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A support theorem for Hilbert schemes of planar curves, 11

Luca Migliorini, Vivek Shende and Filippo Viviani

ABSTRACT

We study the cohomology of Jacobians and Hilbert schemes of points on reduced and locally
planar curves, which are however allowed to be singular and reducible. We show that the co-
homologies of all Hilbert schemes of all subcurves are encoded in the cohomologies of the
fine compactified Jacobians of connected subcurves, via the perverse Leray filtration. We also
prove, along the way, a result of independent interest (see Section 4), giving sufficient con-
ditions for smoothness of the total space of the relative compactified Jacobian of a family of
locally planar curves.
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1. Introduction

Given an effective divisor D on a nonsingular algebraic variety C, one can form the associated line bundle
Oc¢ (D), thus defining a map from the space of effective divisors to the space of line bundles

A Eff(C HC — Pic(C)
n=0

D — O¢(D).

For singular spaces, various changes must be made. The spaces Eff (C) and Pic(C) still make sense,
but the map does not. Two problems can already be seen when C is a nodal curve: the sheaf of functions
with one pole at the node is not a line bundle, and the sheaf of functions with double pole at the node has
degree 3.

When C is proper, reduced, and irreducible, there are natural substitutes [D’S, AIK, AK, AK2]. The
space of line bundles is extended to the space Pic(C) of rank one, torsion free sheaves. The space of
divisors is replaced by a space Syst(C) of generalized divisors — rank one, torsion free sheaves equipped
with injective sections. There is an evident forgetful map Syst(C) — Pic(C).

When C is proper of dimension 1 and locally planar, e.g. it lies on a smooth surface,these spaces
behave in many ways like their classical counterparts, Pic(C) is reduced and irreducible of dimension
equal to the arithmetic genus of C, the space Syst(C) can be identified with the Hilbert scheme, and the
above forgetful map is identified with the map sending a subscheme to the dual of its ideal sheaf

A: HC — Pic(C)

n=0

D — Home(Ip, O¢).

Reducibility introduces additional subtleties. Consider the curve consisting of two rational curves
glued together at two points. The space of line bundles on this curve is Z x Z copies of G,,, where the
discrete data gives the degrees of the line bundle on each component. The ability to “take the (0, 0) piece”
is lost in the compactification — the torsion free sheaves coming from the nodes serve to glue together the
various components of degree (a,d — a).

The problem can be bounded by an appropriate choice of stability condition [Gie, Ses, Sim]. For
locally planar curves, it is known that a generic choice leads to a fine moduli space, called a fine compact-
ified Jacobian [Est, MV, MRV 1], and moreover, that both its derived category [MRV3] and the topologi-
cal cohomology (see Theorem 1.8) of the space do not depend on the choice of stability condition. These
naturally furnish invariants of the singular curve; we will be interested here in investigating the latter.

We begin with a nodal curve C. For simplicity in this introduction we assume all varieties are defined
over the complex field. We write .J ¢ for the fine compactified Jacobian determined by a fixed but unspeci-
fied generic stability condition. In the introduction, we restrict ourselves to the case where all components
of C are rational; for topological purposes, the general case differs from this only by the product of the
Jacobians of the components. We write I'c for the graph whose vertices are the irreducible components
of C and whose edges are the nodes joining them.

The space .J ¢ is a union of toric varieties glued along toric divisors, by combinatorial rules which can
be given in terms of I'c [OS, Ale, MV]. In particular, the zero dimensional torus orbits are in bijection
with spanning trees of I'. In terms of curves, a spanning tree is a connected partial normalization of
arithmetic genus zero. That is:

x(J¢) = #{genus zero connected partial normalizations of a nodal curve C}
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We will write this number as ng(T).

A version of the above equality for irreducible curves was used by Yau, Zaslow, and Beauville to count
curves on K3 surfaces [YZ, Bea]. It has a certain physical meaning, further elaborated by Gopakumar and
Vafa — the right hand side has to do with topological string theory, and the left hand side has to do with
BPS D-branes; both are degenerations of some M-theoretic setup, so should be equal [GV]. They also
explained that this reasoning explains how to generalize this formula to higher genus, by promoting the
right hand side to the number ny(I") of genus g connected spanning subgraphs of I', or equivalently, the
number of genus g connected partial normalizations of the corresponding curve.

There are two ways to generalize the left hand side. The first speaks only of the Jacobian, but intro-
duces a filtration on its cohomology. Let P* H*(.J ¢, Q) be the local perverse Leray filtration, as defined in
[MS, MY], on the cohomology of the Jacobian, coming from spreading out over any versal deformation
of C. Let L = Q(—1) be the class of the affine line.

