Supporting Information

A Pyridyl-1,2-Azaborine Ligand for Phosphorescent Neutral Iridium(III) Complexes

Andrea Baschieri,^{*,+} Flavia Aleotti,⁺ Elia Matteucci,⁺ Letizia Sambri,⁺ Michele Mancinelli,^{*,+} Andrea Mazzanti,⁺ Enrico Leoni,^{+, §} Nicola Armaroli,⁺ and Filippo Monti^{*,+}

⁺ Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
 ⁺ Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
 [§] Laboratorio Tecnologie dei Materiali Faenza, ENEA, Via Ravegnana 186, 48018 Faenza (RA), Italy

E-mail:	A. B.:	andrea.baschieri@isof.cnr.it
	M. M.:	michele.mancinelli@unibo.it
	ΕМ.	filippo monti aicof on it

F. M.: filippo.monti@isof.cnr.it

Table of Contents

Contents	Pages
NMR spectra of azaborine ligand 1a	S2 - S3
NMR spectra of azaborine-based complexes 2a , 3 and 4	S4 - S10
NMR spectra of C=C isoelectronic complexes 2b and 2c	S11 – S14
X-ray data for complex 2a	S15 - S23
Computational, electrochemical and photophysical data	S24 - S40

Figure S1. ¹H NMR spectrum of azaborine ligand 1a in CDCl₃.

Figure S2. ¹³C $\{^{1}H\}$ NMR spectrum of azaborine ligand **1a** in CDCl₃.

Figure S3. ¹¹B NMR spectrum of azaborine ligand 1a in CDCl₃.

Figure S4. ¹H NMR spectrum of complex 2a in CDCl₃.

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of complex 2a in CD_2Cl_2 .

Figure S6. ¹¹B NMR spectrum of complex 2a in CD_2Cl_2 .

Figure S7. ¹H NMR spectrum of complex 3 in CD₂Cl₂.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of complex 3 in CD_2Cl_2 .

Figure S9. ¹¹B NMR spectrum of complex 3 in CD₂Cl₂.

Figure S10. ¹⁹F NMR spectrum of complex 3 in CD₂Cl₂.

1.7 9.6 9.5 9.4 9.3 9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9

Figure S11. ¹H NMR spectrum of complex 4 in CDCl₃.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of complex 4 in CD_2Cl_2 .

Figure S13. ¹¹B NMR spectrum of complex 4 in CD₂Cl₂.

2b_A445.colL_F4_H_CD2Cl2 Std Proton parameters

Figure S14. ¹H NMR spectrum of complex 2b in CD₂Cl₂.

Figure S15. ¹³C{¹H} NMR spectrum of complex 2b in CD₂Cl₂.

Figure S16. ¹H NMR spectrum of complex 2c in CD₂Cl₂.

Figure S17. ¹³C{¹H} NMR spectrum of complex **2c** in CD₂Cl₂.

Crystal Structure Report for complex 2a

Table S1. Sample and crystal data for compound 2a.

Identification code	leti1702_1	
Chemical formula	$C_{36}H_{28}BIrN_4$	
Formula weight	719.63 g/mo	1
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal size	0.100 x 0.100 x 0.20	00 mm
Crystal system	orthorhombic	
Space group	Pbcn	
Unit cell dimensions	a = 26.512(3) Å	$\alpha = 90^{\circ}$
	b = 28.472(3) Å	$\beta = 90^{\circ}$
	c = 10.3066(11) Å	$\gamma = 90^{\circ}$
Volume	777 9.9(14) Å ³	
Z	8	
Density (calculated)	1.229 g/cm^{3}	
Absorption coefficient	3.457 mm ⁻¹	
F(000)	2832	

Table S2. Data collection and structure refinement for compound 2a.

Theta range for data collection	2.24 to 25.00°		
Index ranges	-31<=h<=31, -33<=k<=33, -12<=l<=12		
Reflections collected	82938		
Independent reflections	6851 [R	(int) = 0.0476]	
Max. and min. transmission	0.724	0 and 0.5450	
Structure solution technique	dire	ct methods	
Structure solution program	SHELXT 2014/5 (Sheldrick, 2014)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2017/1 (Sheldrick, 2017)		
Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$		
Data / restraints / parameters	6851 / 0 / 380		
Goodness-of-fit on F ²		1.095	
$\Delta/\sigma_{ m max}$		0.001	
Final R indices	5892 data; Ι>2σ(Ι)	R1 = 0.0447, wR2 = 0.0976	
	all data	R1 = 0.0530, wR2 = 0.1020	
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})+(0.0363P)^{2}+37.3090P$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3		
Largest diff. peak and hole	1.761 a	und -1.770 eÅ ⁻³	
R.M.S. deviation from mean	0.096 eÅ ⁻³		

Table S3. Atomic coordinates and equivalent isotropic atomic displacement parameters $(Å^2)$ for compound **2a.** U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x/a	y/b	z/c	U(eq)
Ir01	0.66286(2)	0.35525(2)	0.76377(2)	0.03664(9)
N3	0.59602(16)	0.38155(17)	0.8338(4)	0.0347(11)
N2	0.69851(18)	0.42291(17)	0.7397(5)	0.0432(12)
N4	0.72747(17)	0.32351(18)	0.7049(5)	0.0407(11)
N1	0.63785(18)	0.37485(18)	0.5692(4)	0.0399(11)
C25	0.6963(2)	0.3453(2)	0.9354(5)	0.0403(14)
C14	0.6253(2)	0.2948(2)	0.8012(6)	0.0390(13)
C7	0.6059(2)	0.3000(2)	0.4927(6)	0.0494(16)
C8	0.6123(2)	0.3482(2)	0.4777(6)	0.0443(15)
C20	0.5607(2)	0.3493(2)	0.8690(5)	0.0415(14)
C24	0.5848(2)	0.4271(2)	0.8434(5)	0.0423(14)
C1	0.6267(3)	0.4448(3)	0.4192(6)	0.0549(17)
C3	0.5933(2)	0.3694(3)	0.3593(6)	0.0498(16)
C23	0.5394(2)	0.4433(3)	0.8885(6)	0.0530(17)
C30	0.7449(2)	0.3260(2)	0.9293(6)	0.0444(15)
C19	0.5771(2)	0.3010(2)	0.8524(6)	0.0478(15)
C21	0.5142(2)	0.3644(3)	0.9150(7)	0.0550(18)
C26	0.6788(3)	0.3581(2)	0.0589(7)	0.0546(17)

