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Abstract

The problem of aiming a generic body-fixed axis along an inertially fixed direction
is dealt with for an underactuated spacecraft, in the presence of a non–zero residual
angular momentum, considering a situation where only two reaction wheels (RWs)
can exchange angular momentum with the spacecraft platform. The admissible
pointing directions are investigated first, providing (i) an analytical condition for
the feasibility of the desired pointing and (ii) a closed-form solution for the deter-
mination of the corresponding attitude with zero platform angular rate, if feasible.
A nonlinear controller is then developed in the framework of singular perturbation
theory, enforcing a two-timescale response to the system. Convergence to the de-
sired attitude from arbitrary initial conditions is investigated for both rest-to-rest
maneuvers and randomly generated initial tumbling conditions. Simulations are
performed for a configuration representative of a small-size satellite, proving that
the pointing problem can be effectively tackled even though a non–zero residual
angular momentum is present, if the desired pointing direction falls within the
admissible limits.
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1. Introduction

Advances in spacecraft and satellite control systems succeeded in solving

several challenging problems concerning attitude tracking, robust control,

optimal slew maneuvers, or precision pointing [1], while assuming a number

of actuators equal to, or larger than, the rotational degrees of freedom of

the system, where the actuators may in some cases exploit different physical

principles [2]. In the attempt of extending operational lifetime or increasing

mission resilience to system failures, attitude stabilization problems in case

of actuator failures have being gaining an increasing attention in the recent

past. The problem is particularly relevant for small-size satellite platforms,

for which a combination of weight, volume and/or budget constraint may

result into the adoption of a non-redundant architecture for the attitude con-

trol system, possibly based on low-cost hardware, which further jeopardizes

overall system reliability.

In this framework, the present paper explores the feasibility of a single-

axis pointing maneuver for an underactuated spacecraft in the presence of a

non-zero residual angular momentum vector. In this scenario, a body-fixed

axis σ̂, such as the line-of-sight of a sensor, a nozzle for orbit control or an

antenna, needs to be aligned to a target direction τ̂ , fixed in the inertial

reference frame. Only two RWs are available for managing the residual an-

gular momentum, which is a situation representative of a failure condition

of a non-redundant control system or of a critical condition after multiple

failures of a reaction wheel cluster. A similar problem was dealt with in a

previous paper [3], where a single-axis pointing maneuver for a tri-inertial

spacecraft is studied under the hypothesis of zero total angular momentum,
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implementing the kinematic planning techniques developed in [4] and [5] at

a dynamic level.

The hypothesis of zero residual angular momentum is common to many

papers dealing with spacecraft attitude control in underactuated conditions

[6]. Unfortunately, such a situation is seldom encountered in practice, for

several reasons. A (possibly large) angular momentum normal to the orbit

plane may be present for passive gyroscopic stabilization [7], or a (usually

small) non-zero angular momentum may result from the action of environ-

mental torques [8]. The unwanted angular momentum can be dumped by

means of a torque generated by thrusters or magnetorquers for desaturating

reaction and momentum wheels. However, a residual angular momentum is

often present not only during standard operations, before wheel desaturation,

but also at the end of the desaturation maneuver, provided that the control

system, based on a switching (on-off) control logic, cannot drive the space-

craft angular momentum exactly to zero. This residual angular momentum

can be large when a Y-dot control law with magnetorquers is adopted for

spacecraft detumbling [9]. Its presence thus represents a realistic situation

to be dealt with in practice, which makes the pointing maneuver more chal-

lenging with respect to the case when a zero overall angular momentum is

assumed.

A (possibly large) angular momentum normal to the orbit plane may be

present for passive gyroscopic stabilization [7], or a (usually small) non-zero

angular momentum may result from the action of environmental torques [8].

The unwanted angular momentum can be dumped by means of a torque

generated by thrusters or magnetorquers for desaturating reaction and mo-
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mentum wheels. However, a residual angular momentum is often present not

only during standard operations, before wheel desaturation, but also at the

end of the desaturation maneuver, provided that the control system, based

on a switching (on-off) control logic, cannot drive the spacecraft angular mo-

mentum exactly to zero. This residual angular momentum can be large when

a Y-dot control law with magnetorquers is adopted for spacecraft detumbling

[9]. Its presence thus represents a realistic situation to be dealt with in prac-

tice, which makes the pointing maneuver more challenging with respect to

the case when a zero overall angular momentum is assumed.

A review of methods for attitude control of underactuated spacecraft is

presented by Tsiotras [10]. Several studies dealt with this class of problems,

considering diverse types of control hardware (thruster [11], RWs [12], control

moment gyros (CMG’s) [13]), for either axis-symmetric [14] or tri-inertial [6]

spacecraft, in different mission scenarios (full attitude stabilization, single-

axis pointing, acquisition of a desired spin state, etc.). More recently, some

papers addressed the problem of attitude control of an underactuated space-

craft in the presence of a residual angular momentum.

A nonlinear control law based on the state-dependent Riccati equation is

proposed in [15], which stabilizes roll and pitch angles only at a desired value,

by means of two reaction wheels. A linear time-varying model predictive con-

trol law is presented in [16], with the objective of driving the underactuated

spacecraft towards a prescribed attitude in the presence of a gravity gradient

torque. In such a case, the angular momentum is not exactly zero, although

it remains very small. Convergence to the desired attitude requires time

intervals in the order of one hour and a residual error is present, with persis-
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tent oscillations, which cannot be compensated by the underactuated control

hardware. A control law based on a sliding mode approach for attitude con-

trol around the torqueless direction is discussed in [17], where a cluster of

two single-gimbal control moment gyroscopes (SGCMG) with parallel gim-

bals axes is the underactuated attitude effector. The final attitude can be

asymptotically attained only if the (inertially constant) angular momentum

vector lies within the SGCMG cluster momentum envelope. This, in turn, re-

quires that the direction of the gimbal axes is exactly normal to the conserved

angular momentum when the desired attitude is attained, thus limiting the

set of feasible attitudes to a subspace of SO(3). For any other final attitude

the control law causes a permanent rotation in the neighbourhood of the

prescribed attitude, with pointing errors which may be significant.

To the best of authors’ knowledge, the control law discussed in the present

paper is the first solution for the problem of exact pointing of a generic

body–fixed axis by means of an underactuated spacecraft in the presence of

a residual angular momentum. In this framework, the work extends and gen-

eralizes the results proposed by Yoon [18] and Kwon [19], where the problem

was solved for pointing a principal axis of inertia along an arbitrary direction.

As a first contribution, a feasibility condition for the desired pointing

maneuver is analytically determined for a generic body-fixed axis σ̂, high-

lighting that, when σ̂ is not a principal axis of inertia, it cannot be aligned

along some inertial directions τ̂ , while keeping the spacecraft at rest. This

latter condition requires that the body-fixed plane identified by the spin axes

of the two active RWs contains the (inertially fixed) direction of the angu-

lar momentum vector. Under this constraint, the direction τ̂ may become
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unattainable by σ̂ and an inequality represents the feasibility condition in

simple mathematical terms

The attitude that allows to maintain the body axis along the desired

direction with the spacecraft platform at rest is analytically determined if

spacecraft attitude is described in terms of Euler angles for the 3-1-3 ele-

mentary rotation sequence (precession, nutation and spin angles). Although

affected by a singularity issue, Euler angles provide a clear and intuitive

physical interpretation of the results: when spacecraft angular rate is zero,

nutation angle must be π/2, whereas the final value of the spin angle indi-

cates the distribution of angular momentum between the wheels, when the

spacecraft is at rest. The pointing feasibility condition and the attitude for

obtaining zero platform angular rate are shown to be independent of the

magnitude of the angular momentum, provided that such a magnitude is

compatible with active RW saturation levels.

