevertheless,
we note that the above results can be applied to a wider set of problems. First, as we already mentioned, the general
results for Φ and ns − 1 can be applied to the SR case, in which the expressions must be expanded to the first order
for consistency, since the SR parameters are approximately constant when they are small. Furthermore, the large a
limit of some transient phase (such as the USR phase) leads to nontrivial sequences of “constant” SR parameters. In
these cases, one obtains a hierarchy of, for example, ǫi’s with constant, nonzero SR parameters for either even or odd

values of i, while the remaining SR parameters are zero. For instance, let ǫi
N→∞
= li+Li(N) with limN→∞ Li(N) = 0.

Then, due to their recursive definition, one obtains

ǫiǫi+1 ≡ dǫi
dN

a→∞
= Li,N (N) , (20)

which leads to limN→∞ ǫi+1 = 0, provided limN→∞ Li,N(N) = 0, and, in particular,

ǫi+1
N→∞
=

Li,N(N)

li + Li(N)
. (21)

Moreover,

ǫi+2 ≡ dǫi+1/dN

ǫi+1

N→∞
=

Li,NN (N)

Li,N (N)
+ ǫi+1 . (22)

Let us now suppose Li(N) ∝ e−γN ∼ a−γ , with γ > 0. In this case

ǫi+2
N→∞
= −γ + ǫi+1 , (23)

and the subsequent terms of the hierarchy take values equal to zero and −γ:

lim
N→∞

ǫi = li, lim
N→∞

ǫi+1+2n = 0, lim
N→∞

ǫi+2n = −γ . (24)

Therefore, because of their definition, an infinite sequence of SR parameters may take alternate “constant” values in
the large a limit. This property is crucial in the analysis that follows, and it depends on the form of Li(N). Indeed,
exponential forms lead to the result (24) but, in contrast, if Li ∝ N−γ , then the sequence obtained is limN→∞ ǫj = 0
for j > i.

It is also worthwhile to mention that similar results can be generalized to other hierarchies of SR parameters because
they only depend on the recursive definition of the SR parameters [analogously to Eq. (20)] and on the form of Li.
For example, the same results can be extended to the hierarchy of “scalar field flow functions” that is defined by
δ0 = φ/φ0 and δiδi+1 = dδi/dN . In general, the ǫi’s and the δi’s are related through the homogeneous Friedmann
and Klein-Gordon equations, and, in some scenarios, it is useful to use one or both hierarchies.
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III. MODEL RECONSTRUCTION

We are interested in reconstructing scalar field potentials that describe transient inflationary solutions, which are
associated with varying SR parameters with a “constant” behavior in the future (and necessarily ǫ1 < 1). Therefore,
the results illustrated in the previous section can be adopted to study such models and to verify whether they can
generate an amplification of the primordial spectrum. Finding the entire evolution of the scalar field is not necessary
for this purpose, and we will only calculate the potential and the asymptotic behavior of the homogeneous quantities
in terms of the corresponding SR parameters. The potentials that lead to an amplification can then be used to build
an inflationary model that fits the CMB observations and which produces a large amount of DM in the form of PBHs
at the end of inflation.

A. GR with a minimally coupled inflaton

To proceed with the reconstruction, let us first briefly review the homogeneous Einstein equation,

H2 =
1

3MP
2

(

1

2
φ̇2 + V (φ)

)

, (25)

Ḣ = − φ̇2

2MP
2 , (26)

which leads to

MP
2H2 (3− ǫ1) = V . (27)

This last equation can be used to reconstruct the potential. Equations (26) and (27) can be conveniently used for the
reconstructions starting from some ansatz for H = H(a). In this case, Eq. (26) becomes

ǫ1 =
1

2MP
2

(

dφ

d ln a

)2

, (28)

which can be integrated to obtain, when possible, a = a(φ).
Let us first consider the following evolution of the Hubble constant:

H = H0

(

α+
A

an

)m

, (29)

where A,α, n > 0. Similar to USR, the evolution described by Eq. (29) has a de Sitter attractor in the future, and,
indeed, H(a) is that of USR when n = 6 and m = 1/2. (It is interesting to note that this evolution represents a
general solution in the model with a minimally coupled scalar field and a constant potential, or, in other words, in
a universe driven by a mixture of two fluids: a cosmological constant and stiff matter. It is curious that n = 6 and
m = 1/4 yield the general solution for the universe driven by the Chaplygin gas [9].) We also note that the transient
is described by A/an ∼ e−nN and that a result similar to Eq. (24) is then expected. This is easily verified if we
explicitly calculate the hierarchy of SR parameters:

ǫ1 = m · n A

αan +A
= mǫ3 = mǫ5 = . . .

a→+∞−→ 0 (30)

and

ǫ2 = −n
αan

αan +A
= ǫ4 = ǫ6 = . . .

