
Citation: Al Sadi A.; Mazzocca, C.;

Melis, A.; Montanari, R.; Prandini M.;

Romandini, N. P-IOTA: A

Cloud-Based Geographically

Distributed Threat Alert System That

Leverages P4 and IOTA. Sensors 2023,

23, 2955. https://doi.org/10.3390/

s23062955

Academic Editors: Wenlin Han,

Barbara Guidi, Gora Datta and

Ahmed Banafa

Received: 28 December 2022

Revised: 6 March 2023

Accepted: 6 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

P-IOTA: A Cloud-Based Geographically Distributed Threat
Alert System That Leverages P4 and IOTA
Amir Al Sadi , Carlo Mazzocca , Andrea Melis , Rebecca Montanari , Marco Prandini *
and Nicolò Romandini

Department of Computer Science and Engineering, University of Bologna, 40136 Bologna, Italy;
amir.alsadi@unibo.it (A.A.S.); carlo.mazzocca@unibo.it (C.M.); a.melis@unibo.it (A.M.);
rebecca.montanari@unibo.it (R.M.); nicolo.romandini@unibo.it (N.R.)
* Correspondence: marco.prandini@unibo.it

Abstract: The recent widespread novel network technologies for programming data planes are re-
markably enhancing the customization of data packet processing. In this direction, the Programming
Protocol-independent Packet Processors (P4) is envisioned as a disruptive technology, capable of
configuring network devices in a highly customizable way. P4 enables network devices to adapt
their behaviors to mitigate malicious attacks (e.g., denial of service). Distributed ledger technologies
(DLTs), such as blockchain, allow secure reporting alerts on malicious actions detected across different
areas. However, the blockchain suffers from major scalability concerns due to the consensus protocols
needed to agree on a global state of the network. To overcome these limitations, new solutions have
recently emerged. IOTA is a next-generation distributed ledger engineered to tackle the scalability
limits while still providing the same security capabilities such as immutability, traceability, and trans-
parency. This article proposes an architecture that integrates a P4-based data plane software-defined
network (SDN) and an IOTA layer employed to notify about networking attacks. Specifically, we
propose a fast, secure, and energy-efficient DLT-enabled architecture that combines the IOTA data
structure, named Tangle, with the SDN layer to detect and notify about network threats.

Keywords: SDN; P4; IOTA; Tangle; blockchain; distributed ledger technology

1. Introduction

The advent of distributed technologies has led to the emergence of decentralized
systems that rely on a network of nodes for computation and data storage. These systems
facilitate the collaborative and distributed use of computational resources, as opposed
to relying on a central authority, leading to more efficient resource utilization, improved
security, and greater resilience. However, the very nature of distributed infrastructures
intrinsically brings architectural vulnerabilities that can be exploited by attackers. One
of the most-famous attacks that leveraged these architectures is the distributed denial of
service (DDoS) [1], which seeks to disrupt network services and host connectivity in a
distributed environment by overloading the network with unnecessary requests. Avoiding
and mitigating DDoS attacks is a primary concern for many organizations.

Software-defined networking (SDN) is a cutting-edge networking approach that di-
vides the control and data plane layers to carry out its specific tasks. In SDN, the physical
network layer is seen as fully programmable, resulting in increased customization of
data packet processing. Such a feature has greatly contributed to its widespread deploy-
ment across different cloud infrastructures. In this direction, the Programming Protocol-
independent Packet Processors (P4) has emerged as an innovative programming language,
operating at the data plane level, to configure network devices in a highly customizable
manner. P4 allows full programming of networking devices while being target-independent.
Furthermore, the capability of programming the data plane is boosting the ability to detect
network attacks.

Sensors 2023, 23, 2955. https://doi.org/10.3390/s23062955 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23062955
https://doi.org/10.3390/s23062955
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5560-9871
https://orcid.org/0000-0001-8949-2221
https://orcid.org/0000-0002-0101-2551
https://orcid.org/0000-0002-3687-0361
https://orcid.org/0000-0002-3962-5513
https://orcid.org/0000-0002-3962-5513
https://doi.org/10.3390/s23062955
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23062955?type=check_update&version=3

Sensors 2023, 23, 2955 2 of 22

How to effectively and securely share information to detect attacks is a challenging
task. Distributed ledger technologies (DLTs), such as blockchain, are digital systems spread
across multiple locations that securely store information (transactions) without the need
for a central entity. Blockchain represents the most-famous type of DLT; its data structure
foresees a chain of blocks connected through hashes and validated by third-party entities
(i.e., miners or validators) following a consensus protocol. However, the validation process
consumes a significant amount of time and energy, which can hinder blockchain’s efficiency
and adoption for information sharing. To address these concerns, alternative DLTs, such as
IOTA, are recently emerging as promising solutions. IOTA offers the same security features
of the blockchain (i.e., immutability, traceability, and transparency) while addressing the
efficiency concerns.

The differences between IOTA and blockchains have been widely investigated in
the literature [2–4], with numerous studies showing that IOTA is a superior solution in
terms of scalability, transaction rate, and efficiency, particularly with regard to energy
consumption. IOTA outperforms traditional blockchains due to its low latency combined
with the ability to send transactions without any fees [2]. Reference [4] presented an
in-depth comparison of the performance of multiple consensus protocols where IOTA
achieves the best performance with a transaction rate that is several orders of magnitude
higher than the other protocols. Therefore, its lightweight consensus protocol makes it
one of the few truly suitable technologies for Internet of Things (IoT) devices [3]. These
properties are particularly relevant in SDN-based environments due to the strict latency
requirements of the data plane. In the state-of-the-art, there are very few examples of
research proposals that integrate P4 and DLTs. We argue that one of the main reasons
is that traditional blockchain-like technology, such as Ethereum, introduces considerable
overhead to compute blocks, clashing with the real-time attack detection capabilities of P4.

This paper presents P-IOTA, a system that leverages P4 and IOTA to detect ongoing
network attacks in real-time. Our solution offers high performance and enables the real-
time communication of events in a distributed manner. P-IOTA can be employed to
address a wide range of attack scenarios. We developed a proof-of-concept using a well-
known P4 implementation for DDoS attack detection, and we simulated an SYN flooding
attack. The experimental results demonstrated that P-IOTA outperformed blockchain-based
proposals in detecting and communicating attacks in real-time, as well as correcting false
attack notifications that may occur.

The paper is organized as follows. In Section 2, we introduce the relevant background
information regarding SDN, P4, and DTLs. The relevant literature is reviewed in Section 3
to present the background concepts used in our work and to highlight the limitations of
existing solutions. In Section 4, we describe P-IOTA, including its main components and
features. Then, Section 5 documents the experimental results of a simulated SYN flooding
attack. Finally, Section 6 draws our conclusions.

2. Technical Background

In this section, we provide essential background information about SDN, the P4
programming language and its basic constructs, and DLTs with a specific emphasis on IOTA.

2.1. Software-Defined Networking

Traditional network configurations are performed by individual design and installa-
tion of forwarding rules on packet-handling devices, hindering the ability to deploy config-
uration updates dynamically and cohesively. To solve this problem, the Open Networking
Foundation https://opennetworking.org (accessed on 20 December 2022) promoted SDN,
a highly dynamic, cost-effective, and easily adaptable network architecture. The basic idea
behind this paradigm is to decouple the control plane, which selects forwarding behavior
policies, from the data plane, which is responsible for forwarding packets. Figure 1 shows
the layers of SDN architectures. The data plane is composed of the SDN-enabled switches,
which use a flow table to encode the forwarding rules. The control plane comprises one

https://opennetworking.org

Sensors 2023, 23, 2955 3 of 22

or more physical or virtual devices, known as controllers, that fill the flow table of the
SDN switches. The layers communicate using APIs: the Northbound Interface API is the
channel between the control plane and the applications, while the Southbound Interface
API connects the control and data planes.

Network Abstractions (e.g., topology abstraction)

Network Operating System (SDN controllers)

Net App 1 Net App 2 Net App n

Abstract network views

Open northbound API

Global network view

Open southbound API

D
at

a
Pl

an
e

C
on

tr
ol

 P
la

ne

Figure 1. The SDN architecture.

The SDN paradigm brings numerous advantages, such as the ability to directly pro-
gram all components of the underlying network, abstracting the control plane from the
forwarding plane, allowing operators to directly adjust traffic flow according to the user
needs, to increase reliability due to centralized network control, to implement new services
without the need to configure individual devices, and to improve network automation
and management. Thus, this type of infrastructure requires the data plane devices to
communicate with the control layer devices via some type of protocol: an example is the
OpenFlow protocol, a standard communication interface defined between the controller
and the SDN switch.

SDN Attacks

Throughout SDN’s lifespan, the scientific literature has pinpointed a wide variety
of vulnerabilities and proposed workarounds for them. As the literature suggests [5],
vulnerabilities can be grouped according to the SDN layers. In this section, we chose to
describe some threats that can affect the data and control plane. Side-channel attacks are
the first type of attacks we considered. In this scenario, the intruder analyzes the time gap
or the flow configuration delay in the flow table to fetch the network configuration. This
attack is possible due to the lack of confidentiality on the data plane. Fingerprinting is
usually employed to counteract these threats [6,7].

On the other hand, man in the middle (MiTM) attacks affect the control planes: in
this scenario, attackers are able to sniff traffic that flows from a sender to a receiver. This

Sensors 2023, 23, 2955 4 of 22

attack can be easily enforced in the Southbound Interface, due to the fact that the channel
is usually not encrypted. Adhikari et al. [8] proposed an MiTM mitigation scheme that
leverages ECDH and AES encryption to encrypt information sent between the data and
control plane.

However, one of the most-disruptive data-plane-based attacks is denial of service,
an attack that aims at making a machine or network resource unavailable to its intended
users by disrupting the services of a host connected to a network. The scientific literature
has focused in depth on finding ways to mitigate these sorts of attacks. Fouladi et al. [9],
for example, proposed a scheme to counteract DoS attacks by employing an auto-encoded
neural network to mitigate a set of different types of DoS attacks.

In our work, we focused on data-plane-based attacks such as DoS, since we are able to
mitigate traditional SDN vulnerabilities by employing the programmable data plane.

2.2. P4

P4 [10] is an open-source programming language designed to control packet processing
in the data plane. A P4-enabled switch provides two innovative concepts: (i) the switch’s
functions are defined by the P4 program, rather than predetermined; (ii) the communication
between the control and data plane occurs in a fixed-function device channel, but the data
plane APIs are defined by the P4 program. P4Runtime [11] offers the specifications for
abstracting the hardware interfaces and building the Southbound Interface APIs that expose
the specific features and protocols supported by the data plane [12]. The main goals of P4
are the following:

• Reconfigurability: The controller can dynamically install and update the packet pars-
ing logic and processing rules.

• Protocol independence: The controller can specify how to process header fields pro-
viding rule names, key types, and typed match + action tables, breaking the tie that
standard switches have to fixed packet formats.

• Target independence: The controller programmer can design behaviors independently
of the details of the underlying switch. The task of translating program features
exploiting target-specific capabilities is delegated to the P4 compiler.

P4 is built around an abstract model that describes the switch’s traffic forwarding pro-
cess through multiple stages of match+action, arranged in series, parallel, or a combination
of both. Inbound packets are first handled by the parser, which extracts header fields and
acts as a programmable interpreter of supported protocols. The extracted header fields are
then passed to the match+action tables, which determine the egress port and queue for the
packet. Based on the ingress processing, the packet may be forwarded, replicated, dropped,
or trigger flow control. A P4 program expresses the behavior of the data plane, defining
the following components:

1. Header types: packet header definitions, i.e., the set of fields and their sizes.
2. Parsers: finite-state machines that map packets into headers and metadata.
3. Tables: data structures defining matching fields and actions applied to them.
4. Actions: code fragments that describe packet manipulation and can consider external

data, supplied by the control plane at runtime.
5. Match–action units: elements that construct lookup keys from packet fields’ metadata

and use them to find the right action and execute it.
6. Control flows: imperative blocks that describe packet processing on a target using the

data-dependent sequence of match–action unit invocations.

P4’s unmatched expressiveness gave a disruptive new perspective on network pro-
grammability and monitoring while increasing the scientific community’s interest in this
topic. On the other hand, it does have entry barriers, such as the need for enabled hardware
and the effort required for network architects to become proficient in designing efficient
and portable code.

Sensors 2023, 23, 2955 5 of 22

2.3. Distributed Ledger Technology

Distributed ledger technologies (DLTs) are a type of distributed database that avoids
the centralization of data and does not require administration functionality. The stored
information is replicated on multiple nodes that maintain a copy of the entire database.
Since there is no centralization or third-party entities, the data source is built collabora-
tively, allowing multiple entities to contribute data. Unlike traditional databases, data
memorized on a DLT can neither be modified nor deleted, as they are usually implemented
as append-only data structures. They rely on peer-to-peer (P2P) networks as they are
decentralized systems. The lack of a centralized control entity avoids the single point of
failure issue. For this reason, DLTs adopt consensus protocols to keep the nodes in the
network synchronized. Trust between participants is established through these protocols,
which are based on strong cryptographic principles.

It is possible to distinguish many categories of DLTs according to specific characteris-
tics. The first factor is the data structure chosen to store the information. The most-popular
are blockchains and directed acyclic graphs (DAGs). A blockchain, as the name suggests,
stores information in blocks linked together by hash pointers. This makes it possible to
notice tampering with data since changing a block would break the chain. A directed
acyclic graph is a data structure no longer organized as a linked list of blocks, but as a
directed graph without cycles in it. DLTs can be divided into two different access mod-
els: permissionless and permissioned. In the first model, the ledger is public and open
access; hence, anyone can participate in the network and the consensus protocol. It is fully
decentralized across unknown parties. In the second model, participation is mediated
by permissions: participants have restrictions on writing or both reading and writing.
In general, it is partially decentralized. DLTs can also be classified into tokenized and
tokenless ledgers. In a tokenized ledger, transactions involve some type of purely digital
asset (token) represented within the ledger. Tokens generally serve two main purposes.
The first is that they act as an economic incentive for protocol participants to form consen-
sus in decentralized systems. Forming economic incentives within a consensus protocol
is only relevant for decentralized systems (a miner mining a block outside the consensus
wastes energy and forgoes any reward). The second purpose is that they help prevent
spam and DoS attacks. In fact, each operation involves a nominal fee to be performed.
Spammers can be hampered by the enormous costs involved in creating a large number of
transactions. In a tokenless scenario, the ledger does not offer any good as an incentive to
join or expect any payment for implementing smart contracts. For this reason, tokenless
ledgers are typically permissioned, and thus, a strong trust has already been established
during the registration process. Some ledgers also allow the simulation of a Turing machine.
For example, Ethereum or Hyperledger Fabric can execute Turing machines. This allows
programs written in Turing-complete programming languages to be stored and executed
directly on the ledger. These programs are often called smart contracts.

2.4. IOTA

First-generation blockchains exhibit significant efficiency issues [13] that make them
unsuitable for environments where resources can be extremely heterogeneous (i.e., IoT).
IOTA [14] is a next-generation DLT engineered to tackle the scalability limits of the
blockchain while still providing the same security capabilities such as immutability, trace-
ability, and transparency. IOTA owes its high scalability to the adopted data structure
named Tangle (sketched in Figure 2), a DAG composed of several connected nodes that
store transactions. Each node is a transaction, while each edge represents a validation of
that transaction. The Tangle enables achieving remarkable performance due to the lack of a
middleman since there are no block producers (i.e., miners and validators). Thus, everyone
can submit a transaction and attach them to different nodes. However, in order to achieve
a secure shared state, a new transaction has to verify the two transactions to which it is
directly connected. Furthermore, since transactions are not validated by someone that
has to be rewarded, it also enables zero-value transactions. This feature is particularly

Sensors 2023, 23, 2955 6 of 22

relevant for certain scenarios where there are a huge amount of data to send, resulting in
an extremely large number of transactions. Since zero-value transactions do not involve
any transfer value, they are attached to the Tangle without the need to be validated by
participants of the network (i.e., double spending cannot occur), thus remarkably reducing
the time to share information.

0 1 2

3

4
6

5

Figure 2. The Tangle.

An IOTA network can be deployed as private or public. A private network only
provides access to certain users. On the other hand, a public network can be accessed
by anyone without any kind of restrictions: every participant is aware of the history of
transactions and sent new transactions.

IOTA distinguishes clients and nodes. A client is any entity (i.e., human or not) that
submits transactions to a node, to have them attached to the Tangle; nodes have to verify
the correctness of the transactions and, in the case of success, add them to the Tangle.
Furthermore, an IOTA network comprises additional node types named Coordinator and
Permanode. In each IOTA network, there is a unique Coordinator that regularly produces
milestones, trusted signed transactions used by nodes to confirm transactions. The signa-
ture guarantees that nobody can fake the signatures on milestones; thus, milestones are
always legitimate. In particular, a transaction is confirmed only when directly or indirectly
referenced by a milestone that nodes have validated. The use of the Coordinator is tempo-
rary; it will soon be removed in incoming updates. Permanodes are responsible for keeping
the history of all the transactions that occurred. Such a component is particularly relevant in
specific scenarios since nodes may be constrained devices that cannot memorize the entire
Tangle. Therefore, they periodically delete recorded transactions using a pruning operation.

3. Related Work

This section reviews existing works on the integration of blockchain with SDN and
P4. Furthermore, it also analyzes some research efforts that employ P4 for thwarting SYN
flooding attacks.

3.1. SDN and Blockchain

The combination of SDN and blockchain can find various applications, motivated
by both the necessity to address SDN’s inherent security issues and the opportunities to
manage the energy consumption of devices [15]. By exploiting the distributed architecture
that blockchains are based on, some researchers combined those technologies and applied
them to IoT infrastructures to pursue various intents. Yazdinejad et al. [16] proposed a
specific architecture to provide an efficient and secure mechanism for file transferring
between IoT devices, to overcome the computational limitations of such devices. IoT
devices are clustered around their respective SDN controller and are able to communicate
over a P2P network using a public blockchain. The computational need is eased by
removing the proof of work (PoW) process thanks to the controller’s role, the clustered
nature of the architecture, and an ad hoc distributed trust algorithm. Inside the clusters,
a private blockchain is used to keep track of the newly added IoT devices and every
transaction. To transfer a file between devices, a preliminary block that contains the sender
and receiver signature and public keys is designed. After the block is validated by the

Sensors 2023, 23, 2955 7 of 22

network, the file is then sent to the intended recipient, which is the only one that can decode
it. A similar use case was shown in [17], where with the use of OpenStack and Pythereum,
a blockchain-enabled SDN was implemented and tested. The role of the blockchain in
this architecture is to present indelible and transparent records of any file transfer, which
the network then validates. Jiasi et al. [18] presented a proof-of-concept practical design
in which a blockchain layer was placed between the control and data layers, to record
network events and resources associated with every controller and build smart contracts
that automatically implement security protocols.

To tackle the single point of failure (SPOF) architectural vulnerability, while having the
purpose of enhancing SDN’s security level, Abou et al. [19] proposed an architecture that
incorporates the blockchain as a way to make multiple SDN-based domains collaborate
and share DDoS attack information in a decentralized manner. This work exploited a smart
contract where collaborators can publish real-time IP addresses of malicious parties that
need to be blacklisted. The authors deployed the smart contract on an Ethereum testbed
network to evaluate the infrastructure, which resulted in being flexible, secure, and low-cost.
The choice of deploying the solution on a public blockchain enabled information sharing
between different clouds to achieve collaboration, especially needed in IoT environments,
as shown in [20].

Rahman et al. [21] presented a framework that exploits the Ethereum blockchain to
publish all the flow rules of the switches: the controller periodically creates a block as an
update only if all the switches agree on the proposed list of rules. The immutability and
consistency of the blockchain allow the management of flow rules and the detection of
their violations on devices. However, the authors reached the conclusion that deploying
this kind of architecture in the real world is rather complex because of the amount of
transactions needed, which can entail a considerable cost. Similarly, Sharma et al. [22]
presented a distributed secure SDN architecture for the IoT using the blockchain technology
concept to improve security, scalability, and flexibility, without the need for a central
controller. The blockchain was employed as a distributed peer-to-peer network where
non-authenticated members can interact with each other without a trusted intermediary.
The blockchain is deployed in order to allow this untrusted interaction to update a flow
rule table, securely verify and validate a version of the flow rule table, and download the
latest flow rules table for IoT forwarding devices. In addition, the DistBlockNet architecture
provides proactive and reactive incident prevention by dynamically adapting to the threat
landscape without having to include security administrators to manually process a huge
number of advisories and approvals.

3.2. Blockchain Interaction with P4-Enabled Switches

The efficiency of the solutions described in Section 3.1 has been validated by comparing
it with existing models, as highlighted in [23]. However, we believe they did not fully
exploit the potential of the programmable data plane. To the best of our knowledge, only
two solutions attempted to integrate blockchain and SDN by leveraging the P4 language.

Febro et al. [24] presented a botnet DDoS defense framework using P4, SDN, and
blockchain at the network edge. It implements a synchronized defense within an orga-
nization or also spanning multiple organizations. The framework comprises two main
agents, ShieldSDN and ShieldCHAIN. ShieldSDN is an SDN controller managing edge
devices with P4 capabilities, responsible for synchronizing packet filters provided by the
switches within an organization. ShieldCHAIN is a distributed application that leverages
a smart contract deployed in the Ethereum blockchain. ShieldCHAIN is responsible for
inter-organization synchronization: when a publisher or organization wants to share attack
fingerprints with the community, ShieldCHAIN creates a transaction. The subscriber can
then retrieve the current state of attack, and ShieldCHAIN then installs the required coun-
termeasures in the data plane. The authors performed four experiments to validate their
solution, i.e., to prove that ShieldCHAIN is effective at orchestrating the programmable
data plane, control plane, and blockchain in a scalable solution against botnet-based DDoS,

Sensors 2023, 23, 2955 8 of 22

by synchronizing packet filters on the edge networks. Acknowledged drawbacks included
the high request of computational resources to run the public blockchain and its intrin-
sic delay.

Yazdine et al. [25] proposed a P4-based blockchain-enabled packet parser (BPP) located
in the data plane and implemented on an FPGA. The BPP implements a custom header in
P4 that fits the blockchain structure. The BPP is able to recognize blockchain hash blocks to
enforce control policies, such as match+action tables using specific fields in these packets.
The workflow outlined by the authors involves the data plane, the control plane, and the
application layer. It begins with packet processing in the BPP module, which leverages the
intrusion detection functions in relation to attack types (five categories of patterns: normal,
remote to local (R2L), DoS, user to root (U2R), and probing attack (probe)) to detect attacks.
If an anomaly is detected, a transaction is prepared to be validated and then added to a block
in the ledger for that specific attack. Then, the BPP submits a transaction to a validator in
the control plane and notifies the controller of that attack detection. Subsequently, the SDN
controller can use the Merkle tree to evaluate the transaction. If this process is successful,
the transaction will be marked as valid in the whole network. Concurrently, the blockchain
will be updated and the BPP will be re-programmed, if necessary.

3.3. P4 for Thwarting SYN Flooding Attacks

SYN flooding attacks are a type of attack that attempts to concurrently establish a
large number of connections to disrupt the networking capabilities. The attack involves
flooding the network with SYN/ACK TCP packets targeting a host in an effort to establish
TCP connections and block the available ports. P4 is a promising candidate for designing
and deploying in-network detection and mitigation strategies for SYN flooding attacks. It
allows keeping track, in real-time, of the ratio of SYN/ACK sent in a flow compared with
the corresponding ACK/FINs. The literature shows how real-time data plane detection
enables accurate assessment of whether a network flow is malicious or not. One such
implementation was reported in P-SCOR [26], where a simple asymmetric-flow detection
algorithm was proposed.

Shen et al. [27] proposed a P4-based SYN and UDP flooding mitigation strategy that
combines the two steps of attack identification:

1. Source authentication: by using an SYN cookie, the source of traffic is authenticated
in the system.

2. Anomaly detection: after the authentication step, the real three-way handshake takes
place and the P4 program supervises the correctness of the process.

Such operations, whose flow is shown in Figure 3, allow early detection of ongoing
attacks on the authentication phase and prune the remaining possible threatening flows
in the second phase. The results show a drastic reduction in the server SYN queue usage
when the P4 firmware is deployed in the network. Similarly, another three-step solution
was proposed by Lin et al. [28]. Different from [27], the authors merged overlapping switch
rules to minimize the number of dropped benign flows. Three concurrent components
make up the solution. A detection oversees the ratio of SYN/ACK and ACK/FIN packets
related to each network flow. Meanwhile, a merging phase is employed: here, multiple
entries on a switch are simplified to a larger prefix to minimize the number of installed rules.
The defense mechanism matches each attacker in a flow table rule: if the rule installed in
the switches is LPM and an attacker is in that IP range, the rule is deleted, while if the rule
is an exact match, the IP is dropped.

SYN flooding attacks are one of the most-threatening attacks in distributed environ-
ments; hence, we claim they can be a remarkable example to showcase the potential of
our solution.

Sensors 2023, 23, 2955 9 of 22

Figure 3. Two-step P4-based SYN and UDP flooding mitigation and identification strategy.

The scientific research on P4 solutions that incorporate blockchain technologies is
limited. Most of the existing solutions choose the Ethereum blockchain, and the focus is
mainly on security applications in IoT environments. There is a lack of studies on P4 and
blockchain in cloud environments and few works that leverage the blockchain to propagate
P4 alerts in the case of detected attacks. To the best of our knowledge, there are no works
that employ alternative DLTs such as IOTA, which has been shown to be more efficient
than popular blockchain-based solutions, especially for IoT environments.

3.4. Considerations about P4 Employment in Blockchain Solutions

The scientific literature on P4 solutions that exploit blockchain technologies is very
limited, with most of the existing solutions choosing the Ethereum blockchain. Table 1
shows what are the main topics treated by each paper mentioned in the related works. These
works mainly focus on security applications in IoT environments. Two of the analyzed
works focused on recording events, while only one covered file transfers. By reviewing
the literature, we observed a lack of studies on P4 and blockchain in cloud environments
and few works that leverage the blockchain to propagate P4 alerts in the case of detected
attacks. On the other hand (as shown in Section 3.3), a large number of works use P4 as the
enabling technology to deploy detection strategies to spot abnormal behaviors on the data
plane, i.e., SYN flooding attacks.

To the best of our knowledge, there are no works that employ alternative DLTs such as
IOTA, which has been shown to be more efficient than popular blockchain-based solutions,
especially for IoT environments.

Sensors 2023, 23, 2955 10 of 22

Table 1. Related works list of analyzed topics.

Ref. SDN P4 IoT Ethereum Recording
Events

File
Trans-
fers

Security

[16] X X X X

[17] X X

[19] X X X

[20] X X X X

[21] X X X X

[22] X X X

[24] X X X X X

[25] X X X

4. P-IOTA Architecture

In this section, we present the design of our solution, which is depicted in Figure 4.

. . .IOTA Node IOTA Node

C
on

tr
ol

 P
la

ne
IO

TA
 la

ye
r

D
at

a
Pl

an
e

. . .

Report Alert/ Get
Alert

IOTA Tangle

IOTA Client

P4Runtime client

Business logic

Report Attack
Spotted

Update
Mitigation Rules

Update
Mitigation Rules

IOTA Client

P4Runtime client

Business logic

Attacker Detected attack

Subnet1 SubnetN

Report Alert/ Get
Alert

Figure 4. The P-IOTA architecture.

P-IOTA is tailored for distributed networks that belong to multiple organizations,
such as cloud infrastructures, where computational and networking resources are often
spread across geographic locations and critical information is stored. These types of
networks are often treated as local networks (e.g., cloud-hosted installations) by system

Sensors 2023, 23, 2955 11 of 22

administrators, but it can be challenging to quickly detect and block threats while spreading
alert information in such a distributed environment.

The main goal of this framework is to facilitate the dissemination of network attack
alerts through IOTA. In order to generate alerts in a highly customized and efficient way,
P-IOTA leverages an SDN-based architecture, involving a P4 data plane layer that detects
network attacks. The generated alerts are then used to notify other controllers through the
IOTA layer. The infrastructure consists of three main components:

• IOTA layer’s main role is to notify and log alarms from the data plane and to share
mitigation strategies. The IOTA layer notifies the portions of the network that can be
impacted by the detected attack and disseminates the policy that should be applied to
mitigate it.

• The control plane is responsible for managing and configuring the underlying physical
network. It contains multiple local network managers (i.e., controllers), each of which
controls a specific subnet. The controllers interact with the IOTA layer using an IOTA
client and with the data plane using P4Runtime.

• The data plane is the layer hosting the physical devices that forward traffic. By using
P4 and the programmable data plane, part of the detection intelligence can be moved
from the control plane to the data plane. This allows for deep packet inspection and
network-level probing to detect anomalies.

P-IOTA is designed to propagate real-time alerts from the data plane and deliver them
quickly throughout a distributed environment. The IOTA Tangle maintains an immutable
list of alerts in the form of a log, allowing for further investigations into the attack history
offline without the risk of log cleaning. Moreover, the Tangle can be leveraged to share
the countermeasure needed to mitigate the detected attacks. Hence, our solution offers
intrusion detection capabilities on the data plane in the form of in-network detection,
offloading a significant amount of detection intelligence to networking devices.

In this paper, we demonstrate how IOTA significantly reduces the overhead compared
to traditional blockchain solutions, highlighting its potential in the network security field.

4.1. IOTA Layer

The IOTA layer comprises the IOTA nodes that hold a unified view of the Tangle. Our
decision to use IOTA to share information across different sites [29] was motivated by the
following features:

• Efficient lookup: Each transaction can be tagged, making it easier to collect IPs from
the Tangle. If another DLT were adopted, an additional tag within the transaction
message would significantly slow down the time it takes to find a transaction.

• Zero-value transactions: IOTA enables neglecting cryptocurrency, reducing the com-
plexity of managing IPs. In contrast, each controller would need to have sufficient
funds to perform the operations.

• Scalability: The Tangle allows parallel validation of transactions without any interme-
diary. Such a capability overcomes blockchain-based solutions, where a transaction is
not recorded until it is stored in a block.

Finally, the Tangle structure also shortens the time needed to record a new transaction.
Transactions are recorded on the Tangle as soon as they are created, whereas, in blockchain-
based solutions, they must wait until they are stored in a block.

4.1.1. IOTA Node

In a federation, each participating enterprise should have at least one IOTA node to
receive notifications from other organizations. However, a company may not collaborate
with external parties and may have multiple sites located in different regions. Therefore,
to reduce latency and facilitate swift mitigation, a company may choose to deploy an IOTA
node at each of its sites.

Sensors 2023, 23, 2955 12 of 22

4.1.2. IOTA Tangle

The Tangle is the data structure employed to share information, such as alarms and
mitigation, among different controllers. This information is shared through zero-value
transactions that do not require validation and, hence, help maintain a unified view of the
Tangle while keeping low latency and energy consumption. As discussed in the previous
section, these features make IOTA a suitable choice for SDN-based scenarios where threat
alerts and mitigation have to be quickly disseminated among devices that may have
limited capabilities.

4.2. Control Plane

The control plane is responsible for managing, configuring, and monitoring the phys-
ical network. It consists of multiple geographically dispersed controllers, which are in
charge of managing a single network. These controllers work together and receive alerts
from the IOTA layer, which informs the correct nodes of potential attacks, as shown in
Figure 5.

Controller ControllerControllerController Controller

IOTA Tangle

IOTA Node

Mgmt
message

Organization 1Organization 2

(1)

(2) (2)

IOTA Node IOTA Node

(2)

IOTA Node

Figure 5. An example of organizations managing controllers associated with different subnets. In a
federated environment, if an alert (1) is generated from a node, all interested controllers across
organizations are notified (2).

Each controller acts as the primary management point for a local network. It keeps
track of the status of networking devices, communicates with other controllers to make
decisions about local network management strategies, and provides common control place
services to monitor and administrate the data plane.

The control plane is made up of multiple controller instances, which are connected
through messages. The components of each controller are:

• The IOTA client is responsible for connecting the controller instance to the correspond-
ing IOTA node in the IOTA layer. It communicates with the IOTA node to send and
receive alerts.

• The controller business logic handles the forwarding of the alerts to the IOTA client,
sending management messages (e.g., congestion, link failures, etc.) to other controllers,
and communicating with P4Runtime.

• P4Runtime is in charge of interacting with the networking through the P4Runtime
Southbound Interface. It receives alerts generated from the data plane and installs the
rules to react to these alerts.

Sensors 2023, 23, 2955 13 of 22

As highlighted in Figure 5, organizations may manage multiple controllers, and if a
controller detects a potential attack, it will communicate it to the IOTA node, which then
notifies the interested controllers through the IOTA Tangle.

4.2.1. IOTA Client

The role of each controller in detecting and mitigating attacks is accomplished through
the integration of an IOTA client. This client serves as a bridge between the controller and
the IOTA node, allowing the exchange of information between the controller and the IOTA
Tangle. One of the advantages of using IOTA clients is their lightweight design, which
makes them suitable for deployment on devices with limited resources.

4.2.2. Controller Business Logic

This component plays a key role in managing and controlling the underlying network.
It is responsible for expressing policies and communicating configuration or resource
changes to neighboring controllers via management messages. The management messages
are used to exchange information between physically close controllers, while the IOTA
layer is in charge of disseminating alarms and mitigation strategies across a distributed
network. In summary, the main functions of a controller include:

• Management messaging: sending messages to communicate with the neighbors’ con-
trollers.

• Alerting: forwarding alerts coming from the data plane to the IOTA node for
further dissemination.

• Network configuration: interacting with and configuring the underlying network for
forwarding or mitigation purposes.

This controller acts as the centralized core that manages the subnet and demonstrates
the intelligence of the administration.

4.2.3. P4Runtime Client

This component is the client for the Southbound Interface that connects the controller
business logic and the data plane level. As outlined in Section 2.2, P4Runtime abstracts
the underlying hardware or software and offers agnostic APIs to the control plane to
communicate with the physical network. The P4Runtime client is responsible for receiving
communications from the data plane and performing two key functions:

• Installing match-action rules: it installs rules that specify forwarding logic or threat
detection and mitigation strategies.

• Event listening: it listens for alerts from the data plane that indicate potential threats.

4.3. Data Plane

The data plane is in charge of processing and forwarding traffic. It includes networking
devices such as switches and routers. Each controller is paired with one or more P4 border
routers, which are capable of monitoring the traffic flowing in a given subnet and detecting
abnormal behaviors. This allows the P4 switch to centrally inspect each network flow
and determine if an attack is taking place. The programmability of P4 and the data plane
enabled us to design pipelines that incorporate the detection of ongoing network attacks
and normal forwarding behaviors. In Figure 6, we report the network topology used for
the experiments.

Sensors 2023, 23, 2955 14 of 22

Attacker

10.0.1.1

SYN flooding to: 10.0.1.1

10.0.1.1

SYN flooding to: 10.0.1.1

10.0.1.1

SYN flooding to: 10.0.1.1

Attacker

10.0.1.1

SYN flooding to: 10.0.1.1

Figure 6. Network topology used for the testing phase. From the top-left corner, clockwise: single
switch topology; linear topology; ring topology; fully connected topology.

Over different possible attack scenarios, we focus on the two we considered more relevant:

• An organization is comprised of multiple physical subnets within the IOTA-controlled
network. If an attacker is detected, the alert must be propagated to each geographically
dispersed network subnet.

• The same physical network is used by multiple organizations (such as in public
or hybrid cloud platforms). In this scenario, an attack may potentially affect each
organization operating in that portion of the data center.

P-IOTA handles both of these scenarios in a consistent manner since each IOTA node
is tied to its organization. Similarly, as depicted in Figure 6, each controller is connected to
its IOTA node and can configure its network independently.

5. Case Study

To validate the proposed architecture and compare it with the existing literature,
we considered a real-world use case scenario. This section aims to showcase a practical
implementation of the SYN flooding detection and alerting workflow using the P-IOTA
architecture. Therefore, we conducted a proof-of-concept evaluation of P-IOTA by focus-
ing on SYN flooding, which is a common and harmful networking attack in distributed

Sensors 2023, 23, 2955 15 of 22

environments. This attack falls within the DDoS, notoriously known to disrupt the net-
work forwarding capabilities and to leverage SDNs to threaten cloud infrastructures [30].
As discussed previously, the programmable data plane in P4 can mitigate these threats,
as it addresses the centralized nature of traditional SDN controllers. There have been
several successful implementations of P4 in mitigating DDoS attacks, demonstrating the
effectiveness of the technology in securing distributed networks.

We conducted a proof-of-concept evaluation of our architecture by implementing an
SYN flooding scenario. To detect the DDoS attack, we used the InDDoS solution proposed
by Ding et al. [31]. This solution, which is fully located on the data plane, identifies potential
DDoS victims based on data structures and thresholds. The solution has been validated
with state-of-the-art datasets and has shown high detection precision. We deployed InD-
DoS using its open-source code available at https://github.com/DINGDAMU/INDDoS
(accessed on 20 December 2022). We selected this solution as it aligns with our scenario: the
Southbound Interface is minimally used, with each alert consisting of just 4 bytes (an IP).
To simulate the network environment, we used Mininet [32] and Bmv2 [33] with a single
switch and two host network topologies. The attack was generated using the Linux utility
Hping3 [34].

5.1. Experimental Setup

We set up an IOTA network and evaluated the time it took to make all controllers
aware of the victims’ IPs. To do this, we used zero-value transactions to share information
on the IOTA network. The transactions were embedded with the attacked IP and were
made immutable by the Tangle. However, this may lead to false positives if an IP is
wrongly reported. Therefore, we enriched the message of transactions with an “action”
field, which indicates the type of operation being performed (i.e., add or delete). To delete
an IP incorrectly detected as suspicious, a controller has to send a transaction where the
action field is set to “delete” and the IP field reports the wrong IP. An example of the
message structure used to share information is shown in Listing 1.

Listing 1. Message structure.

{

"action": <add | delete>,

"IP": <IP>

}

IOTA enables binding a tag to a transaction, simplifying how IPs are collected. Each
controller retrieves all the transactions indexed by a specific tag and builds the firewall rule
table. In case multiple subnets are simultaneously attacked, IOTA will receive as many
transactions as the number of detected attacks. All these transactions are indexed through
the same tag. Hence, the controllers leverage that tag to retrieve all the corresponding alerts.
The pseudocode of the algorithm implemented by IOTA clients is shown in Algorithm 1.

However, since the order of the collected transactions may be different from that of the
detection, it is necessary to embed a temporal reference within each transaction, resulting
in a different structure of the message shown in Figure 1. The controllers then use this
information to reconstruct the temporal order properly.

https://github.com/DINGDAMU/INDDoS

Sensors 2023, 23, 2955 16 of 22

Algorithm 1: IOTA client.
procedure SENDALERT

tag← “newAlert′′

action, IP← getAlertFromController()
message← createMessage(action, IP)
sendToIOTA(tag, message)

end procedure
procedure RECEIVEALERT

tag← “newAlert′′

messages← getMessagesFromIOTA(tag)
for each m ∈ messages do

action, IP← m
sendAlertToController(action, IP)

end for
end procedure

In the scenario described, the primary concern is to detect and notify about an attack
as soon as possible to minimize the attack window. Therefore, the following experiments
were implemented:

• Experiment 1: notify about the detected attack—The first experiment aimed to evaluate
the time needed to notify a controller from another organization about a detected attack.

• Experiment 2: update a wrong detection—The second experiment was about updating
a wrongly reported alert.

Furthermore, to better justify the effectiveness of our solution, P-IOTA’s performances
were compared to the framework presented in [24], which is the only work in the literature
that employs a DLT for similar purposes. For the sake of fairness, we conducted the
same experiments:

• Experiment 3: collect alerts—The third experiment measures the performances of the
P4-based data plane layer.

• Experiment 4: publish—The fourth experiment refers to organizations that share
information, such as the victim’s IP, with a community through transactions published
on the Tangle.

• Experiment 5: subscribe—The fifth experiment involves community members that
retrieve alerts previously published on the Tangle.

• Experiment 6: packet filter installation—The sixth experiment installs the appropri-
ate filtering rules on switches based on the collected information to mitigate the
ongoing attack.

5.2. Experiments

Each experiment was conducted by simulating a workload of 100 detected alerts,
which was repeated 100 times for accuracy and consistency. In the scenario under consider-
ation, the main objective for a community is to synchronize a defense posture in the lowest
possible time, so our analysis focused on the latency metrics required for the main opera-
tions. Figure 7 shows the results of the first and second experiments. In Figure 8, we devise
the remaining experiments based on the components under evaluation. The results of the
experiments that pertain to the SDN components can be seen in Figure 8a for Experiments
3 and 6, while the results of the experiments related to the IOTA network are shown in
Figure 8b for Experiments 4 and 5.

Sensors 2023, 23, 2955 17 of 22

Mean Var. Std Dev.
0

200

400

600

800

1, 000

La
te

nc
y

(m
s)

Experiment 1
Experiment 2

Figure 7. Experiment 1 and 2—Latency statistics.

Var.Mean Std Dev.
0

50

100

150

La
te

nc
y

(m
s)

Experiment 3
Experiment 6

(a)

Var.Mean Std Dev.
0

20, 000

40, 000

60, 000 Experiment 4
Experiment 5

(b)

Figure 8. Experiments 3, 4, 5, and 6—Latency statistics for SDN components (a) and for the IOTA
network (b).

5.3. Experiment 1: Notify about a Detected Attack

Firstly, we evaluated the time that elapsed between the notification of an attack by a
controller and its availability to all the other controllers in the control plane. In particular,
the elapsed time includes the creation of a transaction, its retrieval through indexing, and its
conversion into a useful representation. The results are shown in Figure 7, where two types
of latency time (declined among mean, variance, and standard deviation) are represented.
We can claim that a notification, reported in blue, requires on average about 500 ms to make
the alert available to other organizations.er

5.4. Experiment 2: Update a Wrong Detection

In the second experiment, we evaluated the ability to update wrongly reported attacks.
In this case, the average latency almost doubled. We expected such an outcome due to the
immutability feature of the DLT. As a transaction cannot be removed from the Tangle, the
modification involves two transactions: one to invalidate the previous one and another one
to update it. The results are shown in red in Figure 7.

Sensors 2023, 23, 2955 18 of 22

5.5. Experiment 3: Collect Alerts

The third experiment measures the time required by the P4 target to generate and send
an alert to the controller. This time is the sum of the latencies collected in the following
three steps:

• Create the digest packet describing the alert;
• Send it over the P4Runtime channel;
• Extract the alert in the control plane.

A programmable P4 switch allows for describing custom features that improve the
performance of certain actions. This is reflected in the results of this experiment, as P-IOTA
is able to shrink the content of the alert up to 4 bytes, i.e., the IP address of the victim.
The comparison between P-IOTA and [24], whose results are reported in Table 2, demon-
strated that P-IOTA outperformed the compared approach by three orders of magnitude.
Figure 8a shows the mean, variance, and standard deviation of Experiment 3, collected
over 100 measurements.

Table 2. Comparison between P-IOTA and Febro et al. [24].

Experiment 3 Experiment 4 Experiment 5 Experiment 6

Febro et al. [24] 64,000 ms 517,330 ms 100,000 ms 80,000 ms

P-IOTA 35.54 ms 71,640 ms 3720 ms 126.83 ms

5.6. Experiment 4: Publish

The fourth experiment aimed to demonstrate the effectiveness of our proposal in
sharing threat intelligence with the community. The results of the experiment, which
involved embedding each detected alert within a transaction, are shown in Figure 8b.
As the number of detected alerts increased, so did the number of transactions published on
the Tangle. Thus, detecting 100 alerts would result in 100 transactions published on the
Tangle. Our proposal performed better due to the fact that IOTA does not have the concept
of blocks, allowing transactions to be attached to the Tangle as soon as they are collected by
the underlying layers.

5.7. Experiment 5: Subscribe

The fifth experiment proved the advantages of using IOTA’s index feature for retriev-
ing transactions from the Tangle. According to the results shown in Figure 8b, it took
P-IOTA less than 4 s to collect 100 transactions, representing alerts. The close-to-zero
variance and standard deviation indicated high consistency in the time taken to collect
transactions. As anticipated, Figure 8b also demonstrates that the average latency for
reading transactions was significantly lower, by one order of magnitude, compared to the
latency for publishing.

5.8. Experiment 6: Packet Filter Installation

The sixth experiment assessed the time to install a mitigation rule delivered through
the IOTA layer. The rule was deployed by P-IOTA using the P4Runtime API and the
Southbound Interface of P4 Section 4.2.3. Similar to the third experiment, we compared our
solution to [24]. We demonstrated that P-IOTA outperformed the compared approach since
we only installed one rule to perform the mitigation (Table 2). Figure 8a shows the mean,
variance, and standard deviation of Experiment 6, based on 100 measurements.

5.9. Time and Computational Analysis

Time and computational analysis is critical in evaluating whether our proposal can be
deployed in real-world scenarios. Figure 9 outlines that, in the IOTA network, the latency
increased with an approximate O(n) complexity as the number of notified attacks scaled
up, both for publishing detected attacks (Figure 9a) and retrieving them (Figure 9b).

Sensors 2023, 23, 2955 19 of 22

Moreover, computational considerations are essential in evaluating the practicality
and efficiency of the IOTA network. The IOTA Tangle is designed to be lightweight
and energy-efficient, making it ideal for deployment on low-power devices. Official
experiments [35] have shown that the IOTA network can operate successfully on devices
such as the Raspberry Pi 3 and 4 with very low energy consumption, ranging from 2 J to 6 J
approximately. This is a significant advantage for the IOTA network, as it not only reduces
its environmental impact, but also makes it more accessible and cost-effective for a wide
range of applications, including those based on SDN.

Regarding the SDN layer, Figure 10 illustrates the correlation between the number
of alerts detected and the time required to forward them to the IOTA node. The graph
shows a linear relationship for a rate of up to 7000 detected attacks. However, beyond that
threshold, the latency increases gradually due to the limited bandwidth of the Southbound
Interface, which has a maximum capacity of 14 Mbps in bmv2. It is worth noting that this
test is not applicable to the retrieval phase. Installing thousands of rules on a switch can
cause congestion in the match–action table, which should be minimally used.

1100 1000
0

200, 000

400, 000

600, 000

Number of detected attacks

La
te

nc
y

(m
s)

(a)

1100 1000
0

10, 000

20, 000

30, 000

Number of detected attacks

(b)

Figure 9. The latency trend of published detected attacks (a) and their retrieval (b).

1 1000 7000 10,000
0

200, 000

400, 000

600, 000

Number of detected alerts

La
te

nc
y

(m
s)

Figure 10. The relationship between the number of detected alerts and the latency in the Southbound
Interface channel.

5.10. Discussion

As a yardstick for comparison, we considered a proposal that uses Ethereum, which is
one of the most-widely used blockchains. In 2022, Ethereum switched to a PoS consensus
protocol, with a block-adding time of 12 s as stated in the official documentation [36].
However, adding a block to the chain does not guarantee its validity. To ensure the
block’s validity, it is necessary to wait until it is finalized, meaning it cannot be modified

Sensors 2023, 23, 2955 20 of 22

without a significant amount of ETH getting burned. In Ethereum, this is performed
through “checkpoint blocks” that are issued every 32 blocks added. If a pair of checkpoints
attracts votes, representing at least 2/3 of the validators, all blocks prior to the least recent
checkpoint are considered finalized. Therefore, it is necessary to wait for at least 64 blocks,
approximately 12 min, to ensure block’s validity.

According to the literature [2–4], IOTA emerged as the best solution for the proposed
case study because of its low latency, high throughput, and low power consumption. These
are key features in scenarios where fast response times are necessary to mitigate attacks.
Additionally, routing devices often have limited resources, making it imperative to use
lightweight protocols like that of IOTA.

These considerations are also supported by the results in Table 2, which compare
P-IOTA and [24] in terms of average latency. The experimental results showed that our
solution significantly outperformed solutions that adopt Ethereum technologies, decreasing
the time taken to alert the other nodes, including the time to forward the alert from the
data to the control plane and the time to notify other nodes.

6. Conclusions

In this paper, we presented P-IOTA, an architecture for detecting attacks and alerting
potentially affected nodes that are geographically distributed. Our proposal leverages
the P4 programmable data plane to implement the detection logic and uses IOTA to
disseminate alarms to nodes belonging to the same organization or, in the case of the
federation, to different organizations. P-IOTA also enables keeping the history of the
detected attacks.

We implemented a prototype of our solution to evaluate its performance while re-
porting and notifying threat about alerts during an SYN flooding attack. Specifically, we
measured the latency in sending a notification and updating incorrect alerts. The exper-
imental results demonstrated that IOTA enables these operations with a latency lower
than 1 ms, outperforming traditional blockchains, which typically take minutes to confirm
a block.

In light of the foregoing results, we believe that this work proves that IOTA is a promis-
ing technology for alerting nodes about threats in SDN-based environments. It can be also
leveraged to handle various attack scenarios in which multiple entities need to be notified
(i.e., threat intelligence). In future research, we plan to encompass mitigation policies.

Author Contributions: Conceptualization, All; methodology, A.A.S., C.M., N.R. and A.M.; soft-
ware, A.A.S., C.M., N.R. and A.M.; validation, A.A.S., C.M., N.R. and A.M.; writing—original draft
preparation, A.A.S., C.M., N.R. and A.M.; writing—review and editing, all; visualization, R.M. and
M.P.; supervision, R.M. and M.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by the project SERICS (PE00000014) under the NRRP
MUR program funded by the EU-NGEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Osanaiye, O.; Choo, K.K.R.; Dlodlo, M. Distributed denial of service (DDoS) resilience in cloud: Review and conceptual cloud

DDoS mitigation framework. J. Netw. Comput. Appl. 2016, 67, 147–165. [CrossRef]
2. Alshaikhli, M.; Elfouly, T.; Elharrouss, O.; Mohamed, A.; Ottakath, N. Evolution of Internet of Things From Blockchain to IOTA:

A Survey. IEEE Access 2022, 10, 844–866. [CrossRef]
3. Auhl, Z.; Chilamkurti, N.; Alhadad, R.; Heyne, W. A Comparative Study of Consensus Mechanisms in Blockchain for IoT

Networks. Electronics 2022, 11, 2694. [CrossRef]

http://doi.org/10.1016/j.jnca.2016.01.001
http://dx.doi.org/10.1109/ACCESS.2021.3138353
http://dx.doi.org/10.3390/electronics11172694

Sensors 2023, 23, 2955 21 of 22

4. Rebello, G.A.F.; Camilo, G.F.; Guimarães, L.C.B.; de Souza, L.A.C.; Thomaz, G.A.; Duarte, O.C.M.B. A security and performance
analysis of proof-based consensus protocols. Ann. Telecommun. 2021, 77, 517–537. [CrossRef]

5. Deb, R.; Roy, S. A comprehensive survey of vulnerability and information security in SDN. Comput. Netw. 2022, 206, 108802.
[CrossRef]

6. Bifulco, R.; Cui, H.; Karame, G.O.; Klaedtke, F. Fingerprinting software-defined networks. In Proceedings of the 2015 IEEE 23rd
International Conference on Network Protocols (ICNP), San Francisco, CA, USA, 10–13 November 2015; pp. 453–459.

7. Azzouni, A.; Braham, O.; Nguyen, T.M.T.; Pujolle, G.; Boutaba, R. Fingerprinting OpenFlow controllers: The first step to attack
an SDN control plane. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC,
USA, 4–8 December 2016; pp. 1–6.

8. Adhikari, T.; Kule, M.; Khan, A.K. An ECDH and AES Based Encryption Approach for Prevention of MiTM in SDN Southbound
Communication Interface. In Proceedings of the 2022 13th International Conference on Computing Communication and
Networking Technologies (ICCCNT), Kharagpur, India, 3–5 October 2022; pp. 1–5.

9. Fouladi, R.F.; Ermiş, O.; Anarim, E. A DDoS attack detection and countermeasure scheme based on DWT and auto-encoder
neural network for SDN. Comput. Netw. 2022, 214, 109140. [CrossRef]

10. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.
P4: Programming Protocol-Independent Packet Processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]

11. The P4.org API Working Group P4Runtime Specification, Version 1.2.0, 2020. Available online: https://opennetworking.org/
wp-content/uploads/2020/10/P4Runtime-Specification-120.html (accessed on 20 December 2022).

12. Gao, Y.; Wang, Z.; Tsai, S.B. A Review of P4 Programmable Data Planes for Network Security. Mob. Inf. Syst. 2021, 2021, 1257046.
[CrossRef]

13. Chauhan, A.; Malviya, O.P.; Verma, M.; Mor, T.S. Blockchain and Scalability. In Proceedings of the 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion (QRS-C), Lisbon, Portugal, 16–20 July 2018; pp. 122–128.
[CrossRef]

14. Popov, S. The Tangle. Version 1.4.3, 30 April 2018. Available online: https://www.iota.org/foundation/research-papers (accessed
on 20 December 2022).

15. Rawat, D.B.; Reddy, S.R. Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Commun.
Surv. Tutor. 2017, 19, 325–346. [CrossRef]

16. Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Zhang, Q.; Choo, K.K.R. An Energy-Efficient SDN Controller Architecture for IoT
Networks With Blockchain-Based Security. IEEE Trans. Serv. Comput. 2020, 13, 625–638. [CrossRef]

17. Basnet, S.R.; Shakya, S. BSS: Blockchain security over software defined network. In Proceedings of the 2017 International
Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 720–725.
[CrossRef]

18. Jiasi, W.; Jian, W.; Jia-Nan, L.; Yue, Z. Secure software-defined networking based on blockchain. arXiv 2019, arXiv:1906.04342.
19. Abou El Houda, Z.; Hafid, A.S.; Khoukhi, L. Cochain-SC: An intra-and inter-domain DDoS mitigation scheme based on

blockchain using SDN and smart contract. IEEE Access 2019, 7, 98893–98907. [CrossRef]
20. Tselios, C.; Politis, I.; Kotsopoulos, S. Enhancing SDN security for IoT-related deployments through blockchain. In Proceedings

of the 2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Berlin, Germany,
6–8 November 2017; pp. 303–308. [CrossRef]

21. Rahman, A.; Islam, M.J.; Montieri, A.; Nasir, M.K.; Reza, M.M.; Band, S.S.; Pescape, A.; Hasan, M.; Sookhak, M.; Mosavi, A.
SmartBlock-SDN: An Optimized Blockchain-SDN Framework for Resource Management in IoT. IEEE Access 2021, 9, 28361–28376.
[CrossRef]

22. Sharma, P.K.; Singh, S.; Jeong, Y.S.; Park, J.H. DistBlockNet: A Distributed Blockchains-Based Secure SDN Architecture for IoT
Networks. IEEE Commun. Mag. 2017, 55, 78–85. [CrossRef]

23. Alsadi, A.; Berardi, D.; Callegati, F.; Melis, A.; Prandini, M. A Security Monitoring Architecture based on Data Plane Programma-
bility. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G
Summit), Porto, Portugal, 8–11 June 2021; pp. 389–394. [CrossRef]

24. Febro, A.; Xiao, H.; Spring, J.; Christianson, B. Synchronizing DDoS defense at network edge with P4, SDN, and Blockchain.
Comput. Netw. 2022, 216, 109267. .: 10.1016/j.comnet.2022.109267. [CrossRef]

25. Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Choo, K.K.R. P4-to-blockchain: A secure blockchain-enabled packet parser for
software defined networking. Comput. Secur. 2020, 88, 101629. [CrossRef]

26. Melis, A.; Layeghy, S.; Berardi, D.; Portmann, M.; Prandini, M.; Callegati, F. P-SCOR: Integration of Constraint Programming
Orchestration and Programmable Data Plane. IEEE Trans. Netw. Serv. Manag. 2021, 18, 402–414. [CrossRef]

27. Shen, Z.Y.; Su, M.W.; Cai, Y.Z.; Tasi, M.H. Mitigating SYN Flooding and UDP Flooding in P4-based SDN. In Proceedings of the
2021 22nd Asia-Pacific Network Operations and Management Symposium (APNOMS), Tainan, Taiwan, 8–10 December 2021;
pp. 374–377. [CrossRef]

28. Lin, T.Y.; Wu, J.P.; Hung, P.H.; Shao, C.H.; Wang, Y.T.; Cai, Y.Z.; Tsai, M.H. Mitigating SYN flooding attack and ARP spoofing in
SDN data plane. In Proceedings of the 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS),
Daegu, Republic of Korea, 22–25 September 2020; pp. 114–119. [CrossRef]

http://dx.doi.org/10.1007/s12243-021-00896-2
http://dx.doi.org/10.1016/j.comnet.2022.108802
http://dx.doi.org/10.1016/j.comnet.2022.109140
http://dx.doi.org/10.1145/2656877.2656890
 https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html
 https://opennetworking.org/wp-content/uploads/2020/10/P4Runtime-Specification-120.html
http://dx.doi.org/10.1155/2021/1257046
http://dx.doi.org/10.1109/QRS-C.2018.00034
https://www.iota.org/foundation/research-papers
http://dx.doi.org/10.1109/COMST.2016.2618874
http://dx.doi.org/10.1109/TSC.2020.2966970
http://dx.doi.org/10.1109/CCAA.2017.8229910
http://dx.doi.org/10.1109/ACCESS.2019.2930715
http://dx.doi.org/10.1109/NFV-SDN.2017.8169860
http://dx.doi.org/10.1109/ACCESS.2021.3058244
http://dx.doi.org/10.1109/MCOM.2017.1700041
http://dx.doi.org/10.1109/EuCNC/6GSummit51104.2021.9482549
http://dx.doi.org/10.1016/j.comnet.2022.109267
http://dx.doi.org/10.1016/j.cose.2019.101629
http://dx.doi.org/10.1109/TNSM.2020.3048277
http://dx.doi.org/10.23919/APNOMS52696.2021.9562660
http://dx.doi.org/10.23919/APNOMS50412.2020.9236951

Sensors 2023, 23, 2955 22 of 22

29. Mazzocca, C.; Sabbioni, A.; Montanari, R.; Colajanni, M. Evaluating Tangle Distributed Ledger for Access Control Policy
Distribution in Multi-region Cloud Environments. In Proceedings of the Quality of Information and Communications Technology,
Talavera de la Reina, Spain, 12–14 September 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 296–306.
[CrossRef]

30. Yan, Q.; Yu, F.R. Distributed denial of service attacks in software-defined networking with cloud computing. IEEE Commun. Mag.
2015, 53, 52–59. [CrossRef]

31. Ding, D.; Savi, M.; Pederzolli, F.; Campanella, M.; Siracusa, D. In-network volumetric DDoS victim identification using
programmable commodity switches. IEEE Trans. Netw. Serv. Manag. 2021, 18, 1191–1202. [CrossRef]

32. Mininet Project Contributors. Mininet. Available online: http://mininet.org/ (accessed on 20 December 2022).
33. p4lang. Behavioral Model. Available online: https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.

md (accessed on 20 December 2022).
34. Linux Foundation. hping3. Available online: http://wiki.hping.org/ (accessed on 20 December 2022).
35. IOTA Wiki. Energy Efficiency. Available online: https://wiki.iota.org/learn/about-iota/energy-efficiency/ (accessed on 20

December 2022).
36. Ethereum. Ethereum: Proof-of-Stake (POS). Available online: https://ethereum.org/en/developers/docs/consensus-

mechanisms/pos/ (accessed on 20 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-031-14179-9_20
http://dx.doi.org/10.1109/MCOM.2015.7081075
http://dx.doi.org/10.1109/TNSM.2021.3073597
http://mininet.org/
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
http://wiki.hping.org/
https://wiki.iota.org/learn/about-iota/energy-efficiency/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

	Introduction
	Technical Background
	Software-Defined Networking
	P4
	Distributed Ledger Technology
	IOTA

	Related Work
	SDN and Blockchain
	Blockchain Interaction with P4-Enabled Switches
	P4 for Thwarting SYN Flooding Attacks
	Considerations about P4 Employment in Blockchain Solutions

	P-IOTA Architecture
	IOTA Layer
	IOTA Node
	IOTA Tangle

	Control Plane
	IOTA Client
	Controller Business Logic
	P4Runtime Client

	Data Plane

	Case Study
	Experimental Setup
	Experiments
	Experiment 1: Notify about a Detected Attack
	Experiment 2: Update a Wrong Detection
	Experiment 3: Collect Alerts
	Experiment 4: Publish
	Experiment 5: Subscribe
	Experiment 6: Packet Filter Installation
	Time and Computational Analysis
	Discussion

	Conclusions
	References