After deriving a linearized system dynamics in the neighborhood of the

desired attitude, controllability of the system is proven, in order to demon-

strate that the problem of enforcing closed-loop stability is well-posed, at

least locally, in spite of the underactuated condition of the spacecraft. Then,

an almost-globally stabilizing control law is developed, which is based on a

nested architecture, where the inner loop controls precession and nutation

angles, and the outer loop provides convergence towards the desired value of

spin angle. Singular perturbation theory is applied for both inner and outer

loops in order to demonstrate convergence towards the commanded attitude

when a two-timescale behavior is enforced to the system [20] by means of a

proper selection of control law parameters.
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More in detail, at the inner level, the fast dynamics is represented by RW

response to an angular momentum command, whereas the slow dynamics is

represented by the commanded nutation and precession angle rates, which

determine the angular momentum command for the wheels. The resulting

closed-loop system tracks the commanded values of nutation and precession

angles and it represents the fast dynamics for the outer loop, where the slow

dynamics is given by the prescribed spin rate. The spin rate command is im-

plemented by enforcing a correction to the desired nutation angle, exploiting

the residual angular momentum for obtaining a rotation rate around the axis

along which an attitude effector is not available. When the pointing maneu-

ver is feasible, the resulting command law for the two active RWs drives the

body-fixed direction σ̂ towards τ̂ , so that the pointing error (that is, the an-

gle between the unit vectors σ̂ and τ̂ ) asymptotically approaches zero. This

is proven up to the bounds of the region of admissible pointing directions.

In the next section, after a short review of spacecraft dynamics in un-

deractuated conditions, the attitude parameters which enforce the desired

pointing at zero angular rate are derived, together with the analytical condi-

tion for maneuver feasibility. After assessing system controllability at least

in the neighborhood of the attitude implementing the desired pointing condi-

tion, the control strategy based on singular perturbation theory is derived in

Section 3. Resulting performance of the control laws in resto-to-rest maneu-

vers as well as starting from arbitrary, randomly generated, initial conditions

is analyzed in Section 4. A section of concluding remarks ends the paper.
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Figure 1: Geometry of the problem.

2. Problem Statement and Mathematical Model

2.1. Spacecraft dynamics

A rigid satellite platform equipped with three identical RWs is consid-

ered, with the spin axes of the wheels aligned with the principal axes of

inertia. When one of the wheels fails, it cannot provide one of the compo-

nents of the control torque, resulting in an underactuated condition. Let

FB = {G; ê1, ê2, ê3} be a body-fixed reference frame, centered in the space-

craft center of mass, G, with axes aligned to the principal axes of inertia of

the spacecraft. Without loss of generality, the spin axis of the failed wheel,

b̂, is assumed parallel to the third axis of the body frame (b̂ ≡ ê3). Thus, the

spin axes of RWs available for control are parallel to ê1 and ê2, respectively.

It is also assumed that no external torque is present, so that the non-zero

angular momentum vector is constant in the inertial frame. As a further
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hypothesis, the magnitude of the angular momentum is assumed to be less

than the momentum storage capacity of one single active wheel. This is a

mild assumption, provided that, if this condition is violated, it would not be

possible to drive the spacecraft angular rate to zero. In this respect, one can

assume that a desaturation maneuver (performed by means of some actuators

which deliver an external torque, such as magnetic actuators) already reduced

the overall angular momentum below an acceptable threshold for operating

the spacecraft. Under these assumptions, and expressing all vector quantities

in terms of components in the body-fixed set of principal axes of inertia,

spacecraft dynamics is represented as

Ḣ + ω×H = 0 (1)

where H = Jω+h is the total angular momentum vector, whose magnitude

H0 = ‖H‖ is constant, ω = (ω1, ω2, ω3)T is the absolute angular velocity

vector, J = diag(J1, J2, J3) is the inertia tensor (including RWs at rest),

h = (h1, h2, 0)T is the relative angular momentum of the RWs, under the

assumption of a failed wheel aligned with ê3, and v× indicates the skew-

symmetric matrix equivalent for the cross-product operation of vector v =

(v1, v2, v3)T , such that v×u = v × u.

The relative angular momentum of the i–th active RW, i = 1, 2, is equal

to hi = JwΩi, where Ωi is the wheel spin rate relative to FB, whereas the

absolute angular momentum for the same wheel is given by h
(a)
i = Jw(Ωi +

ωi) = hi + Jwωi. The dynamics of the i-th wheel, under the control of the

electrical motor torque gem,i, is thus given by

ḣ
(a)
i = ḣi + Jwω̇i = gem,i i = 1, 2 (2)
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A two–dimensional vector u = (u1, u2)T of available virtual control torques,

ui = −ḣi = − (gem,i − Jwω̇i), is introduced to attain a more compact nota-

tion. As a result, the mathematical model of spacecraft dynamics with two

active RWs takes the form

ω̇ = J−1
[
Su− ω× (Jω + h)

]
(3)

ḣ = −Su (4)

where

ST =

1 0 0

0 1 0


2.2. Kinematics

The single-axis pointing problem requires that the spacecraft attains a

final attitude, where a body-fixed axis, identified by the unit vector σ̂, is

aligned to a prescribed inertially-fixed direction τ̂ , with zero final angular

speed. Without loss of generality, an inertially fixed reference frame FI =

{G; ô1, ô2, ô3} is introduced, such that the total angular momentum of the

spacecraft H is aligned with ô3, and the axis τ̂ lies in the ô1-ô3 plane,

whereas ô2 = ô3 × ô1 completes a right-handed triad. One thus has

ô1 = ô2 × ô3 ; ô2 = (H × τ̂ )/‖H × τ̂‖ ; ô3 = H/‖H‖ (5)

Note that the unit vector ô1 is parallel to the direction of the projection of

τ̂ on the plane perpendicular to H . In the particular case when τ̂ is parallel

to H , ô1 and ô2 can be selected arbitrarily on the plane perpendicular to

ô3, to complete an orthogonal right-handed triad FI .

Spacecraft attitude with respect to FI can be represented by means of a

3-1-3 sequence of precession (Ψ), nutation (Θ), and spin (Φ) Euler angles [7],
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where Ψ ∈ [−π, π], Θ ∈ [0, π], and Φ ∈ [−π, π]. Euler angle rates are given

by 
Ψ̇

Θ̇

Φ̇

 =


sin Φ/ sin Θ cos Φ/ sin Θ 0

cos Φ − sin Φ 0

− sin Φ/ tan Θ − cos Φ/ tan Θ 1



ω1

ω2

ω3

 (6)

whereas the expression of the coordinate transformation matrix TBI as a

function of Ψ, Θ, and Φ can be found in [21], and it is not reported here for the

sake of conciseness. This attitude representation is known to be singular for

Θ = 0, π. Nonetheless, this parametrization simplifies the determination of

spacecraft attitude, which corresponds to the desired pointing at zero angular

rate, as outlined in the next subsection, where it will also be shown that

admissible pointing attitudes require Θ 6= 0, π. Consequently, singularity of

the desired attitude in not an issue in the present analysis.