a→+∞−→ −n , (31)

where a > [(m · n− 1)A/α]
1/n

is necessary for inflation to occur. We can integrate and invert Eq. (28) to obtain

exp

(

φ− φ0

MP

√

n

2m

)

=
x+ 1

x− 1

x0 − 1

x0 + 1
, (32)
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with x ≡ A−1/2
√
αan +A and x, x0 > 1. Notice that φ = φ0 when x = x0. Conversely, φ = φ∞, with

φ∞ ≡ φ0 +MP

√

2m

n
lnB0 , (33)

for x → ∞. Equation (32) can be solved for x, which yields

x =
e

φ−φ0
MP

√
n

2m +B0

e
φ−φ0
MP

√
n

2m −B0

, (34)

where B0 = (x0 − 1)/(x0 + 1), and the reconstructed potential is finally

V = H2
0

(

αx2

x2 − 1

)2m
(

3− n ·m
x2

)

. (35)

For n = 6 and m = 1/2, one recovers a constant potential and the USR evolution, as expected. For other choices of
the parameters n and m, the expression for the potential in terms of φ is a complicated function with exponentials
that need not be written here explicitly. However, this cumbersome expression is exact. Since the asymptotic behavior
of the potential at φ ∼ φ∞ determines the limiting values of the SR parameters, we simply give the form of V around
φ∞, which is

V ≃ 3H2
0α

2m

[

1 +
n

4

(

1− n

2

)

(

φ− φ∞
MP

)2
]

. (36)

Finally, let us calculate the consequences of the background evolution given by Eq. (29) on the inflationary spectrum.
The value of Φ is

Φ =
3− 4ǫ1 + ǫ2 + ǫ1 (ǫ1 − 2ǫ2)

(1− ǫ1)

a→+∞−→ 3− n , (37)

and for n > 3 the curvature perturbations Rk are amplified, after their horizon exit, as time passes. In contrast, if
0 < n < 3, from the constant solution for Rk, one finds

ns − 1 = n > 0 , (38)

which implies the amplitude is that of a blue-tilted spectrum, which grows as the wave number k increases. We
conclude that for GR with a minimally coupled inflaton, the inflationary evolution described by Eq. (29), with a
transient phase and a de Sitter attractor in the future, leads to an inflationary enhancement. The corresponding
inflaton dynamics is driven by the potential (35), and similar behaviors can be obtained from potentials of the form
(36) with the field close to φ∞.

B. Power law solutions

In this section, we generalize the results obtained from Eq. (29) and study the transient phase with a power law
inflation attractor. For this case, in contrast to de Sitter, it is only possible to reconstruct the inflaton potential
exactly for particular choices of the parameters. Close to the attractor, an approximate reconstruction can always
be obtained, and that is enough for the purposes of model building. The amplification of the primordial spectrum
can still be studied in full generality, as it depends on the asymptotic values of the SR parameters, which can be
calculated exactly. In this case, and in the large a limit, one obtains

ǫ1 → const + L(a) , (39)

with L(a) → 0. In analogy to the previous case, we consider

ǫ1 =

(

β +
B

an

)m

→ βm , (40)

with β,B, n > 0 and βm < 1 (so as to have acceleration close to the attractor). Notice that, when β = 0, one finds
a transient phase with a de Sitter attractor, but ǫ1 in Eq. (40) is different from that in the set (30). This case is
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expected to generate a hierarchy of the form (24) in the large a limit. Indeed, the ansatz (40) leads to the following
hierarchy of SR parameters:

ǫ2 = −mǫ4 = −mǫ6 = · · · = − nmB

B + β an
→ 0 (41)

and

ǫ3 = ǫ5 = · · · = − nβan

B + β an
→ −n , (42)

where, in contrast to the de Sitter case examined in the previous section, now the even SR parameters tend to zero.
By proceeding with reconstruction and integrating Eqs. (40) and (28), one finds, respectively,

H = H0 exp

[

−
(

β + B
an

)1+m

(1 +m)nβ
2F1

(

1, 1 +m, 2 +m, 1 +
B

βan

)

]

(43)

and

φ− φ0 = f(a)− f(a0) , (44)

where

f(a) =
2
√
2MP

(

β + B
an

)

2+m
2

2F1

(

1, 1 + m
2 , 2 +

m
2 , 1 +

B
βan

)

(2 +m)nβ
. (45)

In this case, the exact reconstruction of the potential is rather complicated unless one adopts simplifying assumptions.
For example, let m = −1 and 0 < β < 1. Then,

H =
H0

[n (B + βan)]
1

nβ

(46)

and

φ− φ0 = MP

ln

(

1+
√

ǫ1(a)
β

1−
√

ǫ1(a)
β

1−
√

ǫ1(a0)
β

1+
√

ǫ1(a0)
β

)

n
√
β

. (47)

