
09 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Dustin: A 16-Cores Parallel Ultra-Low-Power Cluster With 2b-to-32b Fully Flexible Bit-Precision and Vector
Lockstep Execution Mode

Published:
DOI: http://doi.org/10.1109/tcsi.2023.3254810

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/922406 since: 2023-04-12

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/tcsi.2023.3254810
https://hdl.handle.net/11585/922406


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

G. Ottavi et al., "Dustin: A 16-Cores Parallel Ultra-Low-Power Cluster With 2b-to-32b Fully Flexible Bit-
Precision and Vector Lockstep Execution Mode," in IEEE Transactions on Circuits and Systems I: Regular 
Papers, vol. 70, no. 6, pp. 2450-2463, June 2023. 

The final published version is available online at: 
https://doi.org/10.1109/TCSI.2023.3254810 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1109/TCSI.2023.3254810


1

Dustin: A 16-Cores Parallel Ultra-Low-Power
Cluster with 2b-to-32b Fully Flexible Bit-Precision

and Vector Lockstep Execution Mode
Gianmarco Ottavi∗, Angelo Garofalo∗, Giuseppe Tagliavini†, Francesco Conti∗,

Alfio Di Mauro‡, Luca Benini∗‡, and Davide Rossi∗
∗Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Italy

†Department of Computer Science and Engineering (DISI), University of Bologna, Italy
‡IIS Integrated Systems Laboratory, ETH Zurich, Switzerland

Abstract—Computationally intensive algorithms such as Deep
Neural Networks (DNNs) are becoming killer applications
for edge devices. Porting heavily data-parallel algorithms on
resource-constrained and battery-powered devices while retaining
the flexibility granted by instruction processor-based architec-
tures poses several challenges related to memory footprint,
computational throughput, and energy efficiency. Low-bitwidth
and mixed-precision arithmetic have been proven to be valid
strategies for tackling these problems. We present Dustin, a
fully programmable compute cluster integrating 16 RISC-V cores
capable of 2- to 32-bit arithmetic and all possible mixed-precision
combinations. In addition to a conventional Multiple-Instruction
Multiple-Data (MIMD) processing paradigm, Dustin introduces
a Vector Lockstep Execution Mode (VLEM) to minimize power
consumption in highly data-parallel kernels. In VLEM, a single
leader core fetches instructions and broadcasts them to the 15
follower cores. Clock gating Instruction Fetch (IF) stages and
private caches of the follower cores leads to 38% power reduction.
The cluster, implemented in 65 nm CMOS technology, achieves
a peak performance of 58 GOPS and a peak efficiency of 1.15
TOPS/W.

Index Terms—QNN Inference, Mixed-Precision, SIMD,
MIMD, RISC-V.

I. INTRODUCTION

Modern Near-Sensor Analytics Applications (NSAA) in-
creasingly require running complex workloads such as Deep
Neural Networks (DNN) on Internet of Things (IoT) end-
nodes. These devices are severely constrained in terms of
power envelope, memory, and cost (i.e., silicon area and tech-
nology). An emerging trend to tackle this problem is to employ
the most compact data representation usable from a numerical
viewpoint for each given task of an application, exploiting low-
precision and mixed-precision arithmetic operations, reducing
the complexity of arithmetic units and the memory footprint
of an application [1], [2].

From an architectural viewpoint, extreme low-bitwidth
mixed-precision arithmetic has been mainly applied in spe-
cialized accelerators [3], [4]. Exploiting this technique with
dedicated hardware is very effective since the whole datapath
is typically designed for a single or a subset of functions,

This work was supported in part by EU Horizon 2020 Research and
Innovation projects The European Pilot under Grant 101034126, in part by
WiPLASH under Grant 863337, in part by ECSEL Horizon 2020 project
AI4DI under Grant 826060, and in part by GreenWaves Technologies.

safely tuning each operation to the desired precision. However,
applying this principle to fully programmable architectures is
challenging since the algorithms to be executed are not known
a priori. Consequently, multiple formats must be supported,
increasing the complexity and overheads of instruction fetch
(IF) and decode (ID) stages.

Still, previous work on low-bitwidth computations on in-
struction processors demonstrated promising results, espe-
cially in DNN inference. Garofalo et al. [5] proposed a C
library for DNN inference exploiting 8-bit Single Instruction
Multiple Data (SIMD) instructions, as well as other Digital
Signal Processing (DSP) Instruction Set Architecture (ISA)
extensions. This solution outperforms a commercial library
(CMSIS-NN [6]), implementing the same functions on ARM
Cortex M4 and M7 by 4.54× or 2.54× respectively, only
featuring support for 16-bit SIMD instructions. While 8-bit
SIMD is now widely supported by all the major ISAs, such
as ARMv8.1 helium [7], more aggressive approaches have
been presented in Garofalo et al. [8], where SIMD support
has been extended to 4-bit and 2-bit operations, leading to
further performance and energy efficiency gains.

However, the extensions proposed in Garofalo et al. [8]
only tackle part of the challenge, lacking featuring support for
mixed-precision operations (i.e., operations where the source
operands have different, reduced bitwidths, e.g., 2-bit and 4-
bit). Mixed-precision execution requires data conversion and
packing/unpacking operations leading to significant overheads
if not natively supported by the underlying hardware [9]. When
applied to DNNs, exploiting mixed-precision computations on
state-of-the-art processors dramatically reduces the memory
footprint enabling the execution of MobileNets on tiny end-
nodes. However, it comes with a significant performance
overhead over uniform SIMD. Furthermore, supporting too
many mixed-precision formats leads to a proliferation of
instructions. For example, supporting SIMD instructions for
efficient execution of DNNs leads to more than 300 instruc-
tions due to precision format ranging from 16- to 2-bit and
all possible permutations. This effect increases the complexity
of the Instruction Fetch (IF) and Instruction Decode (ID)
stages and possibly saturates the ISA encoding space. Finally,
when moving from single to multi-core architecture, the cost
of fetching and decoding instructions increases linearly with
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the number of cores, even if all the cores are executing the
same instructions on different data (e.g., computing different
elements of an output activation tensor in a DNN).

We present Dustin, a low-power IoT processor with a
software-programmable accelerator composed of 16 RISC-
V cores optimized for energy-efficient end flexible execution
of integer mixed-precision operations to tackle the presented
challenges. The DSP cores support mixed-precision extensions
through 2b-to-16b SIMD instructions, accelerating arithmetic
operation and complex packing-unpacking and conversion
operations required by mixed-precision computations. The
format of input operands is set through a dedicated control
register to reduce the complexity of the IF and ID stages of
the processors.

Furthermore, the cluster can be dynamically configured into
a fine-grain Vector Lockstep Execution Mode (VLEM), turning
off the IF stages and private instruction caches of all the cores
except one. This technique boosts the energy efficiency of
data-parallel sections of the code, reducing power consump-
tion by 38% on average with no performance degradation
on critical data-parallel kernels while still offering Multiple
Instructions Multiple Data (MIMD) flexibility for general-
purpose code.

The contributions of the paper are the following:
• A 16-cores cluster implemented in 65nm CMOS technol-

ogy featuring 16 mixed-precision cores supporting fully-
flexible 2b-to-32b bit precision scalability.

• A dynamically configurable vector lockstep execution
mode allowing to switch-off IF stages and private instruc-
tion caches of slave cores, saving up to 38% of cluster’s
power consumption.

• The full software stack for the proposed SoC, including
compiler support as well as a programming model for ef-
ficient exploitation of two architectural features described
above.

• The evaluation of the proposed architecture on the full
inference of a ResNet8 DNN quantized with 8-bit activa-
tions and 4-bit weights, demonstrating 2.7× performance
boost and 4.2× energy efficiency boost when enabling
the two key features of the cluster.