The simulation model features attitude propagation in terms of unit

quaternions for avoiding issues with the singularity in the attitude repre-

sentation by means of Euler angles during simulations. Current values of

Euler angles are thus derived from the elements ti,j of the coordinate trans-

formation matrix TBI(q0, q̄) = (q̄2 − qTq)I3 + 2qqT − 2q̄Q̃, where I3 is the

3× 3 identity matrix and Q̃ is the skew symmetrix matrix equivalent of the

cross product, such that Q̃v = q × v. In this framework one has that

Ψ = atan2(t3,1,−t3,2) , Θ = acos(t3,3) , Φ = atan2(t1,3, t2,3)

where atan2(y, x) is the four-quadrant inverse tangent function.
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2.3. Feasibility and solution of the pointing problem

When a spacecraft with only two active RWs is considered, the constraint

of constant non-zero angular momentum restricts the set of admissible atti-

tudes at rest to a compact subset of SO(3), provided that the total angular

momentum of the whole satellite must lie in the plane identified by the spin

axes of the active RWs (plane ê1–ê2, under the assumptions outlined above

for the spacecraft model). Given the definition of body and inertial reference

frames FB and FI , respectively, the target direction τ̂ can be expressed in

FI as τ̂ I = (cosα, 0, sinα)T where α ∈ [−π/2, π/2] is the elevation of τ̂ over

the ô1-ô2 plane. On the other hand, the unit vector σ̂ can be parametrized

in FB as σ̂ = (cosλ cos η, cosλ sin η, sinλ)T where λ is the elevation over the

ê1–ê2 plane, and η is the azimuth with respect to ê1. Provided that the

frame FB can always be chosen such that êT3 σ̂ ≥ 0, the analysis is restricted

to the case λ ∈ [0, π/2] without loss of generality.

In order to simplify the derivation of the target attitude, an auxiliary

body-fixed reference frame FA = {G; â1, â2, â3} is introduced, which is ob-

tained rotating FB by an angle η about the axis ê3, that is, TAB = R3 (η). As

a consequence, the auxiliary reference frame can be parametrized by means

of a 3-1-3 set of Euler-angles, {Ψ′,Θ′,Φ′}, such that Φ′ = Φ + η, Θ′ = Θ,

and Ψ′ = Ψ. The unit vector σ̂ belongs to the plane â1-â3 of FA, so that its

components are given by

σ̂A = (cosλ, 0, sinλ)T (7)

The derivation of a maneuver feasibility condition, with the determination of

an attitude which guarantees the prescribed alignment of σ̂ and τ̂ with zero
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residual angular rate is performed describing spacecraft attitude in terms of

the angular position of this auxiliary reference frame.

Starting from an arbitrary initial attitude, identified by the angles Ψi, Θi,

and Φi, the final attitude represented by Ψf , Θf , and Φf must satisfy two

constraints, namely

1. the spacecraft is at rest, that is, ω = 0;

2. σ̂ is aligned with τ̂ , that is, σ̂ = τ̂ .

The first condition requires that, at the end of the maneuver, the total an-

gular momentum is completely stored in the RWs, that is, H must lie on

the â1-â2 plane, which implies â3
TH = 0. Remembering that total angular

momentum is parallel to ô3, so that HI = (0, 0, H0)T , and H = TBIHI , this

condition can be expressed as h3 = H0 cos Θ = 0. Thus, the first requirement

is met if cos Θf = 0, that is, the nutation angle at the end of the pointing

maneuver is Θf = π/2. This implies that admissible final attitudes with zero

angular rate are never singular. At the end of the pointing maneuver, when

Θ = Θf , the coordinate transformation matrix achieves the form

TAI(Ψf ,Φf ) =


cos Φf cos Ψf cos Φf sin Ψf sin Φf

− sin Φf cos Ψf − sin Φf sin Ψf cos Φf

sin Ψf − cos Ψf 0

 (8)

The second requirement (alignment of axis σ̂ with τ̂ ) is thus enforced

by equating the components of σ̂ and τ̂ = TAI τ̂ I , when both vectors are
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expressed in FA, that is,
cosλ

0

sinλ

 =


cos Φf cos Ψf cosα + sin Φf sinα

− sin Φf cos Ψf cosα + cos Φf sinα

sin Ψf cosα

 (9)

According to Eq. (9) (third row), the precession angle Ψf must satisfy

the condition

sin Ψf = sinλ/cosα (10)

which admits two real solutions Ψf,1 = Ψ?
f and Ψf,2 = π − Ψ?

f , with Ψ?
f =

sin−1 (sinλ/ cosα) if

|α| ≤ π/2− |λ| (11)

The inequality in Eq. (11) represents a feasibility condition, as the point-

ing maneuver becomes possible only when the elevation of the axis τ̂ over

the plane perpendicular to the angular momentum vector H is less than the

angular distance between σ̂ and b̂. Figure 2 shows the regions of admissible

(in black) and forbidden (in gray) target directions over the unit sphere for

a few values of λ.

The first and second rows of Eq. (9) form a linear system of equations in

the unknowns X = cos Φf and Y = sin Φf , which can be written asaX + bY = c

bX − aY = 0
(12)

where a = cos Ψf cosα, b = sinα, and c = cosλ ≥ 0, whose solution is

X = ac/(a2 + b2), Y = bc/(a2 + b2). Therefore, Φf can be found by using

the four-quadrant inverse tangent function, that is, Φf = atan2 (b, a) =

14



(a) λ = 10◦ (b) λ = 45◦

(c) λ = 60◦ (d) λ = 85◦

Figure 2: Admissible (black) and unaccessible (grey) target directions τ̂ in FI for different

values of λ.

atan2 (sinα, cosα cos Ψf ). Two attitudes realize the single-axis pointing

with spacecraft at rest, one for each solution of Eq. (10). Letting Φ? =

atan2 (sinα, cosα cos Ψ?) and recalling the relation between Euler angles for

FB and FA frames, it is

(Ψ,Θ,Φ)f = {(Ψ?, π/2,Φ? − η) , (π −Ψ?, π/2, π − Φ? − η)} (13)
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2.4. Remarks

The constraint imposed by conservation of total angular momentum, H ,

of the system formed by spacecraft platform and the active RWs provides

some physical insight, useful for the derivation of a suitable control law.

First of all, by expressing the equation H = Jω + h = TBIHI , with HI =

(0, 0, H0)T , in terms of body-frame components, one has that
J1ω1 + h1

J2ω2 + h2

J3ω3

 = H0


sin Φ sin Θ

cos Φ sin Θ

cos Θ

 (14)

The relationship between nutation angle Θ and angular velocity compo-

nent along the failed axis b̂ = ê3 is apparent. In particular, one has ω3 =

(H0/J3) cos Θ, which clearly implies that imposing a terminal value of ω3 = 0

is equivalent to require that Θf = π/2. Thus, the RWs can absorb the whole

angular momentum vector, only if Θ = π/2. This is equivalent to reducing

the number of available rotational degrees of freedom to two.

It is also worthwhile to mention that, when the spacecraft is at rest,

Eq. (14) states that h1 = H0 sin Φf , h2 = H0 cos Φf . The angle Φf thus

defines the allocation of the total angular momentum among the two RWs,

and it coincides with the desired final value of the spin angle for the auxiliary

frame, FA. One can finally note that, when a pointing on the boundary of

the feasible region is sought, such that |α| = π/2− |λ|, Eq. (10) implies that

Ψf = ±π/2, and, as a consequence, the solutions for the system in Eq. (12)

are given by Φf = ±π/2. Remembering that also Θf = π/2, for ω = 0, all

Euler angles are equal to π/2 (in magnitude ) for this limit case.
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3. Controller synthesis for exact pointing

The control objective is to drive the spacecraft towards the desired ad-

missible poiting condition from arbitrary initial conditions, while transferring

the residual angular momentum to the active RWs. As a preliminary result,

controllability of the system in the neighborhood of the desired pointing atti-

tude is assessed. Then, almost global stabilization is achieved by means of a

nested, inner/outer loop architecture that generates asymptotic convergence

towards the desired attitude from arbitrary initial conditions.