In the a → ∞ limit, one obtains

φ∞ = φ0 +MP

ln
(

β+1
β−1A0

)

n
√
β

, (48)

with A0 ≡
(

1−
√

ǫ1(a0)/β
)

/
(

1 +
√

ǫ1(a0)/β
)

. The relation (47) can be inverted to obtain an = an(φ):

an = an0

[(

1−
√

ǫ1(a0)
β

)

+

(

1 +
√

ǫ1(a0)
β

)

en
√
β(φ−φ0)/MP

]2

4en
√
β(φ−φ0)/MP

, (49)

and finally the potential can be reconstructed, provided we substitute Eq. (49) into Eq. (27). In terms of an, it then
takes the following form:

V =
H2

0

[n (B + βan)]
2

nβ

[

3−
(

β +
B

an

)m]

. (50)

The expression in terms of φ is cumbersome and it will not be needed. It is also worthwhile to note that such a
potential depends on the homogeneous inflaton through the exponential function exp

(

n
√
βφ/MP

)

. This functional
dependence is expected as it is the generalization of the standard power law inflation potential, which contains only one
exponential function of the inflaton. Moreover, various approximate reconstruction methods can be used to obtain the
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shape of the potential close to the attractor, but we omit this discussion here. Whereas the exact reconstruction can
be obtained for certain values of the parameters, the behavior of the resulting inflationary spectra can be calculated
exactly from Eqs. (41) and (42). For generic values of m, one may compute

Φ =
β2m − 4βm + 3

(1− βm)
= 3− βm > 0 . (51)

This shows the absence of the growing solution for Eq. (13). The spectral index is then simply given by

ns − 1 = − 2βm

1− βm
< 0 . (52)

This is the same result as the one obtained for the power law attractor solution. In contrast to the de Sitter case, the
resulting primordial spectrum, if evaluated on the trajectory that approaches the attractor (and close to it), coincides
with the spectrum calculated on the attractor itself, and no amplification or peculiar features emerge. It is also
noteworthy that this result is not restricted to the evolution given by Eq. (40), as it only depends on the limits (41)
and (42), which are not particular to Eq. (40). For instance, starting from the ansatz

H(a) = H0

(a0
a

)βm (

1 +
A0

an

)m

, (53)

where n,A0 > 0, the resulting spectra are the same.
The observed absence of amplification in the cases of power law inflation considered here is relevant because power

law is the exactly solvable inflationary model that is most akin to SR. One may then conjecture that similar results
(and, in particular, the lack of amplification) hold for SR inflation when the inflaton approaches the attractor solution,
and the enhancement is a peculiarity of de Sitter.

C. Nonminimally coupled inflaton

Let us now consider the different scenario of a nonminimally coupled inflaton. In order to perform the reconstruction,
we first review the basic homogeneous equations for this model:

H2 =
1

3F (φ)

(

φ̇2

2
+ V − 3HF,φφ̇

)

(54)

and

Ḣ = − 1

2F (φ)

[

(1 + F,φφ) φ̇
2 + F,φ

(

φ̈−Hφ̇
)]

, (55)

where F (φ) represents a general nonminimal coupling and F = MP reproduces the minimally coupled case. In contrast
to the previous cases, the homogeneous equations and the reconstruction procedure now become more involved. Then,
for simplicity, we shall henceforth limit our study to the induced gravity (IG) case, where F (φ) = ξφ2 [10, 11]. This
simplifying choice is also justified by the fact that both Higgs inflation and Starobinsky inflation (in the Einstein
frame) occur in a regime that is very close to pure IG.

Reconstructing the inflaton potential for a given H(a) is not as straightforward as for GR with a minimally coupled
inflaton, and we found exact potentials only for certain values of the parameters and for the de Sitter attractor case
[cf. Eq. (29)]. Nevertheless, we can still predict the shape of the inflationary spectra or, at least, the possibility of an
amplification in the large a limit.

D. De Sitter limit

Let us consider H(a) given by Eq. (29). In IG, the following exact relations hold between some SR parameters:

ǫ1 =
δ1

1 + δ1

(

δ1
2ξ

+ 2δ1 + δ2 − 1

)

, (56)
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ǫ1 =
1

2ξ(1 + 6ξ)

[

(1 + 2ξ)δ21 − 8ξδ1 − 6ξ2
(

1 + 2δ1 −
δ21
6ξ

)(

d lnV

d lnφ
− 4

)]

. (57)

Before discussing the reconstruction of the inflaton potential, we must first calculate the asymptotic values of the SR
parameters, which are pivotal in the analysis of the amplification of the spectrum. From Eq. (54), the potential can
then be obtained as

V = 3ξφ2H2

(

1 + 2δ1 −
1

6ξ
δ21

)