THEOREM 1.1. Let C be a connected nodal curve over C with rational components, and let I" be its dual
graph. Then we have the following equality in the Grothendieck group of Hodge structures:

(1.1) Zq”Gr”H* Jo,Q Znh 9=k (1 = q)(1 — ¢L))"

In fact, the original Gopakumar-Vafa prediction spoke only of the specialization . = 1; we are
giving a refined version. This result follows from Corollary 3.10 combined with Theorem 1.8. Note also
that Theorem 1.8 implies that the graded pieces Gris H*(J¢, Q) of the local perverse Leray filtration
P H* (7(3, Q) do not depend neither on the chosen fine compactified Jacobian Jc of C nor on the versal
deformation of C that is used to define the above filtration.

The second generalization of x(J¢) introduces new spaces instead of a cohomological filtration. In
general, these spaces should be the Syst(C) above, or as Pandharipande and Thomas call them, Pairs(C)
[PT]. When C is Gorenstein, and in particular in the locally planar case to which we confine ourselves
here, these are isomorphic to the Hilbert schemes. Unlike the Jacobians, the enumerative information con-
tained in these spaces is most naturally related to counting disconnected curves; the two are conjecturally
related by an exponential. The pairs spaces were introduced to study enumerative geometry on 3-folds
[PT, PT3]; but more relevant to our present work on locally planar curves are their uses in studying curves
on surfaces [Sh, KST, KT, KS, GS, GS2], knot invariants [ObS, ORS, GORS, DSV, DHS, Mau], and the
geometry of the Hitchin system [CDP].

We introduce some notation. Form the group ring Z[[ZV¢"%°*s]], i.e. the power series ring Z[[Q"*, Q"2, . . .

on the vertices of the graph. This is where curve counting really happens, but as we count only reduced
curves, we pass to the quotient by the ideal (Q?*, Q?"2,...). On this quotient ring, we define an expo-
nential

Exp: (Q™,Q%,...)/(Q™,Q%",...) - Z[[Q™. Q™. .. ]I/(Q*",Q**,...)

by sending Ezp(Q") = 1 + QV, and requiring that sums go to products.
For any subgraph IV < T, let QU = [ T,er @°- The Hilbert scheme version of the formula is:

THEOREM 1.2. Let C be a connected nodal curve with rational components, with dual graph I'. Then we
have the following equality in the Grothendieck group of Hodge structures:

(1.2)
0 1—h
I L 1—g(1—") nH* C[Cl]’ E N F/ ( q]L )
FgrQ (qL) nz_loq (Cr', Q) = Eap <F§FQ D inp (1) 0=
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Recall that, by definition, ny,(I'"") vanishes when I is disconnected.

Remark 1.3. The [MNOP] conjectures assert a matching between Gromov-Witten invariants (curve count-
ing) and Donaldson-Thomas type invariants (Euler characteristics of stable pair moduli spaces) in the set-
ting of 3-dimensional Calabi-Yau varieties. The result of Theorem 1.2 is similar: the LHS is cohomology
of stable pair moduli, and the n;, on the RHS is just the count of all possible genus i normalizations of
the curve in question; moreover the formula in question is the truncation of the [MNOP] change of vari-
ables. It differs in several ways: first, it is a truncation of the ‘full”’ MNOP prescription to non-multiply
covered curves; second, it is cohomological rather than speaking merely of Euler characteristics; third,
the equation concerns the contribution of a single geometric curve, rather than the summed contribution
of all curves; and fourth, the Behrend weighting function does not appear. Regarding the last point, note
however that since we are working with curves on a surface, it may happen that the total pairs space is
smooth (e.g. as is the Hilbert scheme over the versal family), in which case one would not expect the
appearance of the Behrend function, beyond introducing a sign convention.

The result with Q, coefficients can be deduced by combining Theorem 1.1 with Corollary 1.12. The
result as stated follows by observing that the mixed Hodge structures in Equation 1.2 are of Hodge-Tate

type.

Remark 1.4. We do not know a formula for the Betti numbers of J¢. Finding such is nontrivial: while
the space is built of toric varieties and carries the action of a torus with finitely many fixed points, the
cohomology is not equivariantly formal — in particular, there is cohomology in odd degrees.