3.1. Controllability of the linearized system

Analysis of spacecraft rotational dynamics in the neighborhood of the

target attitude is performed via a linearization of the complete set of nonlin-

ear spacecraft equations of motion, namely Eqs. (6), (3), and (4). The state

vector, written in error form, is given by

xT = (eΨ, eΘ, eΦ, ω
T , eh

T )

where eΨ = Ψ−Ψf , eΘ = Θ− π/2, eΦ = Φ− Φf , and eh = (h1 − h1,f , h2 −

h2,f )T . When higher-order terms are dropped, a linear time-invariant system

of 8 first-order ordinary differential equations is obtained. Conservation of

angular momentum allows one to drop three variables and derive a 5th–order

system in the form
ėΨ

ω̇

ėh1

 =


0 hT

f /H0 0

0 −J−1h×f 0

0 0T 0



eΨ

ω

eh1

+


0T

J−1

G

Su (15)
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where x = (eΨ,ω
T , eh1)T is the state vector, u = (u1, u2)T is the control

vector, the matrix S is defined as in subsection 2.1 and 0 = (0, 0, 0)T , G =

(−1, 0, 0). This set of states guarantees that, when the reduced-order system

reaches the origin, dropped variables also approach their desired values. In

fact, if ω3 → 0, then Θ→ π/2; similarly, the conditions ω → 0 and h1 → hf1

imply that h2 → hf2 and, as a further consequence, Φ→ Φf .

Controllability of the system in Eq. (15), requires full rank of the ma-

trix C =
[
B,AB,A2B,A3B,A4B

]
, where A and B are the state and

control matrices. Letting Ks = (J2h
2
f2 + J1h

2
f1) / (J1J2J3) and Kd = (J1 −

J2)/(H0J1J2J3), it is

C =



0 0
hf1

H0J1

hf2

H0J2
0 0 Kd

hf1h
2
f2

J1
−Kd

h2
f1hf2

J2
0 0

1
J1

0 0 0 − h2
f2

J2
1J3

hf1hf2

J1J2J3
0 0 Ks

h2
f2

J2
1J

2
3

Ks
hf2hf1

J1J2
2J3

0 1
J2

0 0
hf1hf2

J1J2J3
− h2

f1

J2
2J3

0 0 −Ks
hf2hf1

J1J2J3
−Ks

h2
f1

J2
2J3

0 0 − hf2

J1J3

hf1

J2J3
0 0 Ks

hf2

J1J3
−Ks

hf1

J2J3
0 0

−1 0 0 0 0 0 0 0 0 0


(16)

Sufficient condition for controllability is that all 5 rows of C are lin-

early independent, and one easily notes that all pairs of rows are linearly

independent, with two relevant exceptions. First, rank of C drops to 2 if

hf1 = hf2 = 0, but this condition is ruled out by the fact that ‖hf‖ = H0 > 0,

provided that if the total angular momentum is non–zero, at least one of the

relative angular momenta of the active RWs must be non-zero in the final

condition, when the spacecraft is at rest.

A second critical condition is obtained if hf2 = 0, that is, Φf = ±π/2, so

that rows 2 and 5 are no longer linearly independent. This condition occurs

when τ̂ lies on the boundaries of the region of feasible pointing directions,
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and rank loss of C is caused by the selection of eh1 as the 5-th state variable

in the state vector of the reduced order model. If one considers the dual

reduced-order system obtained by selecting eh2 instead of eh1, controllability

of the resulting linear time-invariant system is easily verified. Conversely, the

controllability matrix for the dual system using eh2 as the 5th state variable

(not reported, for the sake of conciseness) looses rank when Φf = 0, π, that

is, for those pointing directions perpendicular to the direction of the residual

angular momentum, namely α = 0. However, the nonlinear system given by

Eqs. (6), (3), and (4) remains first-order controllable also for Φf = ±π/2, for

an appropriate choice of the 5th state variable.

Once controllability is assessed, a static full-state feedback control law in

the form u = Kx, which stabilizes the linearized system of Eq. (15) about the

origin, can be synthesized in the framework of LQR control theory [22, 23].

This represents a robust and rigorous approach to select the optimal control

gain matrix K ∈ R2×5 that provides local asymptotic stability and optimal

closed-loop performance, in a neighborhood of the equilibrium point, with

the desired pointing attitude. Unfortunately, the local nature of the result

makes it unsuitable for large initial errors, so that a different approach is

derived in the next paragraphs.

3.2. Angular momentum command for precession and nutation control

By combining angular momentum conservation, Eq. (14), with Euler an-

gle kinematic equations, Eq. (6), Euler angle rates can be expressed as a

function of residual angular momentum components in the body frame and
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angular momentum stored in the active RWs,

Ψ̇ = (H0/J1) sin2 Φ + (H0/J2) cos2 Φ+

− (h1/J1)(sin Φ/ sin Θ)− (h2/J2)(cos Φ/ sin Θ) (17)

Θ̇ = [(H0/J1)− (H0/J2)] sin Φ cos Φ sin Θ+

− (h1/J1) cos Φ + (h2/J2) sin Φ (18)

Φ̇ = (H0/J3) cos Θ− Ψ̇ cos Θ (19)

In this situation only two Euler angles can be directly controlled at the

same time, by enforcing prescribed values to the relative angular momenta,

h1 and h2, which result into desired values of precession and nutation rates,

written in the form

Ψ̇des =
1

τΨ

(Ψf −Ψ) , Θ̇des =
1

τΘ

(Θf −Θ) (20)

where a first order dynamics with time constants τΨ and τΘ is specified for

the evolution of Ψ and Θ, respectively. Upon substitution of Ψ̇des and Θ̇des

into Eqs. (17) and (18), the resulting RW angular momenta are

h1,des = H0 sin Φ sin Θ− J1Θ̇des cos Φ− J1Ψ̇des sin Φ sin Θ

h2,des = H0 cos Φ sin Θ + J2Θ̇des sin Φ− J2Ψ̇des cos Φ sin Θ
(21)

Provided that RW dynamics can be conveniently described by means of a

first-order model,

ḣi =
1

τh
(hi,des − hi) , i = 1, 2 (22)

an appropriate selection of the time constants, τΨ, τΘ � τh in Eq. (20)

enforces a two-timescale response, where RWs track the required values, h1,des
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and h2,des, on a faster timescale than the desired evolution of precession and

nutation angles.

For large initial errors, the inner system composed by Eqs. (17), (18), and

Eqs. (22) is recast in standard singular perturbation form [20],

ẋ = f(x, z, t, ε) (23)

εż = g(x, z, t, ε) (24)

with z = h, x = (Ψ,Θ)T , and ε = τh � T is a fast time constant, much

smaller than T = min(τΨ, τΘ, TΦ), where TΦ = 2πJ3/H0 is an estimate of the

rotation period of the spin angle.

Theorem 2.1 in [20] provides three conditions under which a uniform ap-

proximation for slow and fast states is available. Let x̄(t) and z̄(t) represent

the quasi-steady state solutions of x and z, respectively, with x̄(t) represent-

ing the solution of the reduced order model

˙̄x = f(x̄, z̄, t, 0)

for slow state variables, when fast states are at equilibrium, that is, z̄ =

h(x̄, t) is a solution for the system g(x̄, z̄, t, 0) = 0. The expansion

x = x̄(t) +O(ε) (25)

z = z̄(t) + ẑ(τ)− z̄(t0) +O(ε) (26)

provides a uniform approximation of the exact solution for slow, x(t), and

fast states, z(t), if (i) h(x̄, t) is an isolated root of the algebraic equation

g(x̄, z̄, t, 0) = 0 (Assumption 1.1); (ii) g(x0, z̄, t, 0) = 0 is asymptotically

stable uniformly for any initial value of slow and fast states, x0 and z0 at
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time t0 (Assumption 2.1); and (iii) the eigenvalues of the Jacobian matrix

∂g/∂z are smaller than a fixed negative quantity (Assumption 2.2). The

term ẑ(τ) in Eq. (26) is the so called boundary layer solution of the fast

dynamic system

ε ˙̂z = g(x0, ẑ, t, 0)

with ẑ(0) = z0 as initial condition. The evolution of ẑ(τ) represents the fast

transient that drives the fast states towards their quasi-steady approxima-

tion, z̄(t).