, (58)

provided H = H(φ) and δ1 = δ1(φ) are known [indeed, Eq. (58) is the IG counterpart of Eq. (27) in GR].
Let us first calculate the SR parameters in the large a limit. Since lima→∞ ǫ1 = 0, one has either lima→∞ δ1 = 0

and lima→∞ δ2 6= 0, or lima→∞ δ2 = 0 and lima→∞ δ1 6= 0 but satisfying the relation

δ1,∞ =
2ξ

1 + 4ξ
. (59)

These results follow from the functional dependence of H(a) on a inherited by ǫ1 and δi’s and by the general result
given in Eq. (24), which is applied here to the SR hierarchy δi. Notice that, in contrast to GR, two different de Sitter
trajectories are present in IG, and they are associated with two different evolutions of the inflaton field. Using Eq.
(57) in the same limit for a, one obtains that the potential, on the attractor, must satisfy

d lnV∞
d lnφ

− 4 = 0 ⇒ V∞ ∝ φ4 (60)

in the former case and

d lnV∞
d lnφ

− 4 = 0 ⇒ V∞ ∝ φ2 (61)

in the latter case.
We can now proceed to evaluate the full hierarchy of δi’s. Starting from Eq. (56) and differentiating, we find

ǫ2 =
δ2
[

(1 + 4ξ)δ21 + 2ξ (δ2 + δ3 − 1) + 2δ1 (1 + 4ξ + ξδ3)
]

(1 + δ1) [(1 + 4ξ)δ1 + 2ξ(δ2 − 1)]
, (62)

and, by further differentiating, the ǫi’s with arbitrary large i can be obtained. In the large-a limit, we have already
calculated ǫ2i = −n and ǫ2i+1 = 0 [cf. Eqs. (30) and (31)], and one then obtains two possible hierarchies for the δi’s:

δ2i+1,∞ = 0, δ2i,∞ = ǫ2,∞ = −n , (63)

and

δ1,∞ =
2ξ

1 + 4ξ
, δ2i+1,∞ = −n, δ2i,∞ = 0 . (64)

This latter statement cannot be simply verified by substitution because the limits involved do not commute. For
example, on substituting first δ2 = 0 in Eq. (62), one obtains ǫ2 = 0, which is not correct. One must solve (at least
perturbatively in the large-a limit) Eq. (56) and then evaluate the limits with the help of the solution found. The
above results are correctly reproduced only if we proceed in this manner.

The exact reconstruction of the inflaton potential is not possible in general. Nonetheless, in specific cases, the
potential may be derived exactly as follows. Consider the following ansatz for δ1:

δ1 =
n0 + n1a

−n

d0 + d1a−n
, (65)

which is suggested by the expression for ǫ1 and Eq. (56). If n0 = 0 and n1 6= 0, then Eq. (65) can be integrated, and
the resulting φ(a) is inverted as follows

φ(a) = φ0

(

d0 + d1a
−n
)− n1

n d1 ⇒ a−n =

(

φ(a)
φ0

)−n d1
n1 − d0

d1
. (66)



10

The coefficients n1, d0, d1 and ξ can finally be fixed by the requirement that Eq. (65) be a solution of Eq. (56). Two
nontrivial solutions can be found:

d0 = − (1 + n)n1α

Amn
, d1 = − (1 + n)n1

mn
, ξ =

m

2(1− 3m+ n+mn)
, (67)

or

d0 = − (1 + n)n1α

Amn
, d1 = − (1 + n+mn)n1

mn
, ξ =

m

2(1− 2m+ n+mn)
. (68)

Notice that more exact solutions for δ1 can be found if we start from the ansatz (65) and n0 6= 0. However, by further
integrating these solutions to obtain φ(a), one is led to noninvertible functions, and the reconstruction cannot be
completed. For both Eqs. (67) and (68) one has

δ1,∞ = 0 , (69)

and one can explicitly verify that the hierarchies belong to the set (63). Notice that n1 in Eqs. (67) and (68) can be
arbitrarily chosen, as should be due to the form of the ansatz (65). Let us, for simplicity, complete the reconstruction
choosing n and m to reproduce USR in the IG context (n = 6, m = 1/2). In this case, Eqs. (67) and (68) take the
following form:

n0 = 0, d0 = − 7α

3A
n1, d1 = −7

3
n1, ξ = 1/10 ⇒ δ1 = − 3A

7 (A+ αa6)
, (70)

n0 = 0, d0 = − 7α

3A
n1, d1 = −10

3
n1, ξ = 1/36 ⇒ δ1 = − 3A

10A+ 7αa6
. (71)

From Eq. (29), a(φ) in (66) and Eq. (70), one finds

δ1 =
3

7

[

α

(

φ0

φ

)14

− 1

]

and H2 = H2
0

(

φ

φ0

)14

, (72)

with φ/φ0
a→∞−→ α1/14 and φ > φ0, while for Eq. (71) one finds

δ1 =
3

10

[

α

(

φ0

φ

)20

− 1

]

and H2 = H2
0

[

(

7

10

φ

φ0

)20

+
3α

10

]