We turn now to the more general setting of reduced planar curves. Here, the n;,(C) are more myste-
rious. The closest statement we know to a combinatorial interpretation operates only at the level of Euler
characteristics, and asserts that x(np,(C)) is multiplicity of the loci of genus % in a versal deformation of
C [Sh]. A conjectural description of the refined invariants in terms of a real structure on the curve can be
found in [GS], where we also gave formulas in the case where C is a curve with an ADE singularity [GS].
From these it can be seen that ny, (C) is a nontrivial Hodge structure, although we know of no example in
which it is not a polynomial in L.

Nonetheless, we can at least ask for a relation between the analogues of the left hand sides of Theo-
rems 1.1 and 1.2.

In the case of a single smooth curve C, the cohomologies of the Hilbert schemes C ("] — in this case,
just the symmetric products — and the Jacobian J(C') can both be built from H'(C, Q). Explicitly:

_@®d-NHYC,Q[-] _ @dHI(JI(C), Q-]
(1 -¢q)(1—qL) (1-q)(1—qL) ~

o9)
n=0

where L := [-2](—1).

The formula works in families: given a smooth family of curves mg,, : C — Bg,, we have that

= n . 7-‘-[”] _ @qi ) /\l Rlﬂ-sm*Q[ii] _ @qi ) R7'7r;7m* [72]
D FronQ = =300 L) T—o0-q)

Now consider a family 7o : C — Bo of reduced, irreducible locally planar curves. We can form
the relative Hilbert scheme ng Ioem Bo, and the relative compactified Jacobian ﬂ'é : Je — Bo.

If all the relative Hilbert schemes have nonsingular total space, then the same is true for the relative
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compactified Jacobian. In [MY, MS], the families of cohomologies ngﬂ(@ and Rwé .Q were shown to
enjoy the following relation:

A pelnlg « @0 ICN Rl Q)[—i] _ @4’ - PR, Q[ -]
Q" Fro.Q= "G00 T G—gl-a)

Here, IC denotes the intersection cohomology sheaf extending the given local system and PR’ f,, :=
PHi(Rf,) means the i’th perverse cohomology sheaf of the derived pushforward. We take the convention
that intersection cohomology complexes ‘begin in degree zero’, so K is perverse in our sense if K [dim B]
is perverse in the sense of [BBD], see §2.2 .

We recall a few ideas from the proof. It follows from the “decomposition theorem” of [BBD] that
the middle term above is a direct summand both on the right and the left, and any other summands must
have positive codimensional support, so it remains only to show that there are no such summands. On the
RHS, hence on the LHS for n » 0 via the Abel-Jacobi map, this is a consequence of the ‘support theorem’
of [Ng61]. In [MY], this is bootstrapped to an argument for the LHS by constructing correspondences
between the Hilbert schemes. In [MS], we take a different approach, suitable for both the LHS and RHS,
to reduce checking to the nodal locus, where it may be done explicitly. We have since abstracted this
method into the theory of higher discriminants [MS2]. Yet another approach to similar results can be
found in [Ren].

Our present goal is to establish such a comparison over the locus of reduced curves — i.e., to treat the
reduced but not necessarily irreducible case. As we already mentioned, there are already subtleties in the
definition of the compactified Jacobian, but so long as the curves lie in a fixed surface or fixed family
of surfaces or we are working étale locally over the base, we can choose compatible stability conditions
over the whole base and consider the relative fine compactified Jacobian 7/ : Jo — B (see Theorem
2.12). Second, due to the above stability issues, there is no Abel-Jacobi map directly relating the Hilbert
schemes and the Jacobians. Third, it is no longer true in general that smoothness of J- guarantees the
absence of summands of R Q with positive codimensional supports.

Example 1.5. Consider a one-parameter family of elliptic curves degenerating to a cycle of > 2 P!’s.
This family is its own relative fine compactified Jacobian [MRV 1, Prop. 7.3], but evidently R7;Q has a
summand supported at the special point to account for its extra H?2.

Nonetheless, over sufficiently big families, this phenomenon does not occur.

DEFINITION 1.6. We say 7 : C — B is H-smooth if all relative Hilbert schemes C!" have smooth total
space. Note this includes C 0] — B,

Example 1.7. Over any field, a versal family of reduced curves with locally planar singularities is H-
smooth, see §4 for the general discussion of the condition of H-smoothness, based on the results in [Sh].

THEOREM 1.8. Let 7 : C — B be H-smooth. Then no summand of R7]Q has positive codimensional
support and hence PR'7]Q = IC(/\" R' msm+ Q).

In particular, the stalk at [C] of ? R/ Q does not depend neither on the choice of the H-smooth family
C nor on the relative fine compactified Jacobian 7w/ : Jo — B.