In the present application the dynamics of x and z explicitly depends

on time, because of the (at this stage still uncontrolled) variation of the

spin angle, Φ, ruled by Eq. (19). The fast dynamics is represented by the

first-order response of the active RWs, which satisfies the aforementioned

assumptions 1.1, 2.1, and 2.2. in [20], provided that (i) the equilibrium

h = hdes is an isolated root for the equation hdes(Ψ0,Θ0,Φ(t0))− h̄ = 0; (ii)

this solution is clearly asymptotically stable uniformly for any initial value

of slow and fast states, x0 and z0 at time t0; and (iii) the eigenvalues of the

Jacobian matrix ∂g/∂z, λ1 = λ2 = −1 are constant, hence smaller than a

prescribed negative quantity.

At this point a local theorem can be invoked for proving asymptotic sta-

bility of states towards Θf , Ψf , and hf . In particular, once the system is

rewritten in terms of error variables, Theorem 11.4 of Ref. [24] provides a

proof of exponential stability, under five conditions which apply to the con-

sidered system (see Appendix for details), so as to demonstrate that almost

global stability is achieved under the control law that drives Ψ and Θ towards

their desired values, Ψf and Θf = π/2, with ‖ω‖ = 0. The only exception
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is represented by singular initial attitudes, when Θ = 0 or π exactly. In

the unlikely event of such a situation, an initial control action on the active

wheels can be implemented, in order to drive the spacecraft out of the sin-

gular attitude and allow the control to work properly from any non-singular

attitude.

3.3. Control of the spin angle

The spin angle Φ is not controlled by means of the angular momentum

command described above, so that Φ takes an unpredictable value Φ∞ ∈

[−π, π], if Ψ and Θ converge asymptotically towards their final values, being

in general Φ∞ 6= Φf . A single axis rotation around ê3 would be sufficient for

achieving the desired alignment, but no control torque, nor wheel angular

momentum is available around that axis. Nonetheless, introducing an outer

control loop, a spin rate can be generated by means of a nutation angle,

which projects a component of the residual angular momentum, H0 cos Θ,

along ê3.

Letting Φ̇des = (Φdes−Φ)/τΦ, a perturbed value of the required nutation

angle is considered, Θ? = Θf + εΘ, such that for Θ = Θ? the commanded

spin rate is achieved, if

Φ̇des = [(H0/J3) + Ψ̇des] cos Θ? (27)

being from Eq. (27) sin εΘ = cos Θ? = −Φ̇des/[(H0/J3) + Ψ̇des]. An incre-

mented desired nutation rate in the form Θ̇?
des = (Θ?−Θ)/τΘ is thus enforced,

with the same precession rate command, Ψ̇des = (Ψdes − Ψ)/τΨ, and wheel

angular momentum command, specified for the inner loop by Eq. (21). Note

that, when Φ approaches the value prescribed by the pointing condition, Φf ,
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the desired spin rate converges towards zero, hence the perturbation εΘ of

the nutation angle with respect to its desired value also vanishes, and the

spacecraft achieves a detumbled condition at the desired pointing attitude.

Stability of the complete system including the outer loop is also inferred

on the basis of the singular perturbation approach, recalling again Theorem

2.1 in [20], under the hypotheses that (i) the spin angle is now the only

slow state, x = Φ, (ii) fast states are z = (Ψ,Θ, h1, h2)T , and (iii) the

perturbation parameter is now the fast timescale ε = τf = max(τΨ, τΨ), that

is, the slowest time constant for the linear response enforced on nutation and

precession angles. A slower response is enforced on spin angle, where the

slow time constant is Ts = τΦ � τf .

The equilibrium z̄ = (Ψf ,Θf , h1f , h2f )T for fast states is an isolated and

exponentially stable root for the system g(x̄, z̄, t, 0) = 0 (see above and

Appendix), so that Assumptions 1.1 and 2.1 both hold. Letting KΨ = τf/τΨ,

KΘ = τf/τΘ (where either one between KΨ and KΘ is equal to 1 and the

other one is greater than 1), and Kh = τf/τh � 1, the dynamics enforced on

the inner system by the angular momentum command derived for the inner

loop is given by

εΨ̇ = KΨ(Ψf −Ψ) ; εΘ̇ = KΘ(Θ? −Θ)

εḣ1 = Kh(h1,des − h1) ; εḣ2 = Kh(h2,des − h2)

The eigenvalues −KΨ, −KΘ, and −Kh of the Jacobian matrix ∂g/∂z are

all equal or smaller than −1, so that Assumption 2.2 is also satisfied, and a

uniform approximation in the form of Eqs. (25)-(26) is available.

A bound on the maximum value of Φ̇des needs to be introduced, for avoid-

ing that the required angular momentum component along ê3 exceeds a pre-
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Figure 3: Architecture of the control law.

scribed percentage of H0. This is obtained by saturating the maximum nu-

tation angle increment εΘ below a prescribed threshold. Such a constraint

obviously limits the maximum available spin rate, making the second step

of the manoeuvre possibly slow, especially if a small residual angular mo-

mentum, H0, is available, but this further confirms, on physical grounds, the

validity of the timescale separation assumption. At the same time, a small

nutation angle increment also reduces coupling with other axes. The values

of H0 and the bound on εΘ are thus the most relevant driving factors in

determining converge speed. Finally, a bound of the desired precession rate

is also required, where Ψ̇des < (Ψ̇)des,max = kH0/J3), with k < 1, so that

the denominator in the definition of the nutation angle increment required

for spin angle control, sin εΘ, never vanishes. The resulting control system

is schematically represented in Fig. 3, where the inner and outer loops are

highlighted.

3.4. Time constants and saturation

The time constant τh of RW response is representative of its dynamic char-

acteristics, so it is related to hardware type and performance. Conversely,
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the time constants for required precession, nutation and spin rates, namely

τΨ, τΘ, and τΦ, are design parameter for the control laws, with values which

can be arbitrarily higher than τh, thus enforcing the two-timescale behav-

ior, upon which the control system architecture is based. Quite obviously, if

time constants for desired Euler angle rates are higher, separation between

timescales is wider, thus allowing for a smooth, alas slow, convergence to-

wards the desired attitude.

If a more aggressive maneuver is to be dealt with, in order to attain faster

convergence, higher Euler angle rates can be realized by choosing smaller

time constants, provided that τΨ, τΘ, and τΦ remain at least approximately

one order of magnitude greater than τh. However, if initial attitude error is

large, the corresponding value of desired Euler angle rates may result into

high values of commanded wheel angular momenta, which in turn cause

wheel torque saturation, where wheel response becomes linear with time,

with a slower convergence rate of h towards hdes. More important, timescale

separation between wheel response and Euler angle variation is no longer

guaranteed, hence overall spacecraft stability during the maneuver.