, (73)

with φ/φ0
a→∞−→ α1/20 and φ > φ0. Finally, by using Eq. (58), one obtains

V = − 3H2
0

490φ12φ14
0

(

8φ28 − 72αφ14
0 φ14 + 15α2φ28

0

)

(74)

for the first exact solution, and

V = − H2
0

6000φ38φ20
0

(

7φ20 + 3αφ20
0

) (

7φ40 − 84αφ20
0 φ20 + 27α2φ40

0

)

(75)

for the second. In the a → ∞ limit, the potentials (74) and (75) satisfy the condition d lnV/d lnφ = 4. The potential
can have negative values but, in the vicinity of φ ≃ φ∞, the potential is positive and V∞ > 0.

We discuss at last the behavior of the primordial scalar curvature spectrum. The general formulas illustrated in
Sec. II can easily be generalised to the IG case wherein

zIG = aφδ1

√

1 + 6ξ

1 + δ1
, (76)

and Φ is given by

Φ =

[

1− ǫ1 −
ǫ1ǫ2

(1− ǫ1)
+

(

2 + 2δ1 + 2δ2 −
δ1δ2
1 + δ1

)]

. (77)
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If we evaluate Φ w.r.t. to the hierarchies (63) and (64), one observes that only constants and terms linear in the SR
parameters remain. Moreover, ǫ1,∞ = 0 and Φ then simplifies to

Φ = 3 + 2δ1 + 2δ2 , (78)

which can be negative only for the hierarchy (63) but is strictly positive for the hierarchy (64), provided we restrict
ourselves to positive values of the nonminimal coupling ξ. In the former case, Φ = 3 − 2n, which implies that the
growing solution exists for n > 3/2.

If no growing solution exists [as is the case for (64) or (63) with n < 3/2], an amplification of the spectrum is
possible only if the spectrum is blue-tilted. Let us then evaluate ns − 1. In the IG case, fMS(ǫi) in the MS equation
is given by

fMS = δ21 + δ22 + (3− ǫ1) (1 + δ1 + δ2) + δ2δ3 +
δ1δ2

(

ǫ1 + δ1 − 3δ2 − δ3 +
2δ1δ2
1+δ1

− 2
)

1 + δ1
− 1 , (79)

and, as usual, it can be simplified to obtain the following expression for the scalar spectral index:

ns − 1 = 3−
√

1 + 4 (δ21 + δ22 + 3 (1 + δ1 + δ2)− 1) . (80)

Then, for the hierarchy (63) and n < 3/2, we obtain

ns − 1 = 3− |3− 2n| = 2n , (81)

which is indeed blue-tilted, while for the hierarchy (64), we find

ns − 1 = − 4ξ

1 + 4ξ
, (82)

which is red-tilted.
We therefore conclude that solutions having H of the form given in Eq. (29), in the IG context, may lead to a

spectrum enhancement for evolutions asymptotically described by the hierarchy (63) and either for n > 3/2 (due to
the presence of the growing solution) or 0 < n < 3/2 (in the absence of the growing solution but with the blue-tilted
spectrum).

IV. APPLICATIONS

We have so far studied the consequences of cosmological evolutions with a transient phase, which is crucial to
potentially obtain the amplification required by the formation of PBHs. Indeed, the presence of the transient generates,
in the large-a limit, a sequence of values for the SR parameters that is otherwise not obtained. We then reconstructed,
when possible, the potentials that led to the desired evolution. In this section, our approach will be slightly different,
as we shall study the presence of the transient solutions in the particular dynamical regime of constant roll (CR)
inflation [12], which is the natural generalization of USR.

CR solutions satisfy the equation

φ̈+BHφ̇ = 0 , (83)

where B > 0, and one recovers the USR solution for B = 3, while the case of |B| ≪ 1 reproduces standard SR. We
observe that the CR condition (83) can be rewritten, in terms of the SR parameters, as

δ2 + δ1 − ǫ1 +B = 0 . (84)

Equation (84) is model independent, since it only depends on the definitions of ǫi’s and δi’s, and can easily be
integrated to obtain

dφ

d ln a
H

(

a

a0

)B

= C3 ⇒ φ̇ = C3

(a0
a

)B

, (85)

where C3 is an integration constant.
In the minimally coupled case, CR can generate an amplification of the primordial scalar spectrum. In what follows,

after a revision of this result (which was analyzed in [8]) we shall consider CR in IG and study its consequences.
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A. Constant roll in GR with a minimally coupled inflaton

