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Abstract—The application of Artificial Intelligence to the
instrumentation and measurements field is nowadays an attractive
research area. Indeed, Artificial Intelligence gives the possibility
to perform activities also in case of inability to perfectly model
a phenomenon or a system. Furthermore, making machines
learn from data how to perform an activity, rather than hard
code sequential instructions, is a common and effective practice
in many modern research areas. This paper investigates the
possibility to use Machine Learning techniques in an ophthalmic
vision–based system performing automatic Anterior Chamber
Angle measurements. Currently, this procedure can be performed
only by appropriately trained medical personnel. For this reason,
Machine Learning and Vision–Based techniques may greatly
improve both test objectiveness and diagnostic accessibility, by
allowing to automatically carry out the measurement procedure.

Index Terms—Artificial Intelligence, Machine Learning, CNN,
Vision Based Measurement, Van Herick, Computer Vision

I. Introduction
Closure Glaucoma ( Glaucoma and others eye diseases are

affecting more and more people in the last years. Prevention is
essential to avoid the progression of that disease, but in some
cases, the screening exams are invasive or quite expensive, and
it is not possible to periodically monitor the eye condition [1].
It has been demonstrated that people with a narrower Anterior
Chamber Angle (ACA), i.e. the iridocorneal angle, are more
vulnerable to the most aggressive form of glaucoma, the
Primary Angle Closure Glaucoma (PACG) [2]. Nowadays, the
gold technique used for ACA measurement is the gonioscopy,
but it is invasive and requires high medical skills [3]. Among
the various assessed techniques, one of the most interesting
is the van Herick maneuver, which exploits the correlation

between the thickness of the cornea and the ACA [4]. The
ratio between these two thicknesses represents the width of
the ACA, and so it can be used to detect the PACG. Van
Herick approach requires a slit lamp, illuminating the limbus
with a 60° angle between the light source and the eye optical
axis [5]. Despite the simplicity of the approach, any PACG
diagnosis derived from the estimation of the ACA with the
van Herick technique must be performed by direct observation
of an expert ophthalmologist with the help of a traditional slit
lamp and a microscope. Such considerations inevitably make
this type of diagnosis intrinsically subjective and results are
strictly related to the ability and experience of the observing
ophthalmologist [3].
In this paper, we present a new Machine Vision (MV) based
approach that can overcome such subjective limitations. This
new method relies on a modified optical setup to perform
the van Herick measurement in a semi-automated way, with
a compact CMOS camera that acquires images of a human
eye. A slit light generated with an RGB LED-based digital
light projector (DLP) is used in the place of the traditional
slit light. The possibility to apply MV techniques to classify
the collected images for automatically measure the ACA is
further investigated in this paper. Particularly, the presented
test case perfectly fits the definition of Vision–Based Mea-
surement (VBM) system, i.e. the application of MV to the
instrumentation and measurement field [6]. Machine Learning
(ML) techniques have been widely applied to VBM systems
[7].
This paper is organized as follows. First, in Section II, we
sketch the experimental setup and the main goals of this
research activity. Moreover, Section III presents the specific



ML techniques used and the evaluation techniques. Results
are then discussed in Section IV and the paper conclusions
are reported in Section V.

II. Experimental Setup and Research Goals
The Van Herick procedure used to measure the ACA must

be accomplished with specific alignment constraints [3]. It
has been shown by Leung et al. [8] that both illumination
and observation angles affect the ACA openness assessment.
As a consequence, particular attention was paid during the
realization of the optical setup for such an experimental
evaluation. A schematic diagram of the optical setup used
to perform the Van Herick measurement is shown in Fig.
1. The optical setup consists of two main devices. Firstly, a
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Figure 1. Schematic diagram of the optical setup.

digital CMOS camera Basler Dart (daA1600-60uc S-Mount,
Basler© AG, Ahrensburg, Germany) is positioned in front of
the analyzed eye, aligned with his optical axis. A 16 mm focal
length lens (Evetar Lens M12B1618IRM12 F1.8) is also used
in the optical setup. Secondly, a LED DLP (DLP2010EVM-
LC, Texas Instruments©, Dallas, Texas, U.S.) was used as the
illumination unit, instead of the traditional slit light. The DLP
relies on modern micro-mirror technology to project structured
light onto a specific target. The illumination unit was placed
at a 60 degree rotation angle with respect to the eye and
camera optical axis as shown in Fig. 1. Moreover, the DLP
has been configured to emit a uniform red slit light that scans
the whole surface of the eye under examination. Thus, during
the measurement procedure, the emitted slit light scans the eye
from the external corner of the sclera toward the nose. This
scan takes place during the frames acquisition with the digital
CMOS camera. A fixation target, i.e. a small light pointer, was
placed on the eye-camera optical axis, through a 45° semi-
reflecting mirror, to help the patient to look straight ahead.
The patients head is then placed on a chin rest to guarantee
the steadiness and alignment to the optical setup. A single
measurement procedure has been designed to perform two
entire scans of the eye in 4 seconds, allowing for a total of
120 raw pictures to be collected at 30 fps.
As mentioned, the Van Herick technique involves comparing