	x/a	y/b	z/c	U(eq)
C9	0.6819(2)	0.4490(2)	0.6380(6)	0.0453(15)
C35	0.7379(2)	0.3117(2)	0.5821(6)	0.0505(16)
C31	0.7610(2)	0.3114(2)	0.7998(7)	0.0460(15)
C22	0.5042(2)	0.4107(3)	0.9241(6)	0.0585(19)
C34	0.7818(3)	0.2879(3)	0.5487(8)	0.063(2)
C2	0.5997(2)	0.4183(3)	0.3362(6)	0.0549(18)
C29	0.7751(3)	0.3214(3)	0.0382(7)	0.063(2)
C15	0.6423(3)	0.2490(2)	0.7842(7)	0.0534(16)
C27	0.7087(3)	0.3532(3)	0.1677(6)	0.063(2)
B1	0.6473(3)	0.4221(3)	0.5418(7)	0.0452(17)
C6	0.5828(3)	0.2724(3)	0.4031(7)	0.065(2)
C33	0.8145(3)	0.2746(3)	0.6427(9)	0.074(2)
C13	0.7317(3)	0.4415(2)	0.8225(7)	0.0564(17)
C16	0.6121(3)	0.2109(3)	0.8160(9)	0.075(2)
C28	0.7573(3)	0.3355(3)	0.1570(7)	0.067(2)
C10	0.6994(3)	0.4948(3)	0.6245(7)	0.0605(18)
C4	0.5688(3)	0.3390(3)	0.2719(7)	0.066(2)
C32	0.8045(3)	0.2866(3)	0.7691(7)	0.065(2)
C18	0.5473(3)	0.2618(3)	0.8832(9)	0.074(2)
C5	0.5641(3)	0.2925(3)	0.2918(8)	0.071(2)
C12	0.7508(3)	0.4865(3)	0.8109(9)	0.075(2)
C11	0.7331(3)	0.5138(3)	0.7101(9)	0.078(2)
C36	0.5767(3)	0.4400(3)	0.2137(7)	0.078(2)
C17	0.5642(3)	0.2179(3)	0.8651(10)	0.086(3)

Table S4. Bond lengths (\AA) for compound 2a.

_			
Ir01-C25	1.999(5)	Ir01-C14	2.025(6)
Ir01-N4	2.030(4)	Ir01-N3	2.055(4)
Ir01-N2	2.160(5)	Ir01-N1	2.184(4)
N3-C24	1.336(7)	N3-C20	1.359(7)
N2-C13	1.335(8)	N2-C9	1.357(8)
N4-C35	1.339(8)	N4-C31	1.366(8)
N1-C8	1.387(8)	N1-B1	1.398(9)
C25-C26	1.402(9)	C25-C30	1.404(8)
C14-C15	1.390(9)	C14-C19	1.394(8)
C7-C6	1.357(9)	C7-C8	1.393(9)
C7-H7	0.93	C8-C3	1.452(9)
C20-C21	1.389(8)	C20-C19	1.452(9)
C24-C23	1.371(8)	C24-H24	0.93
C1-C2	1.346(10)	C1-B1	1.521(9)

C1-H1	0.93	C3-C4	1.407(10)
C3-C2	1.424(10)	C23-C22	1.366(10)
C23-H23	0.93	C30-C29	1.385(9)
C30-C31	1.461(9)	C19-C18	1.404(9)
C21-C22	1.347(10)	C21-H21	0.93
C26-C27	1.379(9)	C26-H26	0.93
C9-C10	1.392(9)	C9-B1	1.552(10)
C35-C34	1.388(9)	C35-H35	0.93
C31-C32	1.388(9)	C22-H22	0.93
C34-C33	1.353(11)	C34-H34	0.93
C2-C36	1.532(9)	C29-C28	1.373(10)
C29-H29	0.93	C15-C16	1.387(10)
C15-H15	0.93	C27-C28	1.389(10)
C27-H27	0.93	C6-C5	1.373(11)
C6-H6	0.93	C33-C32	1.372(11)
С33-Н33	0.93	C13-C12	1.384(10)
C13-H13	0.93	C16-C17	1.381(12)
C16-H16	0.93	C28-H28	0.93
C10-C11	1.367(11)	C10-H10	0.93
C4-C5	1.346(12)	C4-H4	0.93
C32-H32	0.93	C18-C17	1.341(11)
C18-H18	0.93	C5-H5	0.93
C12-C11	1.379(12)	C12-H12	0.93
C11-H11	0.93	C36-H36A	0.96
С36-Н36В	0.96	C36-H36C	0.96
C17-H17	0.93		

Table S5. Bond angles (°) for compound 2a.