In GR with a minimally coupled inflaton, on imposing CR conditions and adopting the Hamilton-Jacobi (HJ)
formalism, it is possible to reconstruct the evolution of the Hubble parameter and the corresponding potential [8]. In
particular, one finds that H(φ) is the following superposition of two exponential functions:

H(φ) = C1 exp

(

√

B

2

φ

MP

)

+ C2 exp

(

−
√

B

2

φ

MP

)

. (86)

In [8], the solution (86) with one exponential (C1 = 0 or C2 = 0), as well as the cosh and sinh cases, are analyzed with
the aim of finding the exact solutions compatible with CMB observations [13] (and thus not amplified). In particular,
Ref. [7] focuses on the cosh case, which corresponds to the C1 = C2 6= 0 case, and implements it for a potential that
exhibits two stages of slow roll that are separated by a constant roll phase, within a framework that also fulfills the
current power-spectra constraints.

Here, in a slightly different approach, we consider the general case, and we study the power enhancement of the
spectrum. Equation (26) can be rewritten in terms of the SR parameters

ǫ1 =
φ2

2MP
2 δ

2
1 , (87)

from which, using the chain rule, we obtain

ǫ1 = −δ1
d lnH

d lnφ
. (88)

Equation (87) then becomes

ǫ1 =
2MP

2

φ2

(

d lnH

d lnφ

)

. (89)

The potential can subsequently be reconstructed by substituting Eqs. (86) and (89) into Eq. (27):

V (φ) = MP
2H(φ)2

[

3− 2MP
2

φ2

(

d lnH

d lnφ

)2
]

. (90)

To obtain the corresponding evolution, one must integrate and invert the equation

δ1 = −2MP
2

φ2

d lnH

d lnφ
, (91)

which can easily be derived from Eq. (87) by using (88). One finds

(

a

a0

)B

=
x

B (C2 − C1x2)
, (92)

where x = exp
(
√

B
2

φ
MP

)

. It is straightforward to invert Eq. (92) so as to obtain x = x(a). Correspondingly, one has

H(a) = ±
4C1C2 +

(

a0

a

)2B ∓
(

a0

a

)B
√

4C1C2 +
(

a0

a

)2B

∓
(

a0

a

)B
+

√

4C1C2 +
(

a0

a

)2B

a→∞−→ ±8C1C2 +
(

a0

a

)2B

4
√
C1C2

. (93)

Notice that the same result can be obtained if one uses the CR definition (84) instead of Eq. (26).
The last, approximate, equality in Eq. (93) is the large-a limit of H(a), and this shows that the CR evolution is

asymptotically equivalent to the evolution given in Eq. (29) with m = 1 and n = 2B. The results obtained in Sec. II
for large a are therefore inherited by CR. Thus, one obtains ǫ2i+1,∞ = 0 and ǫ2i,∞ = 2B. Correspondingly,

Φ = 3− 2B , (94)
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which shows that the curvature perturbations are amplified for B > 3/2 due to the presence of a growing solution. In
contrast, if 0 < B < 3/2, one finds a blue-tilted spectrum

ns − 1 = 3−
√

(3− 2B)2 = 2B > 0 , (95)

i.e., a spectrum enhancement in the absence of growing solutions. Therefore, CR inflation admits transient solutions
that always lead to an amplification. Finally, it is worthwhile to mention that the solutions with C1 = 0 or C2 = 0
simply correspond to the attractor solutions for power law inflation, and thus they are not associated with any
amplification effect. Indeed, in Ref. [7], a cosh type potential and the corresponding transient solution is considered
in order to obtain the desired enhancement of the primordial spectra in the CR scenario.

B. Constant roll with a nonminimally coupled inflaton

Let us now consider CR in the IG context. For this case, the HJ formalism leads to [14]

H(φ) = C1φ
(B+p)/2 +

C2

φ(p−B)/2
, (96)

where p =
√

(B + 2)2 + 2B(2 + ξ−1) and (B + p)/2 and (p − B)/2 are both positive with (p − B)/2 < (B + p)/2.
For simplicity, we shall take C1,2 > 0 and we restrict the analysis to the φ > 0 interval. Studying the spectrum
enhancement for CR in the IG case is more complicated than for GR. This is essentially a consequence of the
complicated form of Eq. (56) in comparison to Eq. (26) in the GR case. However, the simple relation (84) holds, and
it can be used to simplify the equations. First, with Eq. (84), one may eliminate δ2 from Eq. (56) and obtain

ǫ1 =
1 + 2ξ

2ξ
δ21 − (B + 1)δ1 . (97)

Subsequently, by using Eq. (88), one finds

δ1 =
2ξ

1 + 2ξ

(

B + 1− d lnH

d lnφ

)

, (98)

and the potential can be reconstructed by substituting Eqs. (96) and (98) into Eq. (58).
The evolution could be obtained by integrating Eq. (98) and inverting the result. However, analytically inverting

the resulting equation for arbitrary values of the parameters is impossible. As we are only interested in the asymptotic
form of H(a), one can employ a perturbative approach. Integration of Eq. (98) yields