Implemented in robust and cost-effective 65 nm CMOS
technology, Dustin achieves 15 GOPS and 303 GOPS/W
on 8-bit integer arithmetic. These results are comparable to
SoA fully programmable systems implemented in much more
scaled technology nodes (40 nm and 22 nm) – with a further
boost in performance (3.7×) and efficiency (1.9×) on low-
bitwidth mixed-precision workloads, up to 58 GOPS and 1.15
TOPS/W nearing the efficiency of dedicate accelerators.

II. RELATED WORK

The deployment of DNN into tiny devices has been facil-
itated by quantization and mixed-precision computing. This
section presents a review of the state of the art of quantization
techniques and recent architectures for QNN inference.

A. Quantization
Quantized inference and training of DNNs are both compu-

tationally intensive. In this context, an efficient representation

of numerical values is particularly important since state of
the art DNN models are heavily over-parameterized, providing
ample opportunity for reducing bit precision without impacting
accuracy [10], [11].

The use of lower precision quantization improves hardware
performance but can lead to significant accuracy degradation.
Mixed-precision quantization, in which each layer is quantized
with a different bit precision, addresses this issue but presents
a challenge in selecting the appropriate bit setting for each
layer. Different methods have been proposed to address the
large search space for mixed-precision quantization, including
reinforcement learning [12], Neural Architecture Search [13],
and regularization-based approaches [14]. HAWQ [15] is an
automatic method that uses second-order sensitivity to find
mixed-precision settings, which has been shown to be faster
than other methods. HAWQv2 and HAWQv3 [16], [17] have
been proposed to improve this method with integer-only
and hardware-aware quantization, respectively, and have been
shown to be efficient on T4 GPUs, with up to 50% speedup
compared to INT8 quantization.

Extreme quantized neural networks are another trend in
recent deep neural networks design for embedded comput-
ing. For example, Choi et. al. [18] demonstrate the use of
a 2-bit CNN using a uniform quantization method, where
different techniques are employed for quantizing activations
and weights. The PACT technique, which finds an optimal
value for the clipping threshold of the RELU function, is used
for inputs during training, and SAWB, a scheme that aims
to minimize quantization error without extensive search, is
used for weights. The authors show that a 2-bit quantization
can result in 3% accuracy degradation on the ResNet18 and
ResNet50 model for Imagenet datasets compared to a full
precision network (8-bit).

B. Dedicated Accelerators for DNNs

On the Hardware side, we have several approaches to the
end-to-end inference of a DNN. They range from dedicated
accelerators to software programmable solutions more similar
to those proposed in this work. We can categorize them by
performance, flexibility, and power envelope. The first cate-
gory includes specialized accelerators that trade off flexibility
to excel in performance and efficiency. A common feature of
all the presented solutions is the exploitation of low bit-width
(down to byte or even sub-byte) to improve the efficiency of
inference. We detail a few notable approaches below.

Envision [19] is a DNN accelerator with a reconfigurable
computational engine capable of using bit precision of 1-
16b. It employs a circuit-level voltage and frequency scaling
technique to improve efficiency, capable of peak 76 GOPS
and averages 2 TOPS/W. Thinker [20] employs configurable
2D arrays that can be partitioned into sub-arrays to compute
different types of layers. Each PE presents a set of two 8-bit
multipliers that can be merged for a 16-bit operation or can
compute two 8-bit (or less) in one cycle. It peaks at 380 GOPS
and 5 TOPS. Loom [21] is a bit-parallel DNN accelerator
where performance and efficiency scale inversely with weight
and activations precision. Loom can also reduce precision
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dynamically by inspecting groups of 256 activations that it
processes concurrently, further increasing the effectiveness of
bit reduction on the overall efficiency. EyerissV2 [22] is a
DNN accelerator that connects multiple PE clusters with a
flexible NoC. The network can be configured to efficiently
work on either high-bandwidth for networks that present low-
reuse or, when reuse is high, it can still exploit spatial data
reuse (via multicast or broadcast) to achieve high energy
efficiency. It uses a fixed weight/activation precision format
of 8-bit and is capable of a peak throughput of 153.6 GOPS.

C. FPGA based accelerators

DNN accelerators can also be deployed into FPGAs. This
solution provides extra flexibility compared to ASICs since
they can be reconfigured with Hardware Description Lan-
guage (HDL), but this comes at an order of magnitude less
performance and efficiency. The power envelope raises to
Watt level for these devices, which can be problematic for
battery-powered devices. A new family of FPGAs announced
by Lattice, namely Sense-AI [23], provides comprehensive
hardware and software solutions for always-on artificial intelli-
gence within a power budget between 1 mW and 1 W. Despite
that, these ultra-low-power FPGA families have limited LUT
capabilities and are still too expensive for many applications
where MCUs are traditionally chosen for their low cost.
The adoption of FPGAs remains an obstacle for the average
IoT programmer, who demands the highest flexibility from
microcontroller systems. This work focus on more flexible
and user-friendly solutions based on software programmable
instruction processors.

D. Software Programmable Solutions

1) Low-Power MCUs: Given that the rise of DNN and
quantization is relatively recent, ”classical” commercial micro-
controller (MCU) cores such as Cortex M4 and M7 struggle
to compete with newer architectures. This is shown in [5]
where a RISC-V core1 significantly outperforms the ARM
counterpart in CNN layers with 3.2× to 6× when using the
de-facto standard quantization of 8-bit.

To address the DNN computing at the edge, ARM presented
the Cortex M-55 core based on the ARMv8-1M ISA. The
core’s general-purpose performance sits between an M4 and
M7 with an M-Profile Vector Extension (MVE) called Helium
supporting 8-bit MAC instructions. The vector extension uses a
64-bit data interface, meaning it can execute 2×32-bit, 4×16-
bit, 8×8-bit fixed-point operations per cycle [7].

Specialized accelerators can also be found in the microcon-
troller class of devices side by side with general-purpose cores.
In [24], a cluster of 9 RISC-V cores with a tightly-coupled
CNN accelerator improves performance by 3.3× and double
efficiency w.r.t. executing the same network on the software-
programmable cores. ARM adopts the same approach coupling
the Cortex M-55 with the optional Ethos-55, an accelerator
designed to boost machine learning tasks; depending on the
configuration, the system can execute 32 to 256 MAC/Cycles.

1https://github.com/openhwgroup/cv32e40p

This solution can help mitigate the effect of under-utilization
on ASIC acceleration, mixing high-throughput (when possible)
with high flexibility.

In [8] a RISC-V ISA extension called Xpulpnn is pro-
posed. It expands on the already available DSP instructions
to support the sub-byte precision format of 4- and 2-bit.
It introduces MAC&LOAD instructions that simultaneously
execute the dot-product while loading an operand for the next
operation. Xpulpnn outperforms the commercially available
M4 and M7 from 2.8× to 19.2× on Quantized convolutional
layers. When going mixed-precision, the efficiency boost of
Xpulpnn w.r.t. ARM cores narrows significantly because of
the massive software overhead necessary for packing and
unpacking data. Dustin’s cores have direct hardware sup-
port for mixed-precision operations, eliminating performance
degradation compared to uniform precision. To the best of the
author’s knowledge, no microcontroller class device supports
mixed-precision instructions with dedicated ISA extensions.

2) SIMD vs MIMD: General-purpose multi-core CPUs of-
fer a great deal of flexibility but fall behind in efficiency
when exploiting data-level parallelism compared to SIMD-
style architectures. General-purpose multi-core architectures
require per-core hardware for fetching and decoding instruc-
tions creating significant hardware and power overhead, a
phenomenon also known as the ”Von Neumann bottleneck”
(VNB).

To Mitigate the VNB, GPUs can efficiently capitalize
on data-level parallelism, given that every multi-core multi-
threaded cluster needs only one unit that fetches and dispatches
instructions to multiple execution units. A problem that arises
when executing code in GPUs is branch divergence: a piece
of code can contain branches. Different data values determine
different branch outcomes: some of the threads take the if-path
while others do not, causing the code to be executed sequen-
tially and degrading performance. Specifically, on NVIDIA
GPUs, this was dealt with by thread masking, where a mask
with one entry per thread would indicate whether to execute
the branch or not. In the proposed architecture, this situation
can be avoided by just switching from VLEM to MIMD mode.