	-	
86.0(2)	C25-Ir01-N4	80.1(2)
95.4(2)	C25-Ir01-N3	97.1(2)
79.6(2)	N4-Ir01-N3	174.38(19)
91.9(2)	C14-Ir01-N2	174.2(2)
89.62(19)	N3-Ir01-N2	95.32(19)
169.5(2)	C14-Ir01-N1	104.0(2)
95.48(19)	N3-Ir01-N1	88.15(17)
78.43(19)	C24-N3-C20	118.9(5)
124.9(4)	C20-N3-Ir01	116.2(4)
119.4(6)	C13-N2-Ir01	124.6(4)
115.8(4)	C35-N4-C31	118.6(5)
124.7(4)	C31-N4-Ir01	116.6(4)
	86.0(2) $95.4(2)$ $79.6(2)$ $91.9(2)$ $89.62(19)$ $169.5(2)$ $95.48(19)$ $78.43(19)$ $124.9(4)$ $119.4(6)$ $115.8(4)$ $124.7(4)$	86.0(2)C25-Ir01-N4 $95.4(2)$ C25-Ir01-N3 $79.6(2)$ N4-Ir01-N3 $91.9(2)$ C14-Ir01-N2 $89.62(19)$ N3-Ir01-N2 $169.5(2)$ C14-Ir01-N1 $95.48(19)$ N3-Ir01-N1 $78.43(19)$ C24-N3-C20 $124.9(4)$ C20-N3-Ir01 $119.4(6)$ C13-N2-Ir01 $115.8(4)$ C35-N4-C31 $124.7(4)$ C31-N4-Ir01

C8-N1-B1	118.5(5)	C8-N1-Ir01	129.3(4)
B1-N1-Ir01	112.1(4)	C26-C25-C30	116.4(5)
C26-C25-Ir01	128.4(5)	C30-C25-Ir01	115.0(4)
C15-C14-C19	117.6(6)	C15-C14-Ir01	127.9(5)
C19-C14-Ir01	114.5(5)	C6-C7-C8	123.3(7)
С6-С7-Н7	118.3	C8-C7-H7	118.3
N1-C8-C7	121.6(6)	N1-C8-C3	121.0(6)
C7-C8-C3	117.4(6)	N3-C20-C21	119.6(6)
N3-C20-C19	113.7(5)	C21-C20-C19	126.7(6)
N3-C24-C23	123.1(6)	N3-C24-H24	118.4
C23-C24-H24	118.4	C2-C1-B1	118.8(7)
C2-C1-H1	120.6	B1-C1-H1	120.6
C4-C3-C2	123.4(7)	C4-C3-C8	116.3(7)
C2-C3-C8	120.3(6)	C22-C23-C24	117.7(7)
С22-С23-Н23	121.2	C24-C23-H23	121.2
C29-C30-C25	122.1(6)	C29-C30-C31	123.0(6)
C25-C30-C31	114.9(5)	C14-C19-C18	120.0(6)
C14-C19-C20	116.0(5)	C18-C19-C20	124.0(6)
C22-C21-C20	120.1(7)	C22-C21-H21	119.9
C20-C21-H21	119.9	C27-C26-C25	121.6(6)
С27-С26-Н26	119.2	С25-С26-Н26	119.2
N2-C9-C10	118.8(6)	N2-C9-B1	114.6(5)
C10-C9-B1	126.5(6)	N4-C35-C34	122.0(6)
N4-C35-H35	119.0	С34-С35-Н35	119.0
N4-C31-C32	120.4(6)	N4-C31-C30	113.1(5)
C32-C31-C30	126.5(6)	C21-C22-C23	120.7(6)
C21-C22-H22	119.7	C23-C22-H22	119.7
C33-C34-C35	119.7(7)	C33-C34-H34	120.2
С35-С34-Н34	120.2	C1-C2-C3	120.4(6)
C1-C2-C36	120.7(7)	C3-C2-C36	118.9(7)
C28-C29-C30	119.8(7)	С28-С29-Н29	120.1
С30-С29-Н29	120.1	C16-C15-C14	121.2(7)
С16-С15-Н15	119.4	C14-C15-H15	119.4
C26-C27-C28	120.2(7)	C26-C27-H27	119.9
С28-С27-Н27	119.9	N1-B1-C1	120.8(6)
N1-B1-C9	116.8(6)	C1-B1-C9	122.3(6)
C7-C6-C5	119.4(8)	С7-С6-Н6	120.3
С5-С6-Н6	120.3	C34-C33-C32	119.1(7)
С34-С33-Н33	120.5	С32-С33-Н33	120.5
N2-C13-C12	123.5(7)	N2-C13-H13	118.2
С12-С13-Н13	118.2	C17-C16-C15	120.2(7)
С17-С16-Н16	119.9	C15-C16-H16	119.9

C29-C28-C27	119.8(6)	C29-C28-H28	120.1
C27-C28-H28	120.1	C11-C10-C9	121.5(7)
C11-C10-H10	119.2	С9-С10-Н10	119.2
C5-C4-C3	123.4(7)	C5-C4-H4	118.3
C3-C4-H4	118.3	C33-C32-C31	120.2(7)
С33-С32-Н32	119.9	С31-С32-Н32	119.9
C17-C18-C19	121.5(7)	C17-C18-H18	119.3
C19-C18-H18	119.3	C4-C5-C6	120.2(7)
C4-C5-H5	119.9	С6-С5-Н5	119.9
C11-C12-C13	117.5(8)	C11-C12-H12	121.2
C13-C12-H12	121.2	C10-C11-C12	119.1(7)
C10-C11-H11	120.4	C12-C11-H11	120.4
C2-C36-H36A	109.5	C2-C36-H36B	109.5
H36A-C36-H36B	109.5	C2-C36-H36C	109.5
H36A-C36-H36C	109.5	H36B-C36-H36C	109.5
C18-C17-C16	119.5(8)	C18-C17-H17	120.2
C16-C17-H17	120.2		

Table S6. Torsional angles (°) for compound **2a**.