(a0
a

)B

= φ
2+B

2

[

(B + p+ 2)C1φ
p
2 + (B − p+ 2)

C2

φ
p
2

]

, (99)

where B + p+ 2 > 0 and B − p+ 2 < 0. Therefore, in the large-a limit, the inversion of Eq. (99) leads to

φ(a) = φ∞ +
∑

i>1

φi

(a0
a

)i B

∼ φ∞ + φ1

(a0
a

)B

, (100)

where φ∞ is positive. By substituting Eq. (100) into Eq. (96) and expanding for large a (properly accounting for the
next-to-leading-order contributions), one finally obtains the asymptotic form of H(a), which reads

H ∼ H∞ +H1

(a0
a

)B

. (101)

Comparison to Eq. (29) shows that m = 1 and n = B, and the corresponding hierarchy of δi’s is given by Eq.(63)
since

δ1,∞ =
lima→∞ φ̇

H∞φ∞
= 0 , (102)

where φ̇ is given by (85). One then obtains

Φ = 3− 2B, ns − 1 = 2B , (103)
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and, when 0 < B < 3/2,

ns − 1 = 2B , (104)

which are the same results as GR with a minimally coupled inflaton. Indeed, in the a → ∞ limit, the homogeneous
inflaton is frozen at a certain value and one essentially recovers the evolution of the minimally coupled case, where
“Newton’s constant” is now reproduced by the (constant) asymptotic value of the inflaton. Furthermore the a depen-
dence of the solution is a consequence of the fact that the CR condition (84) is independent of the specific inflationary
model, provided H∞ and φ∞ are found to be (finite) constants.

C. Jordan and Einstein frame mapping

In the previous section, we found the same asymptotic behavior for the spectra in the minimally coupled case and
in the IG case. This result was obtained in spite of the fact that the CR condition is not frame invariant; i.e., the CR
condition in the Einstein frame (EF) is not mapped, in general, into a CR condition in the Jordan frame (JF). In this
section, we briefly review this statement and discuss its consequences.

It is well known that, by a suitable conformal transformation and a redefinition of the scalar field (inflaton), one
can map a minimally coupled theory (defined in the so-called EF) into a nonminimally coupled one (in the JF). In
particular, for IG, the mapping is given by the following transformation rules (see, e.g., [15]):

a(t) =
MP√
ξσ

ã(t), N(t) =
MP√
ξσ

Ñ(t) , (105)

and

φ = MP

√

1 + 6ξ

ξ
ln

σ

σ0
, Ṽ (φ(σ)) =

MP
2

ξ2σ4
V (σ) , (106)

where the tilde refers to the Einstein frame, φ is the scalar field in the EF, and σ is that in the JF. Notice that here
N(t) and Ñ(t) in Eq. (105) correspond to the lapse function in the Jordan and Einstein frames, respectively, and
they are not to be confused with the number of e-folds, which was previously denoted by N . The mapping induces
the following transformations of the Hubble parameter:

H̃ =
dã/dt

Ñ ã
= (1 + δ1)

MP√
ξσ

H , (107)

where

H(t) =
da(t)/dt

a(t)N(t)
, ǫi+1 =

dǫi/dt

ǫiN(t)H(t)
, δi+1 =

dδi/dt

δiN(t)H(t)
(108)

are the Hubble and SR parameters in the JF. From the relation (105), one also finds that

d

d ln ã
= (1 + δ1)

−1 d

d ln a
. (109)

It is now straightforward to obtain the relations between SR parameters in the two frames:

ǫ̃1 ≡ −d ln H̃

d ln ã
= − (1 + δ1)

−1 d

d ln a
ln

[

(1 + δ1)
MP√
ξσ

H

]

=
δ1 + ǫ1 − δ1δ2

1+δ1

1 + δ1
. (110)

Given the relation (56), one then finds

ǫ̃1 =
(1 + 6ξ)δ21
2ξ(1 + δ1)2

. (111)

From Eqs. (56) and (111), given that CR for a minimally coupled inflaton has ǫ̃1,∞ = 0, one concludes that,
correspondingly, in the JF one has δ1,∞ = 0 and ǫ1,∞ = 0. If we differentiate Eq. (111), we obtain the following
relations among other SR parameters in the two frames

ǫ̃2 =
2δ2

(1 + δ1)2
, (112)
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ǫ̃3 =
δ3 − 2δ1δ2 + δ1δ3

(1 + δ1)
2 , (113)

ǫ̃4 =
δ1δ2

[

2δ2 − 2δ1δ2 + 3δ3 + 3δ1δ3 − (1 + δ1)
2
δ3δ4

]