In [25] Dogan et al. propose a system of 8 general-purpose
cores that can synchronize and execute instructions in lockstep.
On branch divergences, the cores get out-of-sync, execute the
code simultaneously, and wait on a convergent point on a
synchronization barrier for resuming lockstep execution. In
conjunction with the lockstep, a broadcast mechanism serves
multiple same-address memory requests as one, allowing sig-
nificant power savings. However, the proposed architecture
has 2 significant shortcomings: 1) Power management is not
applied to the instruction fetch units of the slave cores, and
2) The instruction memory hierarchy of the core is based on
simple scratchpad memories, which is somehow not realistic
for a high-performance IoT processor.

In our work, the cluster can be configured dynamically
to work in a MIMD or Vector Lockstep Execution Mode
(VLEM). In VLEM, only one core fetches instructions (similar
to a GPU) and dispatches them to the remaining 15 cores.
This design allows to clock-gate the private I$ and Instruction
fetch stages of the remaining cores enabling substantial power
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Fig. 1. Overview of the Dustin SoC Architecture.

savings (in addition to the broadcasting feature). On divergent
branches, the cluster is configured back to MIMD mode al-
lowing simultaneous execution of each branch. This approach
gives higher flexibility when compared to GPUs and, at the
same time, removes the power overheads inherent in general-
purpose CPUs that execute SIMD code.

III. SOC ARCHITECTURE

Fig. 1 shows the architecture of Dustin SoC. The main
contribution of the work refers to the RISC-V cores compute
cluster. The IPs surrounding such domain, i.e., the RISC-
V core named Fabric Controller (FC), a standard set of
peripherals, and an L2 memory storing the code executed by
both the compute cluster and the FC, as well as the FLLs for
clock generation, serve as a programmable testbench.

The programmable cluster resides in a dedicated power and
clock domain, communicating with the SoC subsystem with
two AXI 4 ports (one initiator and one target) connected
to the SoC interconnect through dual-clock first-in-first-out
buffers (FIFOs). The cluster is built around 16 32-bit RISC-V
processors; the FC turns on and sets the frequency of these
cores when it offloads the computation to the programmable
accelerator.

The cores share a 128 kB L1 memory interleaved on
32 banks. The number of cores and banks chosen for the
implementation of the proposed cluster can be considered
an upper bound for tightly-coupled clusters of processors
featuring a single-cycle latency interconnect (LIC), as in-
creasing the number of cores would impact timing, area,
and power significantly. Further performance scaling might
be achieved by introducing pipelined interconnects, such as
in Cavalcante et. al. [26], or instantiating multiple clusters
in the design, such as in Benini et. al. [27]. The Lockstep
unit and the Broadcast Unit, serving the requirements of
VLEM are interposed between the cores and the LIC to
enable a reconfigurable SIMD/MIMD execution model of the
cluster. This key innovation will be discussed in more detail
in Section III-B.

Fig. 2. Dustin’s Cores, an extension of CV32E40P.

The cluster can access peripherals such as the timer, event
unit, DMA, and AXI4-bus via a dedicated peripheral inter-
connect. The DMA manages data transfer between the L2
and L1 memory, featuring 2-D data transfers and up to 16
outstanding transactions to hide the latency between the two
levels of the memory hierarchy. The cores share a 2-level latch-
based instruction cache. The latch-based design allows to save
up to 4× on instruction memory reads [28], while the two-level
nature of cache reduces long critical paths in the instruction
fetch stage while improving effective cache capacity. The first
level (512 B) is private, and the second level (L1.5) is a 4 kB 8-
banks shared cache connected to the L1s with an interconnect
similar to the LIC with low latency. The L1.5 refills from the
L2 memory hosting resident code.

For efficient parallel computing, the cluster supports par-
allel thread dispatching and synchronization via a dedicated
hardware block, the event unit [29]. The cores can wait on
events by doing loads on aliased, low-latency memory-mapped
registers of the event unit. In addition, the event unit controls
the clock-gating for all the cluster cores, meaning that a core
waiting for an event can be put to sleep immediately and can
resume after an event in two cycles.

A. Bit-Scalable Precision Processor

The cores employed in Dustin extend RI5CY [5], a 4-
stages pipeline in-order single-issue processor. Fig. 2 shows
a diagram of the cores’ pipeline: changed submodules w.r.t.
the baseline RI5CY are highlighted in green, whereas the
entirely new blocks are shown in yellow. The baseline RI5CY
supports the standard RISC-V extensions (I, M, C, and F)
and implements a domain-specific extension, called XpulpV2,
that introduces several features useful to improve DNN in-
ference such as hardware loops, bit manipulation instructions,
load/store with post-modified access, SIMD operations for 16-
and 8-bit format [5].

The key novel efficiency-boosting enhancements of the
proposed core are: a new mixed-precision SIMD dot prod-
uct execution unit, integrated into the micro-architecture of
RI5CY, providing support for power-of-two precision formats
ranging from 16- down to 2-bit and all their possible mixes;
an extension of the RISC-V ISA with a set of instructions
to deal with mixed-precision SIMD operations through a
dynamic bit-scalable execution model. Given the ten precision
combinations that the SIMD Unit can execute, using a standard
ISA extension approach where we encode one instruction per
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Fig. 3. Control signals for SIMD and Scalar instructions. The SIMD
instruction is a Sum-of-Dot-Product, and the format is a mixed-precision 8x4.
The bottom picture contains the encoding of the formats that are contained
inside the CSR.

each type and format of operation would lead to an enormous
proliferation in the number of instructions and increased com-
plexity of the decode stage of the micro-architecture. Looking
just at the new dot-product instructions, which, however, are
not the only supported operations, the standard approach
would increase the total amount of instructions from 24 (of
the baseline XpulpV2) to 120.

The dynamic bit-scalable approach exploits a concept we
call virtual instructions. From users’ perspective, the new
SIMD instruction work as regular ones; however, the key
difference lies in the operation precision, which is not directly
encoded into the instruction itself. The precision is specified
at run-time by the content of a Control and Status Register
(CSR), written in advance by the programmer to set the desired
format of the operands. This approach reduces the amount of
dot-product instructions that need to be encoded in the ISA by
10×. Fig. 3 shows a graphical illustration of the dynamic bit-
scalable execution model. The scalar instructions encode the
format and type of the operations meaning that the decoder
alone can provide full information to forward to the ex-stage.
For SIMD instructions, the decoder forwards only information
on the type of operations to perform to the ex-stage, i.e., it
issues the virtual instruction; the additional control signals
required by the execution units to determine the format of
the operands are provided by the CSR.

In mixed-precision convolution routines, the format of the
dot-products can change between layers (or tensors). As illus-
trated in Fig. 4 (a), the programmer can set the CSR to the
desired format using the SIMD FMT macro before calling the
kernel. The overhead of this operation is minimal, as it occurs
within a single cycle and thus it is negligible compared to the
thousands to millions of cycles required for convolution layers
and tensor operations.