In these circumstances, implementation of the wheel angular momentum

command requires a control on RW torque saturation. Letting ui = (hi,des−

hi)/τh be the desired wheel torque for the i–th active wheel, i = 1, 2, and gmax

the maximum wheel motor torque, a saturation factor f = max(|u|/gmax) is

introduced. If f < 1, both wheel commands are within saturation limits and

the nominal implementation of the control law is adopted. If f > 1, satura-

tion occurs on at least one of the wheels, and the desired wheel commands

are reduced by scaling desired precession and nutation rates, Φ̇des and Θ̇des,
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in Eq. (21) by a factor, ksat ≤ 1, such that

h̄1,des = H0 sin Φ sin Θ− ksat(J1Θ̇des cos Φ + J1Ψ̇des sin Φ sin Θ)

h̄2,des = H0 cos Φ sin Θ + ksat(J2Θ̇des sin Φ− J2Ψ̇des cos Φ sin Θ)
(28)

with

ksat = K
[
1− κ

(
1− e−(f−1)2

)]
(29)

where 0 < κ < 1, and K is evaluated as follows. When the control torque

which violates the saturation level most severely is u1, an updated value of

h?1,des is defined as

h?1,des = h1 + τh gmax sign(h1,des − h1)

The corresponding value of K is obtained by inverting the first of Eqs. (21),

that is, letting

K = −(h?1,des −H0 sin Φ sin Θ)/(J1Θ̇des cos Φ + J1Ψ̇des sin Φ sin Θ)

Similarly, when u2 exceeds the saturation limit more severely, it is

h?2,des = h2 + τh gmax sign(h2,des − h2)

and K is derived from the second of Eqs. (21) as

K = (h?2,des −H0 cos Φ sin Θ)/(J2Θ̇des sin Φ− J2Ψ̇des cos Φ sin Θ)

Note that K is set equal to zero when a negative value is obtained by

the above procedure, which means that the wheel command forces angular

momenta to track the current value of residual angular momentum along the

body axes parallel to the active RWs, without accounting for precession and
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nutation rate commands. This phase requires a relatively small amount of

time, without jeopardizing convergence.

At the same time, an attenuation factor κ is introduced in Eq. (29), such

that, as soon as this initial phase is completed (when present), the wheel

torque command is driven slightly below saturation, thus recovering a resid-

ual sensitivity of the control law to precession and nutation rate commands,

even when the saturation violation factor f is large. In this condition, the

scaling factor simply makes desired angular rate time constants longer. Note

that, as f approaches 1, ksat becomes equal to K, with a smooth law. A value

κ = 0.1 was selected as the best compromise between undesirable chattering,

for κ close to 1, and large amplitude oscillations which cause convergence to

require longer time intervals, for values of κ near zero.

Convergence is always reached, regardless of the value of κ. Nonetheless,

when wide amplitude oscillations are present during the initial phase, con-

vergence to the desired pointing attitude requires longer time. Conversely,

when chattering occurs, the convergence remains fast, but, from the practical

point of view, deformation degrees of freedom may be excited in the pres-

ence of flexible appendages, an effect which is not accounted for by the model

adopted in the present study. This may cause overall maneuver performance

degradation on a real spacecraft. The validity of the approach in handling

saturation is demonstrated in the next Section by means of extensive sets

of simulation runs for both deterministic initial conditions, in the case of

rest-to-rest maneuvers, and randomly generated initial tumbling states.
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4. Results

A dynamic model representative of a small satellite is considered for

demonstrating the viability of the proposed control approach, as well as ana-

lyzing its convergence performance. A reference spacecraft is assumed, with

an inertia tensor J = diag(10, 9, 8) kg m2 and two identical active RWs,

with moment of inertia Jw = 0.001 kg m2. RWs are controlled by an elec-

tric motor torque with a time constant τh = 200 ms and maximum torque

gmax = 50 mN m. A residual angular momentum H0 is present, with a nom-

inal value of 0.850 N m s. Time constants τΨ = τΘ = 2 s are enforced for

the desired precession and nutation angle responses, whereas a slower time

constant τΦ = 20 s is assigned to the spin angle dynamics.

Numerical integration is performed by means of an explicit, 5th order

accurate, variable, step Runge-Kutta algorithm. A maximum time-step of

50 ms is prescribed. Unless otherwise stated, a reference pointing problem is

dealt with, for λ = π/9 rad and α = π/6 rad. The error with respect to the

desired pointing attitude is determined in terms of residual eigenaxis rotation

amplitude, ∆ϑ = 2 cos−1 q̄e, where q̄e is the scalar part of the quaternion error

vector, Qe = (qTe , q̄e)
T [21]. The simulation is stopped at time tf , when the

residual error between current and desired quaternions falls below 0.017 rad =

0.1 deg, with a residual angular rate ‖ωf‖ < 0.0017 rad/s = 0.01 deg/s. The

effect of system parameters on maneuver time tf is analyzed and discussed,

with particular emphasis on the values of H0 and gmax.
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4.1. Rest-to-rest maneuvers

A rest-to-rest maneuver can be obtained if both initial and final attitudes

are among admissible attitudes, with Θ0 = Θ(t = 0) = π/2, and the residual

angular momentum H0 fully absorbed in the active RWs. This requires that,

for a given value of λ, the initial pointing direction of the sensor, identified

by its elevation α0 and azimuth β0 in FI , is such that |α0| < π/2 − λ. The

initial equilibrium value of all system states can be determined, provided

that at rest ω0 = (0, 0, 0)T , the initial value of quaternions is obtained from

that of Euler angles, prescribed by Eq. (13), with Ψ0 = Ψ? + β0, Θ0 = π/2,

and Φ0 = Φ?, and the initial angular momentum stored in the active RWs

is h10 = H0 sin Φ0 and h20 = H0 cos Φ0. Assuming that the final attitude

is prescribed by the nominal pointing problem described above (λ = π/9,

α = π/6, and β = 0 for the considered choice of the frame of FI described in

subsection 2.2), a set of simulations is performed by sampling initial values of

elevation and azimuth angles, α0 and β0, in order to determine the maneuver

time tf required for reaching the desired pointing attitude.

Figure 4 shows the contour plot for tf as a function of α0 and β0 (Fig. 4.a)

and a 3-D mesh plot of the resulting surface (Fig. 4.b). The point marked as

T in Fig. 4.a represents the desired pointing direction. Convergence requires

times ranging between 250 and almost 500 s for most of the feasible initial

pointing attitudes. Figure 5 shows the time histories of spacecraft attitude

variables (Figs. 5.a and b), and wheel torque and relative angular momenta

(Fig. 5.c and d) when the initial pointing attitude is given by α0 = −64 deg

and β0 = −105 deg (point A in Fig. 4.a). The correct implementation of

the proposed control strategy is clearly evident, where the precession angle
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Figure 4: Contour (a) and mesh (b) plots for convergence time to target pointing condition

T as a function of initial azimuth and elevation angles of sensor axis at rest.

reaches its prescribed value in little more than 50 s, and Θ is displaced up to

the maximum admissible deviation for inducing a rotation around the spin

axis, which exploits the residual angular momentum to drive Φ asymptoti-

cally towards its desired value. For the considered initial condition, a 180 deg

variation of the (slowly varying) spin angle is required, which explains the

long duration of the maneuver (438 s). The spikes visible in Fig. 5.c for the

wheel control torques are induced by the various saturation levels present

in the system (with the limit on the maximum RW torque) and in the con-

trol law (with a bound enforced on the maximum admissible nutation angle

increment, εΘ). As a result of these saturation levels, wheel angular momen-

tum command is only Lipschitz-continuous with respect to state variables,

that is, it is continuous, with bounded discontinuities on its first derivatives,

and sudden (but limited) variations in the torque required for tracking the

resulting wheel angular velocity command are present. Nonetheless, the re-

sulting variation of angular rates and wheel angular momenta are sufficiently

smooth (Fig. 5.a and d, respectively).
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Figure 5: Simulation for initial condition A (black triangle in Fig. 4.a).