In some cases, this follows from the work of Chaudouard and Laumon [CL]. To prove the result, we
use the method of higher discriminants [MS2], plus the following smoothness criterion, to reduce the
result to the case of irreducible curves, where it is known [MS].
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THEOREM 1.9. Let 7 : (C,C) — (S,b) be a projective flat family of connected locally planar curves,
with distinguished special fibre C = Cy. Let k°¢ : T,S — T Def'°¢(C) be the induced map to the first-
order deformation of the singularities of C. Letﬁ(C) be the number of connected components of C, and
§(C) its cogenus.

If Im (kf%) is a generic subspace of T Def'°¢(C) of dimension at least §(C) + 1 — (C), then the
relative compactified Jacobian J is regular along the special fibre J .

A more precise version of Theorem 1.9 can be found as Theorem 4.11.

On the other hand, even for versal families, there are many summands of RWL"JQ which are supported
in positive codimension. In fact, at a reducible curve [C] € B, there is such a summand for every splitting
of C into connected subcurves. The simplest example is given by a one-dimensional family of nonsin-
gular conics degenerating to a reducible one. The family is versal, and already R?TE]Q has a summand
supported at the central point. Nonetheless, we will establish various analogues of the main result of
[MY, MS], both at a single curve, and globally for what we call independently broken H-smooth families,
see §5.14 for the definition.

We now describe these results, treating for simplicity only the case of a versal family of locally planar
curves. Our results hold for cohomology with @, coefficients since our methods of proof depends on
reduction to positive characteristic.

Let C be a locally planar curve, let V' be the set of irreducible components and let (C, C) — (B, b) be
a versal deformation of C, small enough so that there is no monodromy of the irreducible components of
C in the equigeneric stratum, see Lemma 5.7. By considering specialization to the central fibre, the base
B is stratified by the closed subsets By < B, where ) is a partition of V, corresponding to decompo-
sitions C = | J C; into connected subcurves. For every A we consider the open dense subset By < B)
parameterizing nodal curves in By. Over By the nodes separating the different subcurves persist, and can
therefore be normalized, thus giving a family of partial normalizations ) : Cy — B).

We have the dense, open subsets B) .., & B where the morphism

C/\,reg = C)‘|BA,7"eg - B/\,reg
is smooth. Denote by ¢ : B) .y — B the natural inclusions.
We consider the associated symmetric product families

], ol

DY Areg - BA,Tega

which are still smooth, so that
ng\n]*@g ~ @ szg\n]*@ﬁ[—i],
K3
a direct sum of (pure, semisimple) shifted local systems on B}, ,..,. Set

A= @ () BQ) i),

a complex of sheaves supported on B). Then we have

THEOREM 1.10.
RriQ, = @ FI " M—25(0)1(5(x
m Q= D Fy [=26(M1(6(N))
AeP
where P is the set of partitions of V' decomposing C in connected subcurves, and 6(\) is the number of
nodes being normalized in the stratum B),.
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In Example 5.11 this formula is made explicit for the versal deformation of a pair of incident lines.
The notion of higher discriminants of a map developed in [MS2] and the fact that nodal curves are dense
in these higher discriminants, which are determined via deformation theory relying on [Sh], reduce the
proof of the theorem to nodal curves. To identify the two sides of (5.10) for a versal deformation of
a nodal curve C we pass to a family defined over a finite field I, and compute, at every point in the
base, the trace of the Frobenius map and its iterates on the stalk of the right hand side of the equality
and we compare them with the counting of points in the fibres of 7l over the extensions of F.. Then
we conclude by the Grothendieck-Lefschetz formula and Chebotarev theorem (this is why we require
Qg coefficients). Determining the traces for the sheaves IC/( /\’ R'7 4,4 Qy) is the essential computation,
which we perform in Section 3.1 using the Cattani-Kaplan-Schmidt complex [CKS].

To relate this result with the discussion above, especially with formula 1.2, note that we have an
‘exponential map’ which acts on the category of sheaves on | [, By by

(1.3) Exp(F)|p, = @ [X|(F|s,)-
BEA

With this notation, our main Theorem reads:

THEOREM 1.11. LetC — B be a projective versal family of locally planar curves admitting relative fine
compactified Jacobians Jo — B (the relative fine compactified Jacobian of a disconnected curve is set
to be empty by definition) Let g denote the locally constant function giving the arithmetic genus of the
curves being parameterized.