Fig. 4 (b) and (c) highlight the benefits of the mixed-
precision support at the ISA level introduced in this work.
They compare a snippet of the assembly code of the innermost
loop of a mixed-precision 8-bit×4-bit convolution kernel,
Fig. 4 (b) targeting the XpulpV2 ISA and Fig. 4 (c) the
ISA extensions presented in this work. In Fig. 4 (b), once
we load the 4-bit weights, additional unpacking and packing
instructions are inserted to cast the 4-bit SIMD vector to 8-
bit before sending the data to the 8-bit DOTP unit. This is
achieved with two step: i) p.extract instruction takes the 4-
bit elements loaded into register x11 and sign-extend them to
a 32-bit integer; ii) pv.packlo/hi.b takes the first 8-bit of two
source registers and pack them in the lower/upper 16-bit of the
destination register, x15 in this case. The figure only show par-
tial code of the inner-loop, given that x11 contains 8 elements

SIMD_FMT(M8x4);
convolution(A, W, Res);
// …
SIMD_FMT(M8x2);
convolution(A, W, Res);

p.lw x10, 4(x4)
p.lw x11, 4(x5)
pv.sdotsp.b x20, x11, x10

p.lw x10, 4(x4)
p.lw x11, 4(x5)
p.extract x6, x11, 4, 0
p.extract x7, x11, 4, 4
p.extract x8, x11, 4, 8
p.extract x9, x11, 4, 12
pv.packlo.b x15, x6, x7
pv.packhi.b x15, x8, x9
pv.sdotsp.b x20, x15, x10

a

c

b

Fig. 4. a) Procedure to set precision formats before calling the convolution
function. b) Mixed-precision convolution inner loop with data unpacking and
conversion overhead. c) Mixed-precision convolution inner loop with direct
mixed-precision support.

and x10 only 4, a new load for the activation (x10) in necessary
before loading new weights. The unpacking procedure is then
repeated for to the upper part of the register x11 (from bit
16 to 32) before the MAC. Nonetheless, this procedure adds
6 instructions of overhead for each dot-product. Thanks to
the hardware support for mixed-precision SIMD operations,
the execution depicted in Fig. 4 (c) requires no additional
packing/unpacking instructions, providing a significant boost
in performance on Mixed-Precision executions.

At the micro-architectural level, we extend the ALU and
the DOTP units of RI5CY to support the ISA instructions
introduced above. We add extra CSR registers for storing
the operations’ formats, and we design a mixed-precision
controller to handle the selection, slicing, and routing of SIMD
vector elements to the execution units of the ex stage of the
pipeline.

We detail the DOTP unit architecture, omitting that of the
ALU for the sake of conciseness, as its design follows a similar
approach. The DOTP unit computes the dot-product (dotp)
operation between two SIMD registers and accumulates the
partial results over a 32-bit scalar register through an adder tree
in one clock cycle of latency. The SIMD vectors can be either
symmetric or featuring mixed formats, within a precision range
from 16-bit down to 2-bit.

The dot-product operations are implemented in the DOTP
unit with a number of multipliers equal to the number of
elements of the SIMD vector (in the mixed-precision context,
the highest-precision SIMD vector determines the correct set
of multipliers to be used) defining four different “bitwidth”
regions, each followed by a dedicated adder tree that sums up
the partial products, as shown in Fig. 5 for the 4-bit precision
operation (DOTP-4). The sum-of-dot-product (sdotp), which
is the SIMD equivalent of a MAC operation, is supported by
adding an additional 32-bit scalar operand at the input of each
adder tree.

To minimize the logic, operand B is designated to be always
the smallest operand in mixed-precision SIMD operations
without loss of flexibility. Referring to Fig. 5 we introduce
a slicer & router network to: a) slice operand b according
to the value coming from CSR Format Register; b) select the
correct subset of operand b with the SLICE selector signal
coming from the mixed-precision controller; c) sign-extend
(or zero extend) the vector to match the size of operand a
in order to use the appropriate DOTP unit (e.g., an 8x4-bit
operation requires DOTP-8).

Since dotp operations are critical from a timing closure
viewpoint, replicating the hardware resources over different
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Fig. 5. On the left, an overview of the dot-product unit; on the right, the internals of the DOTP-4.

Accumulator Result

x5 (A0) x7 (B0)[3:0]

Outer_loop: p.lw x7, 4(x10)! ( load B 0)
p.lw x8, 4(x10)! ( load B 1)

Inner_loop: p.lw x5, 4(x10)! ( load A 0)
p.lw x6, 4(x10)! ( load A 0+4)
pv.sdotsp x15, x5, x7
pv.sdotsp x16, x5, x8
pv.sdotsp x15, x6, x7

Loop_end: pv.sdotsp x16, x6, x8

x5 (A0) x8 (B1)[3:0]

Accumulator Result

x6 (A0+4) x8 (B1)[7:4]

Accumulator Result
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MAC Counter = 0 SLICE Selector = 0 MAC Counter = 1 SLICE Selector = 0 MAC Counter = 0 SLICE Selector = 1

MAC Counter = 1 SLICE Selector = 1 MAC Counter = 0 SLICE Selector = 2

Fig. 6. Mixed-Precision Dot Product 8x2, on the bottom right, an example of an inner-loop of a convolution kernel run on Dustin. p.lw is a post-increment
load, automatically updating the A0 pointer by 4. Indexes within square brackets indicate the elements of the Bx operand selected by the mixed-precision
controller.

bitwidth “regions” of the DOTP unit avoids impacting the
critical path of the RI5CY core at the cost of additional
area and power. However, to mitigate the effects of hardware
replication on the dynamic power consumption of the system,
all the input operands of the DOTP unit are register-gated to
avoid switching for operands not involved in the current SIMD
operation.

The last component added to the core is the mixed-precision
controller, which selects the proper sub-group of elements
from the second source register (operand B). The entire process
is described in Fig 6. When the decoder identifies a mixed-
precision MAC operation, the slice selector selects the proper
sub-group of B operands (e.g., [3:0] in (a)). The group of B
operands is kept the same until the MAC counter reaches its
target, defined by a control register explicitly written by the
programmer. Once the MAC counter reaches the programmed
target, it goes back to index 0, while the slice selector is shifted
left (e.g., [7:4] in (c)). This process continues until the whole
kernel has been executed.

QNN kernels follow a uniform pattern in their computation,
and the combination of sequential and reuse information is
enough to deal with mixed-precision computation. To give
maximum flexibility to the programmer, we implement the
ability to control via software the subgroup of operands to
use by directly writing the value in the counter. This feature
is useful if the application includes an operation pattern that

the mixed-precision controller cannot deal with automatically.

B. Vector Lockstep Execution Mode

The inner kernel of intensive workloads can be parallelized
on multiple cores that execute the same instruction on different
data. On a cluster of general-purpose cores using a MIMD
execution model, this translates into a loss of efficiency due
to the VNB, which implies extra energy for fetching the
same individual instructions for all the cores in the cluster.
To counteract this effect, in the Dustin cluster we introduce
support for a novel Vector Lockstep Execution Mode (VLEM),
where all cores execute the same instructions cycle-by-cycle.
When the cluster is configured in VLEM, core 0 acts as a
leader core, and the other 15 act as followers. While VLEM
is active, the IF stages and private caches of the follower cores
are clock-gated to save energy, and only the leader core fetches
the instruction and forwards them to the follower cores. Fig. 7
provides a high-level overview of the two systems. To enter
or exit VLEM, all cores have to i) synchronize on a barrier,
and ii) write to a memory-mapped register.

It is crucial to make sure that all cores are in sync
when entering VLEM and stay in sync during VLEM execu-
tion. Load/store operations simultaneously accessing the same
TCDM bank are a potential source of desynchronization. In
MIMD mode, the TCDM interconnect via round-robin gives
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Fig. 8. Request/Grant handshake for memory accesses at the core’s interface.
All cases present 3 concurrent memory requests on the same bank. a) MIMD
case, sequentially served; b) VLEM case, sequentially served but Grant
held by LKS unit for synchronization; c) Same bank and same address in
VLEM which trigger broadcasting and resolution in one cycle; d) Performance
overheads for different VLEM optimization implementation.

access to the cores, delaying multiple accesses to the same
bank. The core’s memory accesses are carried out using a
request/grant handshake: if the grant is not asserted, the core
stalls until it arrives. To keep cores aligned in VLEM, this
mechanism is extended to hold all grant signals until all
memory accesses have been completed. The grants are then
released simultaneously, preserving the synchronization.