It is apparent that convergence time becomes significantly shorter if the

initial pointing directions lies in the narrow “valley,” clearly visible in the

3-D representation of tf (Fig. 4.b), which includes the target attitude. Here,

convergence time is below 250 s, being equal to less than 60 s along the

bottom. The presence of this region of fast convergence is related to the

values of Euler angles at initial time. All initial rest conditions require that
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Θ0 = π/2 ≡ Φf . If also Φ0 ≡ Φf for the considered values of α0 and

β0, the desired pointing can be obtained by means of a simple single-axis

rotation, which can be easily handled by the RWs. This is clearly visible in

the time-histories of state and control variables shown in Fig. 6.a-d for the

maneuver starting from the initial condition represented by the point labeled

B in Fig. 4.a (α0 = −64 deg and β0 = 105 deg). This point is the symmetric

of A, with respect to the final desired attitude, being thus characterized by

the same angular distante of σ̂ from its desired pointing direction, τ̂ , but it

lies almost exactly at the bottom of the valley of fast maneuvers. Only two

velocity components are varied during the maneuver (Fig. 6.a), in order to

control the precession angle Ψ, whereas ω3 remains close to 0 for its entire

duration. Both Θ and Ψ remain almost exactly constant, at their initial

values, Φ0 being only 0.15 deg away from its final prescribed value. Note

that,in cases with Φ0 ≈ Φf , the initial and final values of h1 and h2 are equal.

Only 67 s are thus sufficient for reaching the prescribed pointing condition,

which is approximately 7 times faster than the symmetric maneuver, starting

from point A, which requires a 180 deg variation of the spin angle.

4.2. Monte Carlo simulations

Random initial conditions are generated in terms of both starting attitude

and angular momentum distribution. More in detail, a random quaternion is

generated, according to the technique proposed in [25]: given three uniformly

distributed random numbers, u, v, w ∈ [0, 1], the initial attitude quaternion

is represented by Q = (qT0 , q̄)
T , with

q0 =
(√

1− u sin(2πv),
√

1− u cos(2πv),
√
u sin(2πw)

)T
, q̄0 =

√
u cos(2πw)
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Figure 6: Simulation for initial condition B (white triangle in Fig. 4.a).

The initial angular momentum of each wheel is also assumed as a bounded

random variable, with hi,0 = (2σi − 1)H0, i = 1, 2, where σi ∈ [0, 1], i = 1, 2

are two uniformly distributed random variables. The resulting initial value

for angular rates is thus given by ω0 = J−1
[
TBI(q0, q̄0)(0, 0, H0)T − h

]
, with

hi,0 ∈ [−H0, H0].

An initial set of 10,000 simulations is run for the nominal values of residual
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angular momentum, H0 = 0.850 N m s, and wheel torque saturation levels,

gmax = 50 mN m. Four more Monte Carlo simulation campaigns are then

performed, each one made of 10,000 randomly generated initial conditions,

for evaluating the effects of residual angular momentum and maximum wheel

torque on convergence performance, tf . H0 is varied by ±50% first, generat-

ing two cases for H0 = 0.425 N m s and H0 = 1.275 N m s, respectively, with

gmax = 50 mN m. Similarly, the wheel motor saturation torque is varied by

±50%, generating two more cases for gmax = 25 mN m and 75 mN m, with

H0 = 0.850 N m s.

Table 1 lists the results of the five Monte Carlo tests (the nominal case

is repeated twice for the sake of readability), in terms of average value of

convergence time, t̄f , over the whole set of tests, its standard deviation, σ(tf ),

and three relevant percentiles (10%, 50%, and 90%). The corresponding

probability density functions (PDFs) for convergence time tf are presented

in Figs. 7 and 8. Note that in these plots the abscissa is reported in terms

of hundreds of seconds, so that each PDF achieves values in the order of 1.

It is apparent from the results of the first set of Monte Carlo simulations,

where H0 is varied, that the effect of the residual angular momentum on con-

vergence performance is relatively modest, when random initial conditions

are considered. Only when H0 is decreased, a slightly longer average con-

vergence time is obtained (approximately 7% longer than the nominal case),

with a slightly wider dispersion (standard deviation increases by 11%). This

is due to a longer time required for the final convergence of the spin angle,

which becomes slower, when a reduced value of H0 is available. Conversely,

the probability density functions for an increased value of H0 is almost ex-
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Table 1: Results from Monte Carlo simulations

Variation of H0

Case avg. std.dev. Percentiles

t̄f σ(tf ) 0.1 0.5 0.9

-50% 298 75.9 198 299 395

nominal 262 68.4 178 257 358

+50% 264 74.2 172 257 368

Variation of gmax

Case avg. std.dev. Percentiles

t̄f σ(tf ) 0.1 0.5 0.9

-50% 438 151.3 236 434 646

nominal 262 68.4 178 257 358

+50% 210 49.4 148 207 278

actly equal to that of the nominal case.

As expected, the variations of wheel torque saturation level result into

more significant variations of both average convergence time and standard

deviation, where an increase by 50% of wheel saturation torque allows for

reducing convergence time by 20%, on average, with a narrower distribution,

σ(tf ) being reduced by almost 28%. On the other hand, when maximum

wheel torque is reduced by 50%, t̄f increases by 67%, and σ(tf ) becomes more

than double. The probability density function, in this latter case, looses its

peak and becomes almost constant, over a wide interval.

The correlation between convergence time and initial pointing error ∆ϑ is

analyzed in Figs. 9 and 10, where the three subplots in Fig. 9 are obtained for
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Figure 7: Probability density functions for different values of H0.
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Figure 8: Probability density functions for different values of gmax.

the nominal value of gmax and different values of H0, whereas Fig. 10 shows

the results for three values of gmax and nominal H0. Each run is represented

by a grey point on the ∆ϑ vs tf plane. The plots also reports the trend of the
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Figure 9: Plot of tf vs ∆ϑ for various H0.

percentiles, with the 50th percentile represented by a continuous black line.

When H0 is higher, the distribution of convergence time is almost unaffected

by ∆ϑ (Fig. 9.a), with almost exactly horizontal percentiles lines. A slight

increase of tf with ∆ϑ is apparent for the nominal value of H0, although

quite limited (Fig. 9.b), whereas the third plot (Fig. 9.c), traced for a reduced

value of the residual angular momentum, reports a more visible trend with

wider dispersion, but also a more significant increase of convergence time as

a function of the initial pointing error.

When the effect of gmax is considered (Fig. 10), the increase in the per-

centile lines with ∆ϑ is limited, over the whole range of initial pointing errors.

For the highest saturation torque considered (Fig. 10.a), the 50th percentile

grows from 160 s, for initial pointing error in the range between 0 and 40 deg,

up to 210 s, when the initial error exceeds 170 deg. , The same indicator

grows from 210 s up to 270 s if the nominal value of gmax is considered
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Figure 10: Plot of tf vs ∆ϑ for various gmax.

(Fig. 10.b) as ∆ϑ is larger, whereas longer convergence times are required for

50% of the sample population, when gmax is halved (Fig. 10.c), with conver-

gence time as large as 360 s for smaller initial errors, up to almost 470 s. The

other percentile lines follow a similar pattern, such that dispersion remains

almost constant, thus getting broader, for smaller values of the wheel motor

saturation torque, as already pointed out from the analysis of the resulting

global PDF.