Then there are isomorphisms in D%(] [ B)[[¢]]:
()0 @ ¢ Rrl G, = Bap ((qL)l—g @4 IO lem*@»[—z‘])

i (1-¢q)(1—qlL)
~ By -y D¢ -PRT]Q[—]
:EP((QL) o0 —a) >

By taking the stalks, Theorem 1.11 has the following local corollary,

COROLLARY 1.12. Let C be a reduced planar curve. We write C' < C to indicate a subcurve. There is
an isomorphism

C 1 g(C T nry QC/(QL)I_Q(C’) T ITR (T L)
D Q%) @ ¢ H(C)"Q) = Bap | 3, (7= =gy D CreH (i Q)
C'<C n=0 C’<C( _q)( —4q ) g
Here, Gri H* (Jr; Q) is by definition P Rimr] Q[ — i]ljcry with respect to any H-smooth family contain-
ing C' and J v is any fine compactified Jacobian of C' (with the convention that J s is the empty set for
disconnected C').

The point of these results is that the perverse filtration appears prominently in recent studies of the
cohomology of the Hitchin system [dCHM, CDP] and its fibres [GORS, OY], but is difficult to compute
directly. On the other hand, the cohomology of the Hilbert schemes is more directly accessible, and the
theorem explains how to recover the associated graded pieces of the perverse filtration on the Jacobian
from the collection of all cohomologies of the Hilbert schemes.

This sort of relation was in a certain sense predicted in the physics literature [GV, KKV, HST, CDP]
as a relation between refined Gopakumar-Vafa invariants (here, the Jacobians) and the refined Donaldson-
Thomas invariants (here, the Hilbert schemes).
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2. Background

2.1 Notation

2.1.1 A curve is a reduced (but not necessarily geometrically irreducible) scheme of pure dimen-
sion 1 over a perfect field k. In practige we take k to be the complex numbers (C), a finite field (), or
the algebraic closure of a finite field (F).

Unless otherwise specified, a curve is meant to be projective.

2.1.2 A family of curves 7 : C — B is a flat and proper morphism of k-schemes all of whose
geometric fibers are curves. If 7 is a projective morphism, we say that the family is projective.

2.1.3  Given a curve C, we denote by Cgp,, the smooth locus of C, by Cgip its singular locus, by
v : C¥ — C the normalization morphism, and by V(C) = my(Csm) = mo(C") the set of its irreducible

components: C = e (¢ Co-

2.14  We employ the following names and notation for numerical invariants of a curve C:

name notation | formula
number of irreducible components | v(C)
arithmetic genus 9(C) 1—x(O¢)

geometric genus g
cogenus, or total delta invariant ) —

abelian rank g’ (C) | g(C")—1+4+~(C)

affine rank *(C) I(C)+1—~(C)=g(C)—g"(C)

Recall that the cogenus is equal to the sum of the local delta invariants of the singularities:

5(C) =), [k(g): k] - 6(C.q) = D) [k(q) : k] - length(v4Ocv/Oc)q-

qecsing qecsing

The terminology “affine rank™ and “abelian rank” will be explained in 2.1.7. Note the abelian rank is
also equal to the sum of the genera of the connected components of the normalization.

The cogenus §(C) and the affine rank §(C) are upper semicontinuous in families of curves (see
[DH, Prop. 2.4] or [GLS, Chap. II, Thm. 2.54] in characteristic zero and [Lau2, Prop. A.2.1] and [MRV?2,
Lem. 3.2] in arbitrary characteristic). Equivalently, the geometric genus and the abelian rank are lower
semicontinuous.

2.1.5 A curve C is locally planar at p € C if the completion @Qp of the local ring of C at p has
embedded dimension two, i.e., Oc, = k[[z,y]]/(f), for some reduced f = f(x,y) € k[[z,y]].

A curve C is locally planar if it is locally planar at every p € C. Being locally a divisor in a smooth
space, a locally planar curve is Gorenstein, i.e. the dualizing sheaf wc is a line bundle.
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2.1.6 A subcurve D of a curve C is a reduced subscheme of pure dimension 1. We say that a
sub-curve D < C is non-trivial if D # &, C.

2.1.7  Given a curve C, the generalized Jacobian of C, denoted by J¢ or by PicQ(C), is the con-
nected component of the Picard scheme Pic(C) of C containing the identity, see [BLR, §8.2, Thm. 3]
and references therein for existence theorems. The generalized Jacobian of C is a connected commutative
smooth algebraic group of dimension equal to 2! (C, O¢). Under mild hypotheses such as existence of a
rational k-point, or triviality of the Brauer group of k, certainly met in the cases k = F, F,, C, its group
of k’-valued points, for k" a finite extension of k, parameterizes line bundles on C, defined over £/, of
multidegree 0 (i.e. having degree 0 on each irreducible component of C) with the multiplication given by
the tensor product.