Fig. 8 shows a simplified example of this behavior with
3 cores. In MIMD mode (Fig. 8(a)), the 3 cores try to
access the same bank simultaneously. The request signal of
the three cores is asserted by all concurrently, but the grant
is given sequentially, starting from core 0 to 2. Whenever the
grant is received, the core can keep executing the rest of the
code; otherwise, it stalls until the grant is received. In VLEM
(Fig. 8b), the starting point is similar, but the grant for cores 0
and 1 are held until core 2 can also be served. As all memory
accesses are served simultaneously, the cores remain synced.

Keeping cores always in sync can lead to performance
overhead whenever all cores repeatedly access the same bank.
In MIMD mode, this is not an issue - the mechanism described
in Fig. 8a desynchronizes them, which means the overhead is
typically only paid once. In VLEM, however, without specific
countermeasures, the cores would hit serialization overhead
in all successive accesses – a penalty from 2 to 16 cycles
per access depending on the number of conflicts. Fortunately,
a common case is that of cores accessing the same word in
the same bank, e.g., a pointer to the base of a shared array,

Request 
Silencer

Broadcast 
Unit

Grant 
Synch.

Data 
Synch.

LKS

MEMORY 
SIDE

CORE 
SIDE

BRDC Lockstep 
Mode

Fig. 9. Internal components of the Lockstep Unit that sits between the cores
and memory.

such as a weight filter utilized by all cores in a DNN. To
avoid any overhead in this instance, we employ a hardware
broadcasting mechanism in Dustin. It works by snooping the
addresses of memory loads from all cores, comparing them,
and propagating to memory single access if they are equal.
The value extracted from memory is broadcasted to all the
cores allowing 16 data accesses with one request.

Broadcasting does not solve conflicts occurring when ac-
cessing the same bank at different offsets, happening when
memory structures with a size multiple of the number of
banks are used. For instance, let us assume to have an
output tensor of 8-bit data with a H ×W × C layout with
dimensions 16 × 16 × 16. Supposing that the tensor starts
from an address aligned with the banks (Dustin includes 32
banks of 32-bit words, hence aligned to 128 bytes), core 0
will access bank 0 at address 0; core 1 will access with an
offset of 16 × 16 × 16 = 4096 bytes that also aligned to
128 bytes (bank 0); core 2 and the rest will all be accessing
multiple of 4096 bytes, meaning that all cores will access the
bank sequentially. In highly arithmetic-intensive kernels, these
conflicts are typically systematic: as the cores proceed in sync,
they consistently access the same bank due to word-level bank
interleaving.

A simple yet effective software-based countermeasure is to
allocate data so that the base addresses seen by each core
are never aligned in the same bank. Section IV discusses this
problem and the related software countermeasures in detail.

In Fig. 8 d) we report the performance overhead of VLEM
compared with the baseline case of execution in MIMD mode
using a CNN layer as an example. Without any countermea-
sure, the number of cycles is increased by 73%, translating
into meager performance. Broadcasting reduces the overhead
to 50%, which is still not acceptable. By adding ad-hoc data
misalignment, so that base addresses are never on the same
bank, overhead is down to 3% in this specific test.

VLEM can be activated/deactivated in a single cycle by
setting a memory-mapped register. When VLEM is engaged,
the lockstep unit (LKS) is activated. Fig. 9 shows the key
components of the LKS. Blue blocks indicate the path from the
cores to memory, while green blocks show the return path. In
MIMD mode, the LKS is bypassed. In VLEM, the Broadcast
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int A[1024], B[1024], C[1024];

void sum_vectors() {

for(int i=CORE_ID; i<1024; i+=N_CORES)

C[i] = A[i] + B[i];

}

int A[1024], B[1024], C[1024];

void sum_vectors() {

int start = 64*CORE_ID;

int end = start + 64;

for(int i=start; i<end; i++)

C[i] = A[i] + B[i];

}

0 1 2BANKS

CORES 0 1 2

0 1 2

0 1 2

First 
access

Second 
access

Third 
access

No conflicts

1 conflict per
iteration

BANKS

CORES

CHUNK_SIZE == 1

CHUNK_SIZE == 64

31…

15…

31…

15…

Fig. 10. Element-wise vector addition with chunk size equal to 1 (top) and
64 (bottom). Access to the same memory bank by different cores executing
the same instruction results in systematic bank conflicts.

Unit filters the memory requests. The unit matches request
addresses and asserts a broadcast signal (BRCD) to the Request
Silencer. The Requests Silencer then blocks requests from the
follower cores and only forwards the leader’s one. The Grant
Synchronizer and Data Synchronizer are responsible to keep
the cores synchronized in terms of conflict on the memory
banks, and when a broadcasting event happen, they are also
responsible to forward Data to the follower cores.

Entering VLEM also has an impact on the instruction cache
subsystem. Specifically, the leader core’s private cache is not
touched, but the caches of follower cores terminate any in-
flight cache refill and then enter sleep. On exit of VLEM,
the follower’s PC will be set to the leader value, and the
caches will be turned on again. Depending on the number of
instructions executed during VLEM, switching back to MIMD
mode can cause the follower cores to stall immediately due to
instruction cache misses.

IV. SOFTWARE STACK AND PROGRAMMING MODEL

We add dedicated extensions to the PULP GCC compiler
and its hardware abstraction layer (HAL) to support the
specific features of Dustin (i.e., multiple-precision arithmetic
and VLEM). We define a set of intrinsics in the GCC backend
for each mixed-precision variant of MAC and dot-product
operations. SIMD vectors do not comply with the GNU vector
extension but are represented as 32-bit opaque types (i.e.,
int32 t). This design choice is motivated by the fact that GCC
does not handle data formats of less than eight bits, while we
need support for 2-bits and 4-bits elements. Nevertheless, this
approach is totally transparent from the user perspective; as the
only limitation, the programmer does not benefit from static
type checking for multi-precision arithmetic. In addition to the
compiler backend, we extend the HAL with additional support
to facilitate VLEM programming. The baseline HAL provides
a set of primitives for core identification, synchronization, and
memory allocation.

Core identification is achieved through a function that re-
turns the unique identifier (core id) of the core; on the Dustin
platform, the core id is an integer value in the range [0..15].
Programmers can exploit loop-level parallelism, partitioning

int A[1024], B[1024], C[1024];

int Buffer[256*N_CORES];

void kernel() {

for(int i=CORE_ID; i<1024; i+=N_CORES)

C[i]+= A[i]* Buffer[256*CORE_ID+i];

}

0 1 2

0 1 2

1 conflict per
iteration

BANKS

CORES

31…

15…

Fig. 11. Code template for an application kernel accessing an intermediate
buffer with an expression depending on coreid. This pattern results in
systematic bank conflicts when the buffer size is a multiple of the number of
banks multiplied by the word size.

…
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L1_MISALIGN_TOTAL(n)

*

*

Fig. 12. Memory layout of a statically allocated global buffer, highlighting
the offsets of the core sub-buffers and the padding areas required to avoid
bank conflicts.

loop iterations into chunks and distributing these chunks to the
executing cores in a round-robin order. This approach needs
to include core identifiers into the loop control expressions
(i.e., initialization, condition check, and increment). Core
identification is extensively used in both modes (i.e., MIMD
and VLEM). The primary synchronization primitive provided
by the HAL is called barrier. This function stops a core until
all other cores execute an associated barrier function, enforcing
a synchronization point in the program flow. Programmers
must explicitly add a call to this function to guarantee data
consistency between adjacent code regions. However, the event
unit component [29] provides low-overhead synchronization
support, enabling power-saving policies for waiting cores. The
barrier is the main synchronization mechanism adopted in
Dustin during MIMD operation. Finally, the original PULP
HAL supports static and dynamic memory allocation. Static
allocation requires specifying the data size at compile time
through constants (e.g., the sizes specified for arrays must
necessarily be constant values). In C++ programs, constexpr
expressions can replace constant literals; anyhow, their result
is constant and computed at compile time. Global variables
can be placed in TCDM or L2 memory areas decorating their
declaration with a preprocessor macro (PI L1 or PI L2, re-
spectively) mapped on a attribute ((section(...))) directive.
Following C and C++ semantics, local variables are on the
stack; as discussed later, the stack memory area is allocated
on the L1 memory. Dynamic allocation on the heap memory
area is available through HAL primitives using a standard heap
allocator based on malloc/free functions. The malloc function
requires specifying the size of the memory area to allocate and
returns a pointer of type void that can be cast into a pointer
of any form. The free function de-allocates a memory region,
which becomes available for the following malloc calls. The
HAL provides alternative malloc/free functions to allocate data
in L1 or L2 memory.
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Fig. 13. Chip micrograph.