B1-N1-C8-C7	173.7(6)	Ir01-N1-C8-C7	-10.7(8)
B1-N1-C8-C3	-3.5(8)	Ir01-N1-C8-C3	172.1(4)
C6-C7-C8-N1	-177.4(6)	C6-C7-C8-C3	-0.1(9)
C24-N3-C20-C21	-0.6(8)	Ir01-N3-C20-C21	-178.8(4)
C24-N3-C20-C19	179.1(5)	Ir01-N3-C20-C19	0.9(6)
C20-N3-C24-C23	0.7(8)	Ir01-N3-C24-C23	178.7(4)
N1-C8-C3-C4	178.8(6)	C7-C8-C3-C4	1.5(8)
N1-C8-C3-C2	-1.2(9)	C7-C8-C3-C2	-178.5(6)
N3-C24-C23-C22	-0.4(9)	C26-C25-C30-C29	-2.6(10)
Ir01-C25-C30-C29	173.2(5)	C26-C25-C30-C31	177.6(6)
Ir01-C25-C30-C31	-6.6(7)	C15-C14-C19-C18	-0.9(10)
Ir01-C14-C19-C18	-179.7(6)	C15-C14-C19-C20	179.8(6)
Ir01-C14-C19-C20	1.1(7)	N3-C20-C19-C14	-1.3(8)
C21-C20-C19-C14	178.4(6)	N3-C20-C19-C18	179.5(6)
C21-C20-C19-C18	-0.8(11)	N3-C20-C21-C22	0.3(9)
C19-C20-C21-C22	-179.4(6)	C30-C25-C26-C27	2.1(10)
Ir01-C25-C26-C27	-173.1(5)	C13-N2-C9-C10	-1.2(9)
Ir01-N2-C9-C10	173.4(5)	C13-N2-C9-B1	174.6(6)
Ir01-N2-C9-B1	-10.7(6)	C31-N4-C35-C34	-0.5(10)
Ir01-N4-C35-C34	-176.8(5)	C35-N4-C31-C32	-1.1(9)
Ir01-N4-C31-C32	175.4(5)	C35-N4-C31-C30	-179.5(6)

Ir01-N4-C31-C30	-3.0(7)	C29-C30-C31-N4	-173.6(6)
C25-C30-C31-N4	6.2(8)	C29-C30-C31-C32	8.1(11)
C25-C30-C31-C32	-172.1(7)	C20-C21-C22-C23	0.0(10)
C24-C23-C22-C21	0.1(10)	N4-C35-C34-C33	2.5(12)
B1-C1-C2-C3	-3.7(9)	B1-C1-C2-C36	178.0(6)
C4-C3-C2-C1	-175.0(6)	C8-C3-C2-C1	4.9(9)
C4-C3-C2-C36	3.2(10)	C8-C3-C2-C36	-176.8(6)
C25-C30-C29-C28	0.8(11)	C31-C30-C29-C28	-179.4(7)
C19-C14-C15-C16	0.6(10)	Ir01-C14-C15-C16	179.2(6)
C25-C26-C27-C28	0.1(12)	C8-N1-B1-C1	4.6(9)
Ir01-N1-B1-C1	-171.7(5)	C8-N1-B1-C9	-172.2(5)
Ir01-N1-B1-C9	11.4(7)	C2-C1-B1-N1	-1.0(9)
C2-C1-B1-C9	175.6(6)	N2-C9-B1-N1	-0.8(8)
C10-C9-B1-N1	174.7(6)	N2-C9-B1-C1	-177.6(6)
C10-C9-B1-C1	-2.1(10)	C8-C7-C6-C5	-0.8(11)
C35-C34-C33-C32	-2.7(13)	C9-N2-C13-C12	-0.1(10)
Ir01-N2-C13-C12	-174.2(6)	C14-C15-C16-C17	0.2(12)
C30-C29-C28-C27	1.5(12)	C26-C27-C28-C29	-2.0(12)
N2-C9-C10-C11	0.8(10)	B1-C9-C10-C11	-174.6(7)
C2-C3-C4-C5	177.9(7)	C8-C3-C4-C5	-2.1(10)
C34-C33-C32-C31	1.1(13)	N4-C31-C32-C33	0.9(11)
C30-C31-C32-C33	179.1(7)	C14-C19-C18-C17	0.4(13)
C20-C19-C18-C17	179.6(8)	C3-C4-C5-C6	1.2(12)
C7-C6-C5-C4	0.3(12)	N2-C13-C12-C11	1.9(12)
C9-C10-C11-C12	1.1(12)	C13-C12-C11-C10	-2.3(13)
C19-C18-C17-C16	0.4(15)	C15-C16-C17-C18	-0.7(15)

Table S7. Anisotropic atomic displacement parameters $(Å^2)$ for compound **2a**. The anisotropic atomic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]$.