From the exact sequence of sheaves on C
1 — G, — .Gy, — 4Gy, /Gy, — 1

where v : C¥ — C the normalization morphism, it follows easily that the generalized Jacobian J¢ is an
extension of an abelian variety of dimension g”(C) (namely the Jacobian of the normalization C*) by an
affine algebraic group of dimension equal to §%(C).

2.1.8  We use L to mean “whatever incarnation of the Lefschetz motive is appropriate”. That is, if
we are discussing ungraded vector spaces in the presence of weights, e.g. the K-group of mixed Hodge
structures or of continuous Z representations over Q;, we mean a one dimensional vector space twisted by
(—1). If we are working with graded vector spaces in the presence of weights, i.e. in the derived category
of the above rather than the K-group, we mean a one dimensional vector space, twisted by (—1), and
placed in cohomological degree 2, e.g. . = Q,(—1)[—2]. In the Grothendieck ring of varieties LL is the
class of the affine line.

2.2 The Cattani-Kaplan-Schmid complex

In this paper we use the convention according to which the intersection cohomology complex /C(L) of
alocal system L on a dense open set Z° of a nonsingular variety Z restricts to L, as opposed to L[dim Z].
In our convention we say K is perverse on Z if and only if K[dim Z] is perverse in the sense of [BBD].
Thus, given a local system L’ on a locally closed Z' — Z, the complex IC(L')[—codimZ'] is perverse.

If . is a unipotent local system underlying a variation of pure Hodge structures of weight w on a
product of punctured polydisks (D*)" < D", the paper [CKS, §1], gives a model for the stalk IC(.%) at
0 € D" of the intersection cohomology complex of .Z and its weight filtration (see also [Sai2, §3]). This
model works just as well in the /-adic étale theory, and we shortly review it here, as it plays a central role
in our computations. According to our conventions the intersection cohomology complex lives in degrees
[0,...,dimY — 1]. Assume Y is a regular scheme over F, and D = UjeJ Dj is a normal crossing
divisor. After étale localization we may assume that Y is some Zariski neighborhood of the origin in A",
with coordinate functions ¢1, . .., t,, and D is defined by the equation [ [._;¢; = 0, with J = {1,... k}.
We denote j : Y\D — Y.

Let . be a “lisse” unipotent sheaf on Y\ D, tamely ramified along D, pointwise pure of weight w.

jed

Let Wq,..., ¥, be the nearby-cycle functors associated with the functions ¢4, . .., tx, and denote
U="Uj0...0V,.

Thus L := ¥(Z) is a lisse mixed sheaf on E := (), ; D;, endowed with commuting nilpotent endo-
morphisms N; : L — L(—1). The weights are given in terms of the monodromy filtration of a general
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element )| a;Nj, as explained in [CKS].

PROPOSITION 2.1. We have the following isomorphism for the restriction of the intersection cohomology
complex to E:

iplC(Z) ~C'({N;},Z):={0>L—> @ ImN; > P ImN; - --- > ImN,; — 0}
[1]=1 |1]=2
where the differentials are given by

(=DEN; :Im N;, -+ Ny, — Im NyN, - N, if i # {iy, - ,ix}.

2.3 Deformation theory of locally planar curves

We recall facts about the deformation theory of locally planar curves and their simultaneous desingular-
ization. These facts are well known over the complex numbers; original proofs can be found in the papers
[Tes, DH] and a textbook treatment in [GLS]. They have also been partially extended to positive charac-
teristic in [Lau2], [MY], [MRV2]. For maximal accessibility, we give precise references to the book of
Sernesi [Ser] for some of the standard deformation theoretic facts we use.

Let Defc be the deformation functor of a (reduced and projective) curve C ([Ser, Sec. 2.4.1]). For
p € Cging, we denote by Def ¢, the deformation functor of the complete local k-algebra O, ([Ser, Sec.
1.2.2]). There is a natural transformation of functors

2.1 Defc — Defig¢ := H Defc, .
pecsing

If C has locally planar singularities (or, more generally, locally complete intersection singularities), the
functors Def¢ and Deflé’C are smooth ([Ser, Cor. 3.1.13(ii) and Ex. 2.4.9]) and the morphism (2.1) is
smooth ([Ser, Prop. 2.3.6]).