TABLE I
DETAILED AREA BREAKDOWN OF DUSTIN COMPUTE CLUSTER

CLUSTER LEVEL
Dustin [µm2] Ref [µm2] Perc. Delta[%]

Cluster 3 811 874 3 607 831 100 5.66
Icache 1 111 617 1 110 692 29.2 0.08
TCDM Memory 889 069 889 051 23.3 0.00
Cluster Interconnect 160 908 158 859 4.2 1.29
Cluster Peripherals 134 202 134 353 3.5 -0.11
DMA 101 388 101 522 2.7 -0.13
Core Region 82 600 70 805 2.1 16.66
Lockstep Unit 11 668 - 0.3 -

CORE LEVEL

Core 79 970 68 335 100 17.03
IF Stage 6803 6563 8.5 3.66
ID Stage 28 358 26 129 35.5 8.53
EX Stage 37 156 29 026 46.5 28.01
Load Store Unit 2104 1930 2.6 9.02
CSR 4959 4629 6.2 7.13

From the memory access perspective, algorithms can adopt
two alternative memory access patterns, strided or indirect.
The strided pattern consists of a regular sequence of accesses
characterized by an initial address, a distance between adjacent
accesses (called stride), and the number of accesses in the
sequence. E.g., a sequence can be expressed as A[i]0:1:N−1,
where A is an array variable, and i is a loop induction variable
ranging from 0 to N − 1 with stride 1. The indirect pattern is
a sequence of accesses where multiple memory requests are
required to access each element.

An analysis of the memory access pattern becomes critical
when VLEM is active because some cases can induce sys-
tematic bank conflicts that are detrimental to performance, as
shown in the upper part of Fig. 10. In the case of a stridden
access pattern, programmers can avoid bank conflicts by coa-
lescing memory accesses at the bank level. This property holds
if adjacent cores execute the same instruction access addresses
located on contiguous banks. The actual feasibility of this
technique does not depend exclusively on the memory access
pattern but also on the loop parallelization strategy. Fig. 10
illustrates a code performing element-wise vector addition for
two alternative chunk size values at the two extremes of the
possible range (i.e., 1 and 64). The access pattern has a unit
stride, but the absence of bank conflicts depends on the chunk

Fig. 14. Voltage Sweep vs. Max Freq. vs. Energy/Cycle.
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Fig. 15. Power in an inner loop of a CNN layer (MIMD vs. VLEM).

size. Setting the chunk size to 1 prevents bank conflicts, while
the value 64 induces all the accesses to insist on the same
bank. In the general case, if s is the byte size of the array
element (less or equal to 32 bits), w is the word size, nC is
the number of cores, and nB is the number of banks, a chunk
size in the range between w/s and (nB/nC) ∗ (w/s) avoids
the presence of bank conflicts. The Dustin HAL provides
the macros MIN_CHUNK_SIZE and MAX_CHUNCK_SIZE to
retrieve these values specifying only the element size since the
other parameters are architecture-dependent.

Fig. 11 shows a code template presenting an access pattern
that is dependent on the core ID. This pattern is commonly
found in libraries that perform operations on intermediate
buffers, such as PULP-NN [5]. The occurrence of this pattern
can result in bank conflicts, depending on the starting address
of the individual buffer regions. These conflicts are systematic
when the buffer size is a multiple of w∗nB . In the general case,
conflicts occur if the set of remainders between the starting
addresses referred to by each core and w∗nB does not contain
exactly NC elements. To address this issue, the Dustin HAL
provides a function, called l1_misaligned_malloc, for
dynamic memory allocation of intermediate buffers on L1.

This function is a wrapper around the malloc operations,
forcing the starting address of the allocated memory space to
be allocated on the bank number equivalent to the core id.
This approach enables each core to allocate its local buffer
with a strong guarantee of the absence of bank conflicts in the
case of strided access patterns.

Some application domains strictly require static allocation
of a single memory buffer shared among the cores, precluding
the use of l1_misaligned_malloc. In these cases, the
Dustin HAL provides a macro L1_MISALIGN_TOTAL that
computes the total amount of contiguous memory required to
fulfill requirements and avoid structural bank conflicts. Addi-
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tional padding space is introduced to move the start address
of each core on a different bank. Supposing that each core
requires n bytes, the macro returns nC ∗ sub buffer size,
with sub buffer size = d(n+(nC ∗w))/(nB ∗w)e ∗ (nB ∗
w). In addition, the macro L1_MISALIGN_OFFSET returns
the starting offset of the sub-buffer related to core id as
core id ∗ sub buffer size+ core id ∗w. Fig. 12 illustrates
the memory layout of a statically allocated global buffer. The
padding area between adjacent sub-buffers varies based on the
value n, and it is equal to nB ∗w− 1 bytes in the worst case.
Once misalignment is achieved, the performance benefits are
shown in Fig. 8(d), in particular, going from the middle to
the rightmost bar. This outcome is unrelated with the shape
of the array being computed, which only impacts the memory
requirements. For instance, a 3D Convolution with 16 input
channels and a 3x3 filter necessitates an input buffer of 6144
bytes as opposed to 4608 bytes (as calculated using the above
formula).

V. CHIP DESIGN AND SILICON MEASUREMENTS

Fig. 13 shows a die photograph of Dustin. The SoC is
implemented in TSMC 65nm CMOS technology targeting a
clock frequency of 200 MHz in typical operating conditions,
within a die size of 10 mm2. In the following, we analyze the
measurements of Dustin’s cluster, leaving aside the measure-
ments of the SoC subsystem used in this work as a software
programmable testbench hosting the RISC-V core, a standard
set of peripherals, and 80 kB of SRAM memory.

Fig. 14 reports Dustin’s cluster maximum operating fre-
quency and energy per cycle at different supply voltages,
ranging from 0.8 V to 1.2 V. The measurements are carried out
on the silicon prototype, running matrix multiplication kernels
with 8-bit precision operands, a typical high-utilization deep
neural network workload. The operating frequency increases
with the voltage up to the maximum of 205 MHz, measures
with an operating voltage of 1.2V. In terms of energy, we
notice a significant saving factor when the cluster runs a matrix
multiplication kernel in VLEM, about 38% lower energy per
cycle compared with the MIMD mode in all the voltage
corners considered. This result on regular kernels like matrix
multiplications is achieved thanks to the clock gating applied
to the caches and IF stages of the follower cores, which
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Fig. 17. The chart compares the execution of mixed-precision convolution
kernels running on the baseline 16 cores cluster with the RI5CY core (software
mixed-precision kernels) and on Dustin’s cluster in VLEM (featuring the
Mixed-precision ISA extensions).

are not used in VLEM, reducing the cluster dynamic power
consumption.

To understand the costs in terms of area and power of
our contributions, we implement a baseline version of the
cluster, stripped of VLEM logic and the Mixed-precision
capabilities, with a full synthesis and place and route flow. We
compare the two clusters from a physical point of view and
from a performance and energy efficiency perspective. Table I
reports the comparison between the two clusters in terms of
area, detailing the breakdown of the main components of the
cluster and the core. The Dustin cluster is 5% bigger than
the reference one. The main contributors to this overhead are
the cores, where most of the new logic resides. The leader
and the follower cores show the same area, since the follower
cores still feature IF stages to be used in MIMD mode. The
additional wires of the leader core to broadcast the instructions
to the other cores (when the cluster is in VLEM) contribute
with negligible overhead.