U_{11}	U_{22}	U_{33}	U ₂₃	U ₁₃	U_{12}
0.03246(13)	0.04585(15)	0.03162(13)	0.00220(9)	0.00029(9)	0.00564(10)
0.023(2)	0.057(3)	0.024(2)	0.002(2)	0.0030(18)	0.011(2)
0.038(3)	0.048(3)	0.043(3)	0.002(2)	0.003(2)	0.001(2)
0.028(2)	0.051(3)	0.042(3)	-0.002(2)	0.008(2)	0.007(2)
0.037(3)	0.056(3)	0.027(2)	0.005(2)	-0.004(2)	0.010(2)
0.037(3)	0.049(4)	0.035(3)	0.007(3)	-0.007(2)	0.003(3)
0.031(3)	0.046(3)	0.041(3)	0.004(3)	-0.006(2)	-0.004(3)
0.038(3)	0.065(4)	0.045(4)	-0.008(3)	0.000(3)	0.004(3)
0.028(3)	0.062(4)	0.042(3)	-0.002(3)	0.007(3)	0.010(3)
0.027(3)	0.066(4)	0.032(3)	0.005(3)	0.001(2)	0.004(3)
	$\begin{matrix} U_{11} \\ 0.03246(13) \\ 0.023(2) \\ 0.038(3) \\ 0.028(2) \\ 0.037(3) \\ 0.037(3) \\ 0.037(3) \\ 0.031(3) \\ 0.038(3) \\ 0.028(3) \\ 0.027(3) \end{matrix}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c cccc} U_{11} & U_{22} & U_{33} \\ 0.03246(13) & 0.04585(15) & 0.03162(13) \\ 0.023(2) & 0.057(3) & 0.024(2) \\ 0.038(3) & 0.048(3) & 0.043(3) \\ 0.028(2) & 0.051(3) & 0.042(3) \\ 0.037(3) & 0.056(3) & 0.027(2) \\ 0.037(3) & 0.049(4) & 0.035(3) \\ 0.031(3) & 0.046(3) & 0.041(3) \\ 0.038(3) & 0.065(4) & 0.045(4) \\ 0.028(3) & 0.062(4) & 0.042(3) \\ 0.027(3) & 0.066(4) & 0.032(3) \\ \end{array}$	$\begin{array}{c ccccc} U_{11} & U_{22} & U_{33} & U_{23} \\ 0.03246(13) & 0.04585(15) & 0.03162(13) & 0.00220(9) \\ 0.023(2) & 0.057(3) & 0.024(2) & 0.002(2) \\ 0.038(3) & 0.048(3) & 0.043(3) & 0.002(2) \\ 0.028(2) & 0.051(3) & 0.042(3) & -0.002(2) \\ 0.037(3) & 0.056(3) & 0.027(2) & 0.005(2) \\ 0.037(3) & 0.049(4) & 0.035(3) & 0.007(3) \\ 0.031(3) & 0.046(3) & 0.041(3) & 0.004(3) \\ 0.038(3) & 0.065(4) & 0.045(4) & -0.008(3) \\ 0.028(3) & 0.062(4) & 0.042(3) & -0.002(3) \\ 0.027(3) & 0.066(4) & 0.032(3) & 0.005(3) \\ \end{array}$	U_{11} U_{22} U_{33} U_{23} U_{13} $0.03246(13)$ $0.04585(15)$ $0.03162(13)$ $0.00220(9)$ $0.00029(9)$ $0.023(2)$ $0.057(3)$ $0.024(2)$ $0.002(2)$ $0.0030(18)$ $0.038(3)$ $0.048(3)$ $0.043(3)$ $0.002(2)$ $0.003(2)$ $0.028(2)$ $0.051(3)$ $0.042(3)$ $-0.002(2)$ $0.008(2)$ $0.037(3)$ $0.056(3)$ $0.027(2)$ $0.005(2)$ $-0.004(2)$ $0.037(3)$ $0.049(4)$ $0.035(3)$ $0.007(3)$ $-0.007(2)$ $0.031(3)$ $0.046(3)$ $0.041(3)$ $0.004(3)$ $-0.006(2)$ $0.038(3)$ $0.065(4)$ $0.042(3)$ $-0.002(3)$ $0.007(3)$ $0.028(3)$ $0.062(4)$ $0.042(3)$ $-0.002(3)$ $0.007(3)$ $0.027(3)$ $0.066(4)$ $0.032(3)$ $0.005(3)$ $0.001(2)$

	\mathbf{U}_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
C24	0.043(3)	0.051(4)	0.033(3)	0.004(3)	0.005(3)	0.013(3)
C1	0.056(4)	0.066(5)	0.043(4)	0.017(3)	0.003(3)	0.008(3)
C3	0.033(3)	0.079(5)	0.036(3)	-0.005(3)	0.002(3)	0.008(3)
C23	0.053(4)	0.063(4)	0.043(3)	0.000(3)	-0.004(3)	0.018(4)
C30	0.033(3)	0.050(4)	0.050(4)	0.006(3)	-0.009(3)	0.005(3)
C19	0.029(3)	0.063(4)	0.051(4)	0.007(3)	-0.005(3)	-0.006(3)
C21	0.040(4)	0.076(5)	0.049(4)	0.009(3)	0.006(3)	0.003(3)
C26	0.049(4)	0.063(4)	0.052(4)	0.007(3)	0.000(3)	0.014(3)
C9	0.043(3)	0.051(4)	0.042(3)	0.006(3)	0.011(3)	-0.001(3)
C35	0.041(4)	0.062(4)	0.049(4)	-0.004(3)	0.009(3)	0.003(3)
C31	0.028(3)	0.052(4)	0.058(4)	0.003(3)	0.002(3)	0.005(3)
C22	0.039(4)	0.097(6)	0.039(4)	0.002(4)	0.009(3)	0.017(4)
C34	0.049(4)	0.076(5)	0.064(5)	-0.011(4)	0.020(4)	0.011(4)
C2	0.041(4)	0.088(5)	0.035(3)	0.007(3)	0.004(3)	0.020(4)
C29	0.050(4)	0.075(5)	0.066(5)	0.006(4)	-0.016(4)	0.015(4)
C15	0.048(4)	0.050(4)	0.062(4)	0.007(3)	-0.005(3)	0.009(3)
C27	0.083(5)	0.073(5)	0.034(3)	0.002(3)	-0.009(3)	0.011(4)
B1	0.040(4)	0.056(5)	0.039(4)	0.008(3)	0.009(3)	0.008(3)
C6	0.049(4)	0.079(5)	0.066(5)	-0.020(4)	-0.004(4)	0.005(4)
C33	0.047(4)	0.086(6)	0.089(6)	-0.010(5)	0.010(4)	0.030(4)
C13	0.058(4)	0.056(4)	0.056(4)	-0.001(3)	-0.003(3)	-0.008(3)
C16	0.083(6)	0.048(4)	0.095(6)	0.010(4)	-0.014(5)	-0.001(4)
C28	0.066(5)	0.083(5)	0.052(4)	0.001(4)	-0.026(4)	0.011(4)
C10	0.069(5)	0.058(4)	0.055(4)	0.009(3)	0.007(4)	-0.003(4)
C4	0.050(4)	0.103(6)	0.045(4)	-0.007(4)	-0.007(3)	0.009(4)
C32	0.046(4)	0.082(5)	0.068(5)	-0.001(4)	0.001(4)	0.026(4)
C18	0.047(4)	0.068(5)	0.105(7)	0.012(5)	0.012(4)	-0.010(4)
C5	0.054(4)	0.101(7)	0.059(5)	-0.024(5)	-0.009(4)	-0.004(4)
C12	0.074(5)	0.074(6)	0.076(5)	-0.009(5)	-0.001(5)	-0.021(4)
C11	0.093(6)	0.065(5)	0.077(6)	-0.002(4)	0.009(5)	-0.021(5)
C36	0.082(6)	0.107(7)	0.044(4)	0.007(4)	-0.007(4)	0.032(5)
C17	0.072(6)	0.060(5)	0.127(8)	0.019(5)	0.011(6)	-0.017(4)