Given any deformation 7 : (C,C) — (B, b) of C, i.e. a family of curves 7 : C — B together with a
k-point b € B such that C = Cp := 7 !(b), by pulling back 7 via the natural morphism Spf@B,b — B
(where Spf to denote the formal spectrum), we get a formal deformation of C over o B,p» Which induces
a morphism of functors (see [Ser, p. 78])

(22) Pr,b * h@B,b = HOHI(@BJ,, —) — Def C

By taking the differential of ¢ p, we get the Kodaira-Spencer map of the deformation 7 : (C,C) —
(B, b) (see [Ser, Thm. 2.4.1(iv) and p. 79]

(2.3) knp := dpgy : Ty(B) — T Def C = Ext'(Qc, Oc).

Composing with the differential of the morphism (2.1), we get the local Kodaira-Spencer map
kr
(2.4) kX5 Ty(B) =5 T Def C —> T Def§" = HO(C, Ext! (Qg, Oc)).

In the sequel, we will be often dealing with versal deformations of a curve C and versal family of
curves, which we are now going to define (see [Ser, Def. 2.2.6, Def. 2.5.7]).

DEFINITION 2.2. Let m : C — B be a family of curves, i.e. a flat and proper morphism of k-schemes

whose fibers are (reduced) curves.

(i) Letbbe a k-point of B with fiber C, = C. We say that 7 : C — B isversal atb (or that 7 : (C,C) —
(B, b) is a versal deformation of C) if the morphism ¢ ; is smooth.

(i) We say that m : C — B is a versal family if it is versal at every k-point of B.

10
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In the following Fact, we collect the well-known properties of versal deformations of curves, that we
are going to need in the sequel.

FACT 2.3. Let C be a (reduced and projective) curve.
(i) There exists a versal projective deformation 7 : (C,C) — (B, b) of C over a connected k-variety B
(i.e. a scheme of finite type over k).
(ii) Any versal deformation 7 : (C,C) — (B,b) of C over a scheme B of finite type over k is versal
over an open subset of B containing b.

(iii) Letw : (C,C) — (B,b) be a deformation of C. Then 7 : (C,C) — (B, ) is a versal deformation
of C and Def¢ is smooth if and only if B is smooth at b and the Kodaira-Spencer map kr , is
surjective.

It follows from part (iii) (and what said above) that a deformation 7 : (C,C) — (B, b) of curve C
with locally planar singularities (or, more generally, with locally complete intersection singularities) is
versal if and only if B is smooth at b and the local Kodaira-Spencer map kif’g is surjective. In particular,
if 7 : C — B is a versal family of curves with locally complete intersection s’ingularities, then the base B
of the family is smooth.

Proof. Part (i) follows by combining the Schlessinger’s criterion for the existence of a versal formal
deformation of projective schemes (see [Ser, Cor. 2.4.2]), the Grothedieck’s theorem on the effectivity of
formal deformations (which uses that H 2(C, Oc¢) = 0, see [Ser, Thm. 2.5.13]), and the Artin’s theorem
on the algebraization of effective formal deformations of projective schemes (see [Ser, Thm. 2.5.14]).

Part (ii) is the so called openness of versality (see [Fle]).
Part (iii) follows from [Ser, Prop. 2.5.8(i1)]. L]

Given a versal family of curves 7 : C — B, the base scheme B admits a stratification (called the
equigeneric stratification) into locally closed subsets according to the cogenus of the geometric fibers of
the family 7. More precisely, using the notation introduced in 2.1.1, consider the cogenus function

0: B— N,

*> £ 8(C),

where Cy := 77 (£) x4 k(t) is a geometric fiber of 7 over the point ¢ € B.

We call the strata of constant cogenus the equigeneric strata, and write for any d > 0
(2.6) B=%.={te B : §(C;) = d}
2.7) BZ% .= {te B : §(C;) = d}

By the upper semicontinuity of § (see 2.1.4), we have B*>?¢ = Bo=d,

The main properties of the equigeneric strata for versal family of curves with locally planar singular-
ities are contained in the following result, due originally to Teissier and Diaz-Harris if £ = C (see [GLS,
Chap. II]), and subsequently extended to fields of big characteristics in [MY, Prop. 3.5] and then to fields
of arbitrary characteristics in [MRV2, Thm. 3.3].

FACT 2.4. Letw : C — B be a versal family of curves with locally planar singularities. Then we have
that (for any d = 0)

(i) the closed subset B>% < B has codimension at least equal to d;

(i) each generic point ) of B> is such that Cy is a nodal curve.