The features added to Dustin’s cores brought a 17% of
area overhead when compared to RI5CY. The IF stage has
been modified to incorporate the new logic to enable the
VLEM, while ID includes a mixed-precision controller and
modifications to the decoder to support the new set of virtual
instructions. The EX stage contributes the most to the core
area increase at 28% (w.r.t. RI5CY ex-stage), as it features
a new extended DOTP unit designed to handle 4-bit, 2-bit,
and all mixed precision permutations between 16-bit and 2-bit.
Additionally, the LSU area has increased, as the TCDM inter-
connect requires increased driving strength for the increased
complexity brought by the LKS. This effect is due to the
lockstep and broadcast units along the path from the cores
to the TCDM banks. Finally, the CSR includes new registers
to store the format of SIMD mixed-precision instructions.
Looking at the whole Dustin’s cluster, each core has a modest
contribution in area of only 2.1%.

In conclusion, the proposed approach demonstrates an af-
fordable 5% increase in area overhead with an impact of
13% timing wise, which takes into account the broadcast
mechanism. We argue that these trade-offs are acceptable given
the significant improvements in terms of performance and
energy efficiency that the mixed-precision and VLEM features
bring over the baseline cluster.



11

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

Conv 3
_32_3_16_32

Conv 1
6_32_3_16_32 (1

)

Conv 1
6_32_3_16_32 (1

)

Resid
ual (

1)

Conv 1
6_32_3_32_16 (2

)

Conv 3
2_16_3_32_16 (2

)

Poin
tw

ise
 (2

)

Resid
ual (

2)

Conv 3
2_16_3_64_8 (3

)

Conv 6
4_8_3_64_8 (3

)

Poin
tw

ise
 (3

)

Resid
ual (

3)

Ave
ra

ge
 P

ool

Fu
lly

 C
onnect

ed

La
te

n
cy

 [
m

s]

MIMD Latency
VLEM Latency

0

15

30

45

60

75

90

105

120

En
e

rg
y 

[u
J]

MIMD Energy
VLEM Energy

Fig. 18. Latency and Energy Consumption of ResNet8 executed in MIMD
and VLEM modes on the Dustin cluster. Textured bars indicate time spent in
the IM2Col phase of the layer (executed in MIMD). The rest of the time is
time spent on MatMul (executed in VLEM).

To fortify the previous statement, Fig. 15 reports the power
breakdown of the innermost loop of a QNN convolution layer.
The values shown are the results of post-layout simulations
running Dustin’s cluster at 50 MHz, at the supply voltage
of 1.0V, in the typical corner (TT, 25C). We run post-layout
simulations because such a study would not be possible from
silicon measurements since all the cluster components share
the same power lines, and no fine-grained breakdown can be
extracted. In the convolution kernel considered, which follows
the data flow presented in [5], each core of the cluster process
different subsets of the input feature map over the same set
of weights to produce different sub-sets of the output feature
map. When the cluster runs in VLEM, such a layout allows
to massively leverage Dustin’s broadcast features on the QNN
weights, significantly reducing the power consumption of the
TCDM interconnect, in addition to the clock gated caches and
IF stages of the followers cores. In the pie chart on the right
of Fig. 15, we stress the fact that most of the power is spent
on computation (ID-EX) in VLEM, eliminating the overhead
of moving back and forth the same data from the TCDM to
the cores and independently fetching the same instructions for
all the cores, as it happens instead in MIMD mode.

A. Benchmarking

To highlight the performance and the energy efficiency of
the silicon prototype on QNN workloads, we firstly benchmark
heavily quantized and mixed-precision convolution kernels,
varying the format of the operands from 2-bit to 16-bit, cov-
ering all the relevant operand precision permutation scenarios.
Then, we present the performance of the proposed SoC on an
end-to-end DNN for TinyML applications.

1) Quantized DNN Kernels: In Fig. 17, we report the
performance of the kernels running on Dustin’s cluster, and
we compare the results with the baseline cluster described
above, featuring the RI5CY cores. In the latter case, sub-byte
and mixed-precision kernels are handled purely in software,
as shown in [9]. We notice that on kernels where only the
activations are sub-byte operands, the performance benefits of
the hardware support for mixed-precision computation range
from 1.9× to 2.8× due to the unpacking functions used in
RI5CY, but in a less arithmetic intensive portion of the kernel.
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Fig. 19. Execution time and computational efficiency of ResNet8 quantized
with 8-bit Activation and 4-bit Weights executed on a Dustin Cluster in VLEM
mode with Mixed-Precision extensions off (blue bars) and on (red bars).

TABLE II
RESNET8, COMPARISON WITH STATE-OF-THE-ART

Processor Technology ISA Latency [ms] Energy [uJ]
DUSTIN

(this work) 65 nm RISCV
+ Custom ISA 3.80 373

GAP9 22 nm RISCV
+ ACC. 0.62 40.4

NDP9120-EVL 40nm ARM
+ ACC. 5.12 139.4

CORTEX M7 40nm ARM 54.3 8707.3
CORTEX M4 90nm ARM 226.9 10681.6

CORTEX M33 40nm ARM 139.7 3642

Comparison with other SoA Microcontrollers on the Restnet8 bechmarks.

In all other configurations, the mixed-precision ISA extensions
provide a significant advantage ranging from 2× to 7.7×
improvements w.r.t. the baseline cluster, where the unpacking
operations must be performed even in the innermost loop of
the convolution, degrading the performance heavily.

To highlight the energy savings of the VLEM on regular
computing kernels, we measure the energy consumption with
the cluster running the matrix multiplication in two modes: the
classic MIMD mode and the VLEM (enabled via software).
Fig. 16 shows the related efficiency. The execution of linear
kernels in VLEM achieves 1.5× better energy efficiency and
no performance overhead w.r.t. the default MIMD execution.

2) ResNet8 Inference: This section presents the results of
the inference of a ResNet8 from the MLPerf Tiny Bench-
mark [30], the leading benchmark suite for tiny devices at
the edge. The results published online2 are trained on the
CIFAR-10 dataset where we achieved a top-1 accuracy of 88%
on float, 8-, 8x4-, 4-bit quantization. However, a reduction
down to 84% was observed on 2-bit quantization. For this
simple dataset, the number of bits chosen for the quantization
of activations and weights has a relatively minor effect on
accuracy. However, this may not be the case for harder datasets
and more complex models. As shown by Capotondi et al. [31],
using mixed-precision quantization can provide significant
benefits, particularly on the MobileNetV1 model. The mixed-
precision quantized network achieved the highest accuracy,
as the full precision (8-bit) could not fit in the memory of
the MCU, forcing the implementation to use a shallower
network leading to a great loss of accuracy. In this work, we
choose to show the inference on an 8-bit and 8x4-bit mixed-

2https://mlcommons.org/en/inference-tiny-10
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TABLE III
COMPARISON WITH STATE-OF-THE-ART

SleepRunner [32] SamurAI [33] VEGA [24] XPULPNN [8] Dustin (this work)

Technology CMOS 28nm
FD-SOI

CMOS 28nm
FD-SOI

CMOS 22nm
FD-SOI

CMOS 22nm
FD-SOI CMOS 65nm

Silicon Proven Yes Yes Yes No Yes
Die Area 0.68 mm2 4.5 mm2 12 mm2 1.05 mm2 10 mm2

Apllications IoT GP IoT GP + DNN IoT GP + DNN IoT GP + DNN + QNN IoT GP + DNN + QNN

CPU/ISA CM0DS
Thumb-2 subset

1x RI5CY
RVC32IMFXpulp

9x RI5CY
RVC32IMFXpulp

8x RI5CY
RV32ICMXpulpnn

16x RI5CY
Mixed-Precision Extended

Int Precision (bits) 32 8,16,32 8,16,32 2,4,8,16,32 2,4,8,16,32
(plus mixed-precision)