	x/a	y/b	z/c	U(eq)
H7	0.6179	0.2859	0.5680	0.059
H24	0.6090	0.4490	0.8183	0.051
H1	0.6326	0.4764	0.4019	0.066
H23	0.5327	0.4753	0.8947	0.064
H21	0.4900	0.3425	0.9396	0.066
H26	0.6464	0.3700	1.0677	0.066
H35	0.7151	0.3196	0.5171	0.061
H22	0.4729	0.4205	0.9550	0.07
H34	0.7887	0.2812	0.4623	0.076
H29	0.8074	0.3088	1.0309	0.076
H15	0.6744	0.2439	0.7510	0.064
H27	0.6962	0.3619	1.2486	0.076
H6	0.5797	0.2403	0.4168	0.077
H33	0.8433	0.2575	0.6220	0.089
H13	0.7427	0.4231	0.8917	0.068
H16	0.6242	0.1805	0.8042	0.091
H28	0.7777	0.3332	1.2301	0.08
H10	0.6879	0.5130	0.5555	0.073
H4	0.5552	0.3517	0.1965	0.079
H32	0.8269	0.2781	0.8344	0.079
H18	0.5151	0.2664	0.9168	0.088
H5	0.5481	0.2739	0.2301	0.085
H12	0.7746	0.4980	0.8690	0.09
H11	0.7440	0.5446	0.7004	0.094
H36A	0.5815	0.4734	0.2151	0.116
H36B	0.5413	0.4331	0.2107	0.116
H36C	0.5929	0.4270	0.1384	0.116
H17	0.5439	0.1924	0.8856	0.104

Figure S18. Structural overlay (H atoms omitted) between the experimental X-ray structure of complex **2a** (red) and the DFT-computed one (green). The structural overlay is calculated by minimizing the root-mean-square deviation (RMSD) of all the atomic positions. The low value of RMSD (*i.e.*, 0.159 Å) demonstrates the effectiveness of the adopted theoretical approach.

Figure S19. Conformational analysis carried out on the azaborine ligand **1a** and on the C=C counterpart **1b**. The methylated analogue of **1b** (*i.e.*, **1b'**), which would be the exact C=C equivalent of **1a** was also investigated; anyway, the presence of the methyl substituent does not alter the conformational profile of the ligands. A relaxed scan of the dihedral angle between the two aromatic rings is performed in acetonitrile (top), and the most physically important fully-optimized minima are reported together with their Boltzmann population at 298 K (bottom). All energies are reported relative to the absolute minimum of each ligand; two sets of conformers (**A** and **B**) were identified for all molecules; selected transition states (**A'** and **B'**) were also characterized. Since all molecules potentially display reflection symmetry, all scan profiles have π periodicity (*i.e.*, two periods are reported in the top graphs).

Figure S20. Energy diagram showing the frontier Kohn–Sham molecular orbitals of the azaborine ligand **1a** and of the C=C **1b** in acetonitrile. For both ligands only the **A**-type conformer is reported for a simpler comparison. For all orbitals, the corresponding isosurface is also displayed (isovalue = $0.04 \text{ e}^{1/2} \text{ bohr}^{-3/2}$); orbitals with similar topology are connected by dashed lines.

Figure S21. Energy diagram showing the frontier Kohn–Sham molecular orbitals of ligand **1b** and its methylated analogue **1b'** (which would be the exact C=C equivalent of **1a**) in acetonitrile; for both ligands the two nearly isoenergetic conformers (*i.e.*, **A** and **B**) are reported (see Figure S19). No substantial differences are observed between each set of conformers; the effect of the methyl substituent does not significantly alter the energy diagram of **1b'**, compared to **1b**, except for a HOMO destabilization of 0.10 eV. All orbitals are displayed using isosurfaces at 0.04 e^{1/2} bohr^{-3/2}; orbitals with similar topology are connected by dashed lines.

Figure S22. Energy diagram showing the frontier Kohn–Sham molecular orbitals of **2b** together with the one of the methylated analogue **2b'**, which would be the exact C=C equivalent of the azaborine complex **2a**. The presence of the methyl substituent on the ancillary ligand does not alter the energy diagram of **2b'**, if not for a 0.08-eV destabilization of the HOMO–1, which is mainly centered on ancillary ligand itself. Calculations are carried out in acetonitrile, using PCM; relevant orbitals with similar topology are plotted with the same color; orbital-surface isovalue = $0.04 e^{1/2} bohr^{-3/2}$.