11



LUCA MIGLIORINI, VIVEK SHENDE AND FILIPPO VIVIANI

On the normalization of each equigeneric stratum of B, the pull-back of the family 7 : C — B admits
a simultaneous normalization. More precisely we have the following result which was originally proved
in [Tes, 1.3.2] if kK = C and then extended to arbitrary fields in [Lau2, Prop. A.2.1].

FACT 2.5. Letw : C — B be a versal family of curves with locally planar singularities. For any d > 0,
consider the normalization B3=4 of the equigeneric stratum with cogenus d and denote by 7% : C0=¢ —

B%=d the pull-back of the universal family 7 : C — B. Then the normalization v% : C5=4 — C%=4 js a
simultaneous normalization of the family %, i.e.

(i) the composition v : C9=d X ¢o=4 T, Bé=d js smooth;

(i) the morphism v induces the normalization morphism on each geometric fiber of 7.

2.4 Fine compactified Jacobians

We collect results on fine compactified Jacobians of connected (reduced projective) curves with locally
planar singularities and their families.

2.4.1 Fine compactified Jacobians Throughout this subsubsection, we fix a connected (geometri-
cally reduced and projective) curve C over a field k£ and we set C := C ®;, k. Moreover, given a sheaf 7
on C, we denote by 7 its pull-back to C.

Fine compactified Jacobians of C will parametrize certain sheaves on C, which we now introduce.

DEFINITION 2.6. A coherent sheaf Z on a curve C is said to be:

(i) rank-1if T has generic rank 1 at every irreducible component of C;

(i1) torsion-free (or pure of dimension one) if Supp(f) = C and every non-zero subsheaf J < 7 is
such that dim Supp(7) = 1.

Note that any line bundle on C is a rank-1, torsion-free sheaf.

The construction of fine compactified Jacobians of a reducible curve C will depend on the choice of
a general polarization on C, which we now introduce. We follow the notation of [MRV1].

DEFINITION 2.7.

(i) A polarization on a curve C is a collection of rational numbers m = {m_}, one for each irreducible
component C; of C, such that |m| := >}, m¢, € Z. We call |m| the total degree of m. Given any
subcurve D < C, we set m, := 2 mg,.

CicDh
(ii) A polarization m is called integral at a subcurve D < C if my € Z for any connected component

E of D and of D°. A polarization is called general if it is not integral at any non-trivial subcurve
D c C.

Given a polarization m on C, we can define a (semi)stability condition for torsion-free, rank-1 sheaves
on C. To this aim, for each subcurve D of C and each torsion-free, rank-1 sheaf Z on C, we denote by
Zp the quotient of the restriction Z|, of Z to D modulo its biggest torsion subsheaf. It is easily seen that

T p is torsion-free, rank-1 sheaf on D.

DEFINITION 2.8. Let m be a polarization on C. Let Z be a torsion-free rank-1 sheaf on C of degree
d = |m|.

12
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(i) We say that 7 is semistable with respect to m (or m-semistable) if for every non-trivial subcurve
D < C, we have that

(2.8) X(Zp) = mp,
where y denotes the Euler-Poincaré characteristic.

(i) We say that 7 is stable with respect to m (or m-stable) if it is semistable with respect to m and if
the inequality (2.8) is always strict.

General polarizations on C can be also characterized more geometrically:

LEMMA 2.9. [MRV1, Lemmas 2.14, 5.13] Let m be a polarization on a curve C. If m is general then
every rank-1 torsion-free sheaf which is m-semistable is also m-stable. The converse implication is true
if C has locally planar singularities.

Fine compactified Jacobians were constructed in full generality by Esteves in [Est].

THEOREM 2.10 Esteves. Let C be a geometrically connected curve and m be a general polarization on
C. There exists a projective scheme Jc(m), called the fine compactified Jacobian of C with respect to
the polarization m, which is a fine moduli space for torsion-free, rank-1, m-semistable sheaves on C.

Since m is general, sheaves in J(m) are m-stable, hence geometrically simple, by Lemma 2.9. This
is the reason why J(m) is a fine moduli scheme. Observe also that, clearly, we have that J(m) ®y k =
Te(m).

We denote by J(m) the open subset of .J(m) parametrizing line bundles on C. Note that J¢(m) is
isomorphic to the disjoint union of a certain number of copies of the generalized Jacobian Jc = Pic® (C)
of C.

If C has locally planar singularities and k = k, its fine compactified Jacobians enjoy the following
properties (see [MRV1, Thm. A]).

THEOREM 2.11. Let C be a connected curve with locally planar singularities over k = k and m a general
polarization on C. Then

(i) Jc(m) is a connected reduced projective scheme with locally complete intersection singularities