(1 + δ1)
2
(2δ1δ2 − δ1δ3 − δ3)

, (114)

and further ǫ̃i’s can be found by iterating the procedure but are useless for what follows.
Similarly, one can directly calculate the relations of the δ̃i’s with the dynamical variables in the JF:

δ̃1 ≡ φ̇

ÑH̃φ
=

√

1 + 6ξ

ξ

MP

φ

δ1
1 + δ1

(115)

and

δ̃2 ≡ dδ̃1/dt

ÑH̃δ̃1
= −δ̃1 +

δ2

(1 + δ1)
2 . (116)

From the last relation and Eq. (56), one has that the CR condition in the EF,

δ̃2 + δ̃1 − ǫ̃1 +B = 0 , (117)

is mapped into the following condition in the JF:

δ2 + (B − 1) δ1 − ǫ1 +B = 0 . (118)

Notice that only for B = 2 the CR condition is frame invariant. Nonetheless, both equations reduce to δ2,∞ = δ̃2,∞ =
−B at late times, and the evolution is indistinguishable, at least as far as the homogeneous degrees of freedom and
the inflationary spectra are concerned.

We conclude that, whereas the scalar spectral index ns − 1 is frame invariant, Φ is generally not frame invariant.
This can be checked directly by substitution. However, assuming CR holds in the EF, one verifies that Φ and ns − 1
are both frame invariant in the asymptotic regime. This approximate invariance can be intuitively understood from
the fact that, for large scale factors (late times), the CR condition in the EF implies that the nonminimally coupled
homogeneous inflaton in JF freezes at a particular asymptotic value (due to δ1 → 0), which can be seen as “Newton’s
constant”, so as to recover the evolution of the minimally coupled EF scenario [see comments after Eq. (104)]. Indeed,
one may verify by substitution that Φ is frame invariant in the δ1 → 0 limit (i.e., when the field in the Jordan frame
freezes).

TABLE I. Results summary

Inflation Asymptotic Growing Blue-tilted

model solution solution spectral index

GR dS n > 3 0 < n < 3

GR PL − −

IG dS, δ1,∞ = 0 n > 3/2 0 < n < 3/2

IG dS, δ1,∞ 6= 0 − −

CR+GR dS B > 3/2 0 < B < 3/2

CR+IG dS, δ1,∞ = 0 B > 3/2 0 < B < 3/2

V. CONCLUSIONS

In this article, we have analyzed the effects of different transient phases, which may occur during inflation due to a
particularity of the inflaton potential, on the primordial inflationary spectrum of scalar perturbations. These transients
have been studied in the last few years as sources of amplification of the amplitude of the curvature spectrum. It
is important to notice that if the amplitude of scalar perturbations grows large enough, it may induce gravitational
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collapse and consequently seed the formation of primordial black holes after inflation ends. In the literature, several
mechanisms for such an amplification during inflation have been proposed. In particular, the presence of an ultraslow-
roll or, more generally, a constant-roll phase has been studied. Whereas in the former case the amplification is due
to the existence of a growing solution to the equation of motion of the curvature perturbations, in the latter case the
amplification can also be generated by a blue-tilted spectrum in the absence of the growing solution.

The purpose of this paper was precisely to examine general features of the aforementioned models starting from
a rather generic ansatz for the Hubble parameter as a function of the scale factor. This general description of
the transient phase is model independent, and many results obtained can readily be applied to several modified
gravity models. The matter-gravity dynamics is described in terms of the hierarchies of SR parameters, both at the
homogeneous level and at the level of perturbations. These hierarchies, when the transient phase that describes the
approach to some inflationary attractor is considered, have been shown to take a peculiar form wherein either odd or
even terms of the hierarchy are null and the remaining ones are different for zero. This general feature is a peculiarity
of the asymptotic form of the SR parameters close to the attractor, and it is then used as a simplifying assumption
throughout the entire article. The resulting hierarchies, in the large-a limit and for the cases considered, were used
to calculate the behavior of the primordial curvature spectrum as the parametrization of H(a) was varied. Then,
when possible, the corresponding inflaton potential was fully reconstructed. An overview of the spectra enhancement
results was presented in Table I.

For simplicity, only the induced gravity case has been considered here as a generalization of general relativity with
a minimally coupled inflaton. Induced gravity is particularly relevant since both Higgs and Starobinsky inflationary
models (which are in good agreement with observations) take place in the ‘induced gravity phase’. We note that while
transient evolutions that have the de Sitter universe as a limit (such as USR) can lead to an amplification, the results
differ when power law inflation is considered as the limit of a transitory dynamics and, for the cases we were able to
solve explicitly, no modification of the scalar spectrum was obtained. Finally, the constant-roll case was discussed in
more detail as an application of the preceding results, and the issue of the transition from the Einstein frame to the
Jordan frame was also scrutinized.
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