Supply Voltage 0.4 - 0.8 V 0.45 - 0.9 V 0.5 - 0.8 V 0.6 - 0.8 V 0.8 - 1.2 V
Max Frequency 80 MHz 350 MHz 450 MHz 400 MHz 60 - 205 MHz
Power Envelope 320 uW 96 mW 49.4 mW 19.3 - 41.6 mW 23 [14] - 156 [98] mW3

1Best Integer Performance 31 MOPS(32b) 1.5 GOPS (8b)2 15.6 GOPS (8b) 5.61 GOPS (8x4/2b)
3.12 GOPS (4x2b)

23 GOPS (8b)
43 GOPS (4b)
72 GOPS (2b)

8.27 GOPS (8x4/2b)
8.6 GOPS (4x2b)

15 GOPS (8b)
30 GOPS (4b)
58 GOPS (2b)

16.7 GOPS (8x4b)
18.4 GOPS (8x2b)
33.6 GOPS (4x2b)

1Best Integer Efficiency 97 MOPS/mW
@ 18.6 mops (32b)

230 GOPS/W
@ 110 MOPS (8b)2

614 GOPS/W
@ 7.6 GOPS (8b)

220 GOPS/W
@ 2,7 GOPS (8x4/2b)

123 GOPS/W
@ 1.52 GOPS (4x2b)

1111 GOPS/W (8b)
@ 11.4 GOPS

2565 GOPS/W (4b)
@ 21.7 GOPS

3050 GOPS/W (2b)
@ 36.2 GOPS

400 GOPS/W
@ 4.1 GOPS (8x4/2b)

513 GOPS/W
@ 4.3 GOPS (4x2b)

303 GOPS/W (8b) @
4.4 GOPS

570 GOPS/W (4b) @
8.8 GOPS

1152 GOPS/W (2b) @
17.3 GOPS

345 GOPS/W
@ 5 GOPS (8x4b)

379 GOPS/W
@ 5.5 GOPS (8x2b)

640 GOPS/W
@ 10 GOPS (4x2b)

1 OPs = 1 8-bit (or 4-bit or 2-bit) MAC on MatMul benchmark unless differently specified. 2 Execution on SW programmable Core.
3 Square brackets indicates power consumption in VLEM.

precision configuration to highlight the benefits of mixed-
precision hardware support for end-to-end DNN inference.

Following the computational model adopted in the PULP-
NN library [5], each convolutional layer first creates an
IM2COL buffer into L1 memory, reordering the 3D input
feature map into a 1D vector in Height-Width-Channel (HWC)
tensor layout. Then the MatMult can be performed. VLEM
can only be applied effectively to the MatMul kernel since
IM2COL buffer creation mainly consists of byte reordering
operations and bitwise operations (for sub-byte convolutions),
featuring very irregular patterns and challenging vectorization.

In general, to have an efficient execution (i.e., a high
number of MACs/Cycle), the cluster should spend most of
its execution time on matrix multiplication rather than on
IM2COL. With an HWC tensor layout, the number of input
channels is proportional to the number of iterations of the
kernel inner loop. In contrast, the number of output channels is
proportional to the times the inner loop is repeated. While the
configuration characterized by 32 input channels and 64 output
channels with a 3×3 kernel used for synthetic explorations
in the previous section reaches a peak performance close
to the ideal (35 MAC/Cycle), this specific configuration is
not present in the ResNet8. More specifically, the network
input layer presents 3 input channels and 16 output channels
featuring computational efficiency of 16.3% (5 MAC/Cycle),
where computational efficiency is defined as the ratio between
ideal performance and actual performance. On the other hand,
deeper layers present higher computational efficiency, closer
to the ideal: 60%; 75% and 90% for the first, second, and third
group, respectively, as shown by the dotted lines in Fig. 19.

Fig. 18 shows a comparison of execution time and the en-
ergy consumption of the network’s layers between MIMD and
VLEM modes at the operating frequency of 200MHz (1.2V).
VLEM is applied to the MatMul kernel of all the layers except
the last two. In section III-B, we mentioned the overhead that
comes with entering and exiting VLEM. This is visible in the
textured section of the graph (IM2COL). We can note that
the more frequently we switch to VLEM, the larger will be
the overhead (e.g., Conv 3 32 3 16 32 requires 512 switches
with an 11% overhead, meanwhile, Conv 32 16 3 64 8 (3)

only has 8 with 6% overhead). Furthermore, a larger number
of inner-loop operations helps hide the impact of entering
and exiting from VLEM. Such a number is proportional to
the number of input and output channels. We can observe
that, while the difference in execution time between the two
modes of operation is negligible, the impact on energy is
more significant. In general, the smaller the time spent in
creating the IM2COL over the overall layer time, the better
the energy gain. This effect is also reflected in Fig. 18 where
the dotted lines increase their distance when moving from
left to right. Overall, the MIMD executes a frame in 3.72ms
spending 581µJ ; in VLEM, a frame is ready after 3.80ms
spending 373µJ saving 35% of energy at the expense of 2%
in execution time.

Finally, Fig. 19 shows the combined effect of VLEM and
Mixed Precision extensions over a baseline cluster where
both features are disabled. We use the ResNet8 network
described before quantized with 8-bit activation and 4-bit
weights, with the input layer and output layer quantized to
8-bit. This mixed-precision setting has been shown to achieve
accuracy comparable to full-precision (8-bit) even on complex
datasets [1]. We can note that exploiting a combination of
VLEM and mixed-precision extensions on the full network
reduces execution time by 63% and energy consumption by
73%. In Table II, we present the results of peak performance
for the specific benchmark that is available online. The Dustin
processors were found to be ranked second and third in terms
of latency and energy efficiency, with only processors utilizing
dedicated accelerators surpassing their performance.

B. Comparison with the state-of-the-art

Table III shows a comparison with recently published IoT
end-nodes and fully programmable clusters. Compared to
traditional single-core IoT end nodes [32], [33], the proposed
work delivers significantly better performance and efficiency
thanks to the exploitation of parallelism. Compared to similar
fully programmable multi-core IoT end-nodes [34], [24], im-
plemented in 40nm and 22nm technology nodes, respectively,
the proposed SoC delivers similar performance and energy ef-
ficiency on an 8-bit format, despite the less scaled technology
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node used for its implementation. The performance goal is
achieved thanks to the larger parallelism of the cluster, which
compensates for the less scaled node. Most significantly, if
we compare the energy efficiency, we can note that it is also
similar thanks to the VLEM execution mode saving up to 38%
of the overall power consumption of the cluster.

If we compare Dustin and XPULPNN [8] performance
in uniform-precision kernels, we note a gap ranging from
30 to 20%. This effect is related to MAC&LOAD instruc-
tions: they allow XPULPNN to compute MACs while loading
the following operand simultaneously. Nevertheless, executing
mixed-precision kernels adds the unpacking/packing overhead
reducing the efficacy of MAC&LOAD instructions. In this
scenario, Dustin firmly outperforms XPULPNN and reaches
comparable energy-efficient results despite the substantial gap
between the technologies used for implementation. It should be
noted that Mixed-Precision extensions proposed in this work
could be combined to MAC&LOAD to boost performance in
both uniform mixed-precision quantized kernels.

VI. CONCLUSION

We presented Dustin, a fully programmable Multiple In-
structions Multiple Data (MIMD) cluster integrating 16 RISC-
V cores featuring 2b-to-32b bit-precision instruction set archi-
tecture (ISA) extensions enabling fine-grain tunable mixed-
precision computation. The cluster can be dynamically con-
figured into a Vector Lockstep Execution Mode (VLEM),
turning off all IF stages and L1 I$ except one, reducing power
consumption on average by 38% with no performance degra-
dation. The cluster, implemented in 65nm CMOS technology,
achieves a peak performance of 58 GOPS and a peak efficiency
of 1.15 TOPS/W – competitive with IoT end-nodes using
much more scaled and expensive technology nodes.
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