Figure S23. Square-wave voltammograms of ligands **1a** and **1b**. Measurements are made with a glassy carbon electrode in acetonitrile + 0.1 M $[nBu_4N][BF_4]$ at room temperature (frequency 20 Hz, amplitude 20 mV, step 5 mV).

Figure S24. Cyclic voltammograms of complexes **2b** and **2c**. Measurements are made with a glassy carbon electrode in acetonitrile + $0.1 \text{ M} [n\text{Bu}_4\text{N}][\text{BF}_4]$ at room temperature.

Figure S25. Absorption and fluorescence spectra of **1a** and **1b** in room-temperature dichloromethane solution (thick solid), compared with the ones in acetonitrile solution (thin dashed).

Table S9. NTOs couples describing the lowest singlet excitations (below 5.0 eV) for compounds **1a** and **1b**, calculated at the TD-DFT M06/6-31G(d,p) level in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}. For **1a** only the predominant conformer **1a**_A is considered; for **1b**, both **1b**_A and **1b**_B conformers were investigated since nearly isoenergetic.

		Transition energy [eV (nm)]	Oscillator strength	NTO couple hole \rightarrow electron (λ)	Nature
	$S_0 \rightarrow S_1$	4.09 (303)	0.405	(93.2%)	π–π* partially CT
1a	$S_0 \rightarrow S_2$	4.39 (282)	0.003	(99.9%)	n–π* pyridine centered
14	$S_0 \rightarrow S_3$	4.43 (280)	0.033	(87.0%)	π–π* partially CT
	$S_0 \rightarrow S_4$	4.82 (257)	0.331	(77.1%)	π–π* partially CT
	$S_0 \rightarrow S_1$	3.96 (313)	0.219	(94.2%)	π–π* partially CT
	$S_0 \rightarrow S_2$	4.17 (298)	0.044	(62.8%)	π–π [*] mainly centered on naphthyl moiety
1b _A	$S_0 \rightarrow S_3$	4.58 (271)	0.002	(99.0%)	n–π* pyridine centered
	$S_0 \rightarrow S_4$	4.72 (263)	0.665	(64.3%)	π–π* partially CT
	$S_0 \rightarrow S_5$	4.85 (256)	0.443	(79.8%)	π–π* predominantly CT

Table S10. NTOs couples describing the lowest singlet excitations (as in Table S9) for compounds **1a** and **1b**, calculated at the STEOM-DLPNO-CCSD/def2-TZVP level in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}. For **1a** only the predominant conformer **1a**_A is considered; for **1b**, both **1b**_A and **1b**_B conformers were investigated since nearly isoenergetic.

		Transition energy [eV (nm)]	Oscillator strength	NTO couple hole \rightarrow electron (λ)	Nature
	$S_0 \rightarrow S_1$	4.01 (310)	0.177	(74.8%)	π–π* minor CT
10	$S_0 \rightarrow S_2$	4.52 (274)	0.004	(93.8%)	n–π* pyridine centered
	$S_0 \rightarrow S_3$	4.68 (265)	0.180	(66.1%)	π–π* partially CT
	$S_0 \rightarrow S_4$	4.88 (254)	0.012	(68.7%)	π–π* partially CT

Table S11. Photophysical data at 77 K for ligands 1a and 1b in butyronitrile glass.

	Fluorescence		Phosphorescence		
	$\lambda_{ m em}{}^a$	$ au^{b}$	$\lambda_{ m em}{}^a$	$ au^{b}$	
	[nm]	[ns]	[nm]	[s]	
1a	347 ^{sh} ,357, 374, 391 ^{sh}	2.3	418, 432, 447, 460, 478	2.68	
1b	344, 361, 380, 400 ^{sh}	12.1	500, 539, 581, 634 ^{sh}	0.90	

 ${}^{a}\lambda_{exc}$ = 310 nm. ${}^{b}\lambda_{exc}$ = 280 nm. sh Shoulder.

Figure S26. Experimental absorption spectra of **1a** and **1b** in room-temperature acetonitrile solution (full), together with the singlet vertical excitations calculated at the TD-DFT M06/6-31G(d,p) and STEOM-DLPNO-CCSD/def2-TZVP level in acetonitrile (bars). The vibronically resolved $S_0 \rightarrow S_1$ transition for **1a** in acetonitrile is also reported (dashed red line) using the adiabatic hessian approximation and the Franck-Condon and Herzberg-Teller (FCHT) model; each vibronic transition is convoluted with a gaussian function having half-width at half-maximum of 270 cm⁻¹.

Figure S27. Structural parameters (bond lengths and selected dihedral angles) of **1a** in its S₀ and S₁ minimumenergy geometries. Notably, both structures are very similar and retain planarity.

Figure S28. Spin-density distribution of the lowest triplet state of **1a** (left) and **1b** (right) calculated by unrestricted DFT in acetonitrile solution (using PCM). For ligand **1b** only the **A** conformed is depicted for a more direct comparison with the azaborine analogue; anyway, the scenario is identical for conformer **1b**_B. Spin-density isosurfaces contours are set at 0.002 e bohr⁻³.

Figure S29. Vibronically-resolved phosphorescence spectra of **1a** and **1b** (thick lines) computed by DFT in acetonitrile solution, using PCM. The vibronic transitions were calculated at 77 K, using the adiabatic-hessian approach and considering up to three simultaneously vibrationally excited modes in the electronic excited state. Simulated spectra are broadened with Gaussian curves with a half-width at half-maximum of 135 cm⁻¹ and are blue-shifted by 0.15 eV to allow a better comparison with the experimental spectra (thin dotted lines).

Figure S30. Absorption spectra of the azaborine-based complexes (**2a**, **3** and **4**) and of the isoelectronic C=C analogues (**2b** and **2c**). Spectra are recorded in room-temperature acetonitrile solution (solid) and compared with the correspondents in dichloromethane solution (dashed). Lowest-energy transitions are magnified in the inset. No substantial differences are observed by changing the solvent.