Figure 11 reports the time histories for the worst case scenario obtained

in the framework of the Monte Carlo simulation of 10,000 runs for nominal

system parameters, that is, the maneuver requiring the longest convergence

time, equal to tf = 467 s. Figure 11.a, where the variation of angular ve-

locity components is presented, shows that the initial tumbling motion for

the randomly generated initial condition is relatively high, so that the initial

portion of the maneuver is used to rapidly slow down the angular velocity,
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Figure 11: Worst case in Monte Carlo simulation for nominal system parameters.

with Θ being drawn close to its desired value, Θf = 90 deg. This is done by

saturating the control torque on one of the wheels (as shown in Fig. 11.c).

This fast initial transient, during which the error on precession and nutation

angles is uncontrolled, is required for reducing the RWs angular momenta

to the point where the desired commands can be implemented. After this
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initial phase, the precession angle error decreases linearly until, during the

final phase, also the spin angle asymptotically reaches its desired value, on a

slower timescale.

The spikes in the control torque, visible in Fg. 11.c, are caused by the dis-

continuities on the time derivative of h1,des and h2,des induced by the method

adopted for managing saturation, as discussed in subsection 3.4. When con-

trol torque demand from the baseline controller exceeds saturation limits, the

saturation factor f and the scaling factor for the control law, ksat, are deter-

mined from the value of the torque required by the wheel, which violates the

saturation constraint more severely. When this condition switches from one

active wheel to the other one, or when saturation is no longer violated, a dis-

continuity on the derivative of both h1,des and h2,des is present, which induces

a step variation on the resulting control torque, rapidly compensated. Note

that the variation of wheel angular momenta remains smooth (Fg. 11.d).

4.3. Convergence towards the bounds of the region of admissible pointing

directions

Performance for pointing at the boundary of the admissible pointing re-

gion, where α = αmax = π/2− λ is finally considered. As outlined in subec-

tion 2.4, all desired values of Euler angles are equal to 90 deg, in this case,

and the whole residual angular momentum is absorbed by only one of the

wheels, at convergence.

Figure 12 shows the time histories of attitude (Fig. 12.a and b) and con-

trol (Fig. 12.c and d) variables for nominal torque saturation and residual

angular momentum, for a randomly generated set of initial conditions. It

is apparent that convergence follows a pattern similar to that observed in
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Figure 12: Simulation of convergence to the bound of the admissible pointing region for

nominal system parameters and randomly generated initial conditions.

previous simulations (including a few spikes in the control torque). The only

relevant difference, exhibited also by other simulations not reported for the

sake of conciseness, is that the spin angle Φ often converges towards its de-

sired value faster than the precession angle, Ψ. As for the remaining features
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of time-histories, there is no other relevant observation: angular rates are

reduced first, while Θ approaches 90 deg, with a rather smooth variation of

all attitude variables.

5. Conclusion

The possibility of aiming a generic body–fixed axis towards a prescribed

direction in space when only two reaction wheels are available for attitude

control of a rigid spacecraft was discussed, in the presence of a residual angu-

lar momentum, while driving the spacecraft at rest. First of all, a feasibility

condition for the pointing maneuver was derived, proving that a fixed direc-

tion in space can be reached only in those cases when its angular separation

from the direction of the inertially fixed angular momentum vector is smaller

than the angular separation between the body–fixed axis and the axis of

the failed reaction wheel. Moreover, the values of the precession, nutation

and spin angles that allow for the desired pointing were analytically derived,

showing that the nutation angle must be equal to π/2 if spacecraft angular

rate needs to be driven to zero.

A control law, based on the timescale separation principle, is proposed,

where different timescales for active wheel angular momenta and desired

Euler angle dynamics are enforced by a careful selection of the control law

gains. In the presence of saturation, these gains are modified, in order to

maintain the timescale separation. The resulting behavior under the action

of the proposed control law, analyzed for rest-to-rest maneuvers and for initial

randomly generated tumbling conditions, demonstrates the viability of the

approach over a wide number of test cases.
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Appendix

Remembering that Θf = π/2, so that sin Θ = sin(Θf + eΘ) = cos eΘ,

Eqs. (17), (18), and (22) can be recast in error form,

ėΨ = − 1

τΨ

eΨ −
sin Φ

cos eΘ

eh1

J1

− cos Φ

cos eΘ

eh2

J2

(30)

ėΘ = − 1

τΘ

eΘ − cos Φ
eh1

J1

+ sin Φ
eh2

J2

(31)

εėh,i = −eh,i − εḣi,des , i = 1, 2 (32)

with ε = τh. The complete expressions of ḣ1,des and ḣ2,des derived from

Eqs. (21), and accounting for Eqs. (20), are not reported for the sake of

conciseness. A more compact version is obtained for τΨ = τΘ = Ts, such that

ḣ1,des =− (H2
0/J3) sin eΘ cos eΘ cos Φ− (1− eΘ tan eΘ sin2 Φ)eh1/Ts

+ [(J1/J2)(eΘ cos Φ sin Φ/ cos eΘ − eΨ)(1/Ts)−H0/J2] sin eΘeh2

+ [H0(1 + J1/J3) sin Φ sin eΘ + J1(2eΨ sin eΘ sin Φ− cos Φ)(1/Ts)]eΘ/Ts

− [H0(1 + J1/J3) cos Φ sin eΘ cos eΘ

+ J1(sin Φ + eΨ cos Φ sin eΘ)(1/Ts) cos eΘ]eΨ/Ts

ḣ2,des = (H2
0/J3) sin Φ sin eΘ cos eΘ

+ [H0/J1 + (J2/J1)(eΨ + eΘ cos Φ sin Φ/ cos eΘ)(1/Ts)] sin eΘeh1

− (1− eΘ tan eΘ cos2 Φ)eh2/Ts

+ [H0 cos Φ sin eΘ(1 + J2/J3) + J2(sin Φ + 2eΨ cos Φ sin eΘ)(1/Ts)]eΘ/Ts

+ [H0(1 + J2/J3) sin Φ sin eΘ cos eΘ

+ J2(eΨ sin Φ sin eΘ − cos Φ) cos eΘ(1/Ts)]eΨ/Ts

After the initial transient, when Θ becomes sufficiently close to Θf = π/2 (hence

cos eΘ ≈ 1), all terms in the expressions of ḣ1,des and ḣ2,des are proportional to
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the inverse of either one of the slow timescales, namely τΘ, τΨ, or Ji/H0, such

that the terms εḣi,des in Eqs. (32), for i = 1, 2, are vanishing with respect to the

perturbation parameter ε. This result is not surprising, if one considers that h1,des

and h2,des depend on slow variables only, hence hi,des can be considered (almost)

constant on the fast time scale, so that ḣi,des ≈ 0.

If error dynamics is recast in a standard singular perturbation form,

ξ̇ = F (ξ, ζ, t, ε)

εζ̇ = G(ξ, ζ, t, ε)

with ζ = (eh1, eh2)T , ξ = (eΨ, eΘ)T , and ε = τh � T , all of the 5 assumptions for

Theorem 11.4 of Ref. [24] apply to the present system. In detail

1. F (0, 0, t, ε) = 0 and G(0, 0, t, ε) = 0;

2. the equation G(ξ, ζ, t, 0) = 0 has an isolated root, ζ = h(t,x), such that

h(t, 0) = 0; in the present case the isolated root is simply eh1 = eh2 = 0;

3. the functions F , G and h and their partial derivatives up to second order

are bounded, which is true, in the neighborhood of Θ ≈ Θf = π/2;

4. the origin of the reduced system ξ̇ = F (ξ,h(t, ξ), t, 0) is exponentially stable;

5. letting η = ζ−h(ξ, t), the origin of the boundary-layer system η̇ = G(ξ,η+

h(t, ξ), t, 0) is exponentially stable.

The latter two conditions are clearly satisfied by the considered system. Hence, the

origin of the system written in terms of error dynamics is (locally) exponentially

stable, if ε is sufficiently small.
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