the depth of the peripheral anterior chamber to the thickness

of the cornea when a narrow slit of light is shone within the
limbus, i.e. the edge between the cornea and the sclera. As a
consequence, within the entire set of images acquired during
the scan, only a few of these (referred to as central images) can
be used to measure the ACA. Both previous and subsequent
acquisitions, where the light is placed respectively on the left
and on the right of the limbus, must be discarded. Indeed,
since patient eye position may change between different mea-
surements, an a–priori images selection can not be performed.
Consequently, a wider area must be scanned.
As a result of a single measurement, each dataset coming
from the acquisition system consists of two scans of the entire
eye, each one composed by 60 images with a 1600G1200 px
resolution. As an example, a set of images acquired during a
scan is represented in Fig. 2.

60 Images

approx 3 “Center” Images“Left” “Right” 

Figure 2. Example of a set of images acquired during a scan.

The approach, we followed in this work, is based on a Con-
volutional Neural Network (CNN), solving a three–class image
classification problem. The CNN takes as inputs the images
acquired by the setup and performs the classification activity
by tagging the images as left, right or central, respectively
labeled with 0, 1, 2. The analysis of the performance of the
network is carried out through an objective approach.

III. ML–based classification and Evaluation Technique
Image Classification is a key task in a VBM perspective,

and has been addressed for years using ML techniques [9].
In particular, CNNs reviled their suitability for VBM systems
in many different applications [10]. For example, authors of
[11] proposed a CNN–based system for railway networks
inspection. Differently, [12] presented a method for head pose
estimation in vehicles, demonstrating high versatility in the
application of CNNs. Furthermore, an interesting review paper
[13] summarizes the most widespread Deep Learning (DL)
techniques for Image Classification, with regards to ophthalmic
applications. They identified several CNN network models that
proved to be promising such as, among others, AlexNet [14],
GoogleNet [15] and resNet [16]. These networks showed the
best results in the ImageNet Large Scale Visual Recognition
Challenge [17] and are all based on Convolutional Layers.

A. Convolutional Neural Network Design
Different network structures and settings have been tested

during an extensive experimental campaign, where a trial and
error methodology has been adopted. In particular, several
typical parameters, such as precision and recall (both defined



in the following), have been used to optimize the network
architecture. Afterward, the best configuration for our appli-
cation has been chosen and it is presented in this Section.
An AlexNet [14] structure has finally been chosen for this
application. Relu has been adopted as it is the common–used
activation function [18], that is in charge to manage the Input–
Output behavior of neurons. Moreover, in this situation, it
achieves excellent performances and it demonstrated to learn
faster. AlexNet structure, as typical CNNs, is formed by both
Convolutional and Pooling layers, where the latter are placed
between each convolutional layer and the subsequent one.
Specific image patterns are identified by means of a Kernel
slicing on the entire layer. Afterward, a common practice
consists in the usage of a pooling layer, that downsamples the
input patterns, aiming to increase the robustness of the network
to slight variations of the detected features. The extraction
of such meaningful features is done taking the maximum
from each kernel acquisition, namely max pooling. Finally,
the last fully connected layers and the softmax activation
compute the probability of each image to belong to each
of the 3 classes. A slight modification has been made in
respect to the typical AlexNet structure: we used a bilinear
interpolation algorithm to obtain resized 400G300 px input
images. It is worth noting that downsized images are used
only for classification purposes, while the ACA measurement
will be performed with native resolution ones. Indeed, there are
no network performance improvements when using the typical
227G227 px AlexNet input size. Likely, an higher quality of
the image is, for our purposes, more important than a fine
tuning of layers and kernel sizes. Figure 3 shows the network
structure we used.
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Figure 3. AlexNet structure.

As it is possible to see from Figure 3, the dropout technique,

which consists on the deactivation of some randomly chosen
neurons, is used to reduce inter–dependency between fully
connected layers, thus preventing over–fitting. The Dropout
Rate has been set to 50%.

Data preparation is a fundamental task to be done before
the training stage. Hundreds of acquisitions were made and the
data have been manually split into the three classes to train the
network. Data are normalized between 0 and 1, and then 70%
of the total have been used to train the network, while the other
portion for validation purposes. One important feature of the
available dataset is the low number of central images (i.e. those
ones to be identified with the network), usually three or four
out of 120 images acquired during the measurement procedure.
To over the hump, data augmentation techniques have been
adopted. Data augmentation usually foresees the generation
of modified training examples, applying different and pre–
tuned image transformations, e.g. horizontal and vertical shifts,
rotations and brightness modification, only to name a few.
This technique is typically used to generalize the behavior of
the network, trying to generate new and meaningful examples
targeted for the application. Instead, we used data augmenta-
tion also to generate more central images, this way giving the
possibility to train the network with comparable amounts of
left, right and central images. In Table I are listed our data
augmentation parameters.

Table I
Data Augmentation Setup Parameters.

Horizontal Shift Range (% of the width) (−1%, 1%)
Vertical Shift Range (% of the height) (−1%, 1%)

Rotation Range (deg) (−7, 7)
Brightness Multiplication Factor Range (0.5 − 1.75)
Zoom Range (% of the picture size) (90% − 110%)

Indeed, little movements to the right and to the left, rotations
and zooms may occur. Furthermore, different brightness levels
could take place in different surrounding environments. After
the data preparation stage, the prepared data set had the
properties listed in Table II. It is worth observing that we
generated more central images than the other two classes,
aiming to increase the precision of the classification of the
central images.

Table II
Data Set Properties.

Original Data Augmentation Total

Left 8537 5711 14248
Central 593 14994 15587
Right 7877 5471 13348

B. Evaluation Technique
The goodness of the CNN performance is evaluated through

the study of the difference in pixels between the position of
the limbus and the position of the light line on the eye surface:
the lower this difference the higher the CNN accuracy. This



procedure has been divided into 4 steps: i) recognition of the
iris from a reference image to have a reference for the intensity
profile extraction; ii) extraction of the limbus position from a
reference image captured at the first instant of the measurement
procedure; iii) evaluation of the line position for every image
labeled as central; iv) computation of the difference between
these two positions.
The extraction of the limbus position is performed by

considering the limbus intensity profile, that can be fitted as
an error function such as the one in Eq.(1), where A, B, C and
D are fitting parameters that change for each reference image.
Then, the maximum of the fit function derivative, Eq.(2), is
computed to represent the limbus position, -;8<1DB .

5 (G) = � + � 2√
c

∫ � (G−�)

0
4−C

2
3C (1)

5 ′(G) = � · � 2√
c
4−�

2 (G−�)2 (2)

In distinction, since the light line intensity profile can not be
easily fitted by a standard distribution, the -;8=4 position of
the light line is estimated as in [19] [20]:

-;8=4 =

∑
8 �8G8∑
8 �8

, (3)

where G8 is the single–pixel x-coordinates, while �8 is the single
pixel intensity. The error between the limbus position -;8<1DB
and the line position -;8=4 is finally computed as:

� = -;8<1DB − -;8=4 . (4)

The value of � can be positive or negative (i.e. left or right,
respectively) based on the light line position with respect to
the limbus on the images selected by the neural network.
The error E measurement is evaluated through a statistical
analysis with a histogram of the error occurrences, observing
its center of gravity and standard deviation.

IV. Results
A. The Neural Network
The network described in Section III-A has been imple-

mented in Python, within the Keras (Tensorflow Version 2.1.0)
framework and trained according to the set–up described in
Table III.

Table III
CNN training setting.

Optimizer Stochastic Gradient Descend (SGD)
Learning Rate (LR) 10−2

Epochs 75
Batch Number (BN) 128

Loss Function Sparse Categorical Crossentropy
Validation Data (% of total) 30

At each training stage, the error gradient was calculated
through the Stochastic Gradient Descent (SGD) algorithm.
By controlling the error gradient the optimizer updated the
weights so that the error decreased step by step. The next

weights choice was done evaluating the error cost, through
a specific loss function. Given the training settings of Table
III, considering the n–th observation was labeled as a specific
class 2 with probability ?=,2 and N was the total number
of observations, the Sparse Cathegorical Crossentropy loss
function was expressed as:

!>BB(?=,2) = −
1
#

#∑
==1
[;>6(?=,2)] . (5)

In this context, the Learning Rate (LR), that represents
how quickly the network learn, was surely a key parameter,
that has been chosen after several experimental tests. Weights
were updated at each step proportionally to the LR and to
the calculated error. Both training and validation data have
been divided into BN chunks that were individually loaded
in memory to increase computational efficiency. Furthermore,
it was important to highlight that the validation data was the
30% of the original images: data augmentation was performed
only on the training data. Typically, a first evaluation of the
network performances includes the analysis of the accuracy.
Accuracy was simply calculated as the percentage of correctly
labeled data (HC ) vs. total observations (HC + H 5 ):

022DA02H(%) = HC

HC + H 5
∗ 100. (6)

The resulting accuracy curve is shown in Fig. 4. It is worth
noting that in our test case the train dataset was used 75 times
to feed the network (i.e. 75 epochs). The training has been
stopped when the loss and accuracy did not increment for
several consecutive epochs, to avoid over–fitting.
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Figure 4. Training and Validation Accuracy

Results are encouraging, since it is possible to achieve high
accuracy. Despite this, a more accurate analysis is needed, and
a deeper evaluation is now conducted by means of different
metrics. Indeed, the objective of the network is to identify
images belonging to the center class, that has very low
validation examples. For this reason, high accuracy values can
be obtained also if the central class is not well predicted.



Among all the central predictions made by the network (Total
Positive, TotP), a group of them (True Positive, TP) is well
predicted while others are not (False Positive, FP). Moreover,
it is possible that the network wrongly labels some left or
right images, as central, namely False Negative (FN). Given
these definitions, Precision and Recall for the central class are
defined respectively as:
pok

%A428B8>=(%) = )%

)% + �% ∗ 100, (7)

'420;; (%) = )%

)% + �# ∗ 100. (8)

Recall indicates the network ability to mark all the real
Central images as Central, while precision represents the
amount of left and right images labeled as central. It would be
important to obtain high values of both recall and precision.
Moreover, there is an impact of the threshold value on the
precision. The threshold is defined as the probability level
that an observation belongs to the central class above that
the observation is finally marked as central.
The resulting recall and precision value obtained are shown in
Fig. 5.
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Figure 5. Precision and Recall

It hit the eyes that recall remains constant (at the maximum)
for most of the threshold values, while precision grows with
the threshold. Indeed, a threshold increase reflects on a low
number of total positive, i.e. )>C% = )% + �%. The growth
of the precision is a clear indication that the total positive
decrease goes together with a decrease of false positives that
mostly become true negatives. Indeed, the recall decrease is
very slight and mostly concerns the last part of the curve. This
allows to choose an high value of the threshold to increase the
precision of the whole network. It is worth observing that all
the reasoning is made on the global number of test sequences,
but high values of threshold may involve in a small number
of total positive for a single data–set. For this reason, in this
work the chosen threshold is of 89%, allowing to achieve a
precision much greater than the 80%.

The trained network can be finally used to predict central
images on newly acquired data set. The classification algorithm
can be run in a common–on–the shelves Personal Computer,
with additional few seconds of execution that does not increase
the acquisition time, as it is performed after the scans are
completed. This is surely an important aspect to underline, as
it is demonstrated that patients ability to look steady toward
the fixation target, is time limited.

B. Test Results
The performance of the network and the instrument were

tested by performing two different measurements on volun-
teers, as from section III-B. The images were collected in grey-
scale by extracting the red channel from the original image,
to emphasize the light line. In distinction, the reference image
was collected in RGB to simplify the iris recognition.
To evaluate the network 6 different subjects have been tested
5 times, for a total of 60 eye scans (i.e. 30 acquisitions). The
number of center images chosen by the network ranged from 3
to 5 per each acquisition. The total amount of analyzed images
was 125. The six subjects on which the measurements were
carried out were chosen with different colors of the iris to
exclude this variable as a likely possible source of error in the
validation phase. In Fig. 6(a) it is possible to observe a typical
reference image from which the limbus position is extracted (a
reference image is collected for each eye acquisition). In Fig.
6(b) the limbus intensity profile, extracted in correspondence
to the eye center y-coordinate, is plotted along with its fitting
as an error function and its derivative. The maximum of the
derivative represents the limbus position. In Fig. 7 a typical
image used to extract light line position is shown. It can
be observed that the intensity profile is noisy and irregular.
Therefore, the line position is computed as the centroid of
that profile. Finally, in Fig. 8, the histogram of the error
occurrences is shown. As it is possible to see, the histogram
has a Gaussian behavior with parameters: ` = 5.99 px and
f = 5.92 px.

V. Conclusions and Future Work
The use of Machine Learning techniques to extract measure-

ment information from ophthalmic images is a very promising
technique that can overcome some critical aspects of the
manual Van Herick approach. The proposed Neural Network
provides very good results in the center images choice. The
presented results shows a mean error ` = 5.99 px with a
standard deviation f = 5.92 px. The maximum error observed
during the experiment, i.e. � ≈ 20 px, is visually comparable
to the line width. After the ’center’ images are identified,
a vision–based algorithm is currently under development to
measure the displacement between the slit light that hits the
cornea and the refracted light inside the anterior chamber.
A refined tuning of the vision–Based system will be carried
out based on a comprehensive inter–subject experimental
campaign that takes the entire Martin-Schulz scale into proper
account. Moreover, the ongoing activity is aimed at a careful
analysis of the measurement uncertainty.
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Figure 6. Typical reference image used to estimate the limbus position (a);
the corresponding intensity profile along the y-coordinate of the eye center
(•) (green line in (a)), the fitting error function (•) and, its derivative (•) (b).
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