Table S12. Calculated NTOs couples describing the lowest five triplet excitations for complex **2a** in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	[eV (nm)]	(λ)	
$S_0 \rightarrow T_1$	2.67 (465)	(76.3% + 17.3% mixed with T ₂ NTOs)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_2$	2.69 (460)	(69.5% + 21.4% mixed with T_1 NTOs)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_3$	2.70 (459)	(86.0%)	mainly ³ LC on the azaborine ligand
$S_0 \rightarrow T_4$	2.96 (419)	(92.4%)	mainly ³ MLCT from the iridium ion to the pyridine of the cyclometalating ligand
$S_0 \rightarrow T_5$	3.07 (404)	(86.5%)	mainly ³ MLCT from the iridium ion to the pyridine of the cyclometalating ligand

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	$\begin{bmatrix} eV & (nm) \end{bmatrix}$	(λ)	
$S_0 \rightarrow T_1$	2.72 (456)	(86.9%)	mainly ³ LC on the azaborine ligand
$S_0 \rightarrow T_2$	2.83 (438)	(73.6% + 16.4% mixed with T ₃ NTOs)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_3$	2.85 (436)	$(70.1\% + 18.6\% \text{ mixed with } T_2 \text{ NTOs})$	mainly ³ LC on the cyclometalating ligands
		(70.170 + 18.070 mixed with 1210108)	
$S_0 \rightarrow T_4$	3.09 (401)	(94.6%)	mainly ³ MLCT from the iridium ion to the pyridine of the cyclometalating ligand
$S_0 \rightarrow T_5$	3.15 (394)	(81.6%)	purely ³ LC on the borazaronaphtalene moiety of the azaborine ligand
$S_0 \rightarrow T_6$	3.17 (392)	(89.6%)	mainly ³ MLCT from the iridium ion to the pyridine of the cyclometalating ligand

Table S13. Calculated NTOs couples describing the lowest six triplet excitations for complex **3** in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	[eV (nm)]	(λ)	
$S_0 \rightarrow T_1$	1.97 (630)	(95.9%)	mainly ³ LC on the cyclometalating ligands with minor ³ LL'CT contribution
$S_0 \rightarrow T_2$	2.05 (605)	(91.7%)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_3$	2.09 (594)	(94.7%)	mainly ³ MLCT from the iridium ion to the cyclometalating ligand with minor ³ LL'CT contribution
$S_0 \rightarrow T_4$	2.26 (549)	(95.4%)	mainly ³ MLCT from the iridium ion to the cyclometalating ligand
$S_0 \rightarrow T_5$	2.56 (483)	(92.1%)	mixed ³ MLCT/ ³ LL'CT involving the iridium ion and both ancillary and cyclometalating ligands
$S_0 \rightarrow T_6$	2.61 (474)	(76.6%)	mainly ³ LL'CT from the ancillary ligand to the cyclometalating one

Table S14. Calculated NTOs couples describing the lowest six triplet excitations for complex **4** in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	[eV (nm)]	(λ)	
$S_0 \rightarrow T_1$	2.35 (527)	(90.5%)	mainly ³ LC on the isoelectronic C=C ancillary ligand
$S_0 \rightarrow T_2$	2.65 (469)	(83.2%)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_3$	2.69 (461)	(74.6%)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_4$	2.87 (432)	(84.5%)	mainly ³ MLCT from the iridium ion to the cyclometalating ligand
$S_0 \rightarrow T_5$	2.92 (425)	(95.0%)	mainly ³ MLCT from the iridium ion to the isoelectronic C=C ancillary ligand
$S_0 \rightarrow T_6$	2.99 (415)	(83.2%)	mainly ³ MLCT from the iridium ion to the cyclometalating ligand

Table S15. Calculated NTOs couples describing the lowest six triplet excitations for complex **2b** in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

	Transition	NTO couple	
	energy	hole \rightarrow electron	Nature
	[eV (nm)]	(λ)	
$S_0 \rightarrow T_1$	2.31 (537)	(91.7%)	mainly ³ LC on the isoelectronic C=C ancillary ligand
$S_0 \rightarrow T_2$	2.64 (469)	(82.0%)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_3$	2.69 (461)	(75.4%)	mainly ³ LC on the cyclometalating ligands
$S_0 \rightarrow T_4$	2.82 (439)	(95.0%)	mixed ³ MLCT/ ³ LC involving the iridium ion and isoelectronic C=C ancillary ligand
$S_0 \rightarrow T_5$	2.88 (431)	(88.7%)	mainly ³ MLCT from the iridium ion to the cyclometalating ligand
$S_0 \rightarrow T_6$	2.93 (422)	(89.0%)	mainly ³ MLCT from the iridium ion to the isoelectronic C=C ancillary ligand

Table S16. Calculated NTOs couples describing the lowest six triplet excitations for complex **2c** in acetonitrile (see Experimental Section for further details). The λ value is the natural transition orbital eigenvalue associated with each NTOs couple; orbital isovalue: 0.04 e^{-1/2} bohr^{-3/2}.

Figure S31. Schematic energy diagram showing the lowest three triplet states of the isoelectronic C=C complexes **2b** and **2c**. Triplet-state numbering follows the order indicated by TD-DFT vertical excitations from S_0 minimum. The unpaired-electron spin-density surfaces calculated at the fully relaxed triplet-state minima are also depicted (isosurfaces: 0.002 e bohr⁻³).

Figure S32. Emission spectra of the complexes with the azaborine ligand (**2a**, **3** and **4**) and with the isoelectronic C=C ligand (**2b** and **2c**) in PMMA matrix at a concentration of 1% by weight. Spectra in acetonitrile are also reported for comparison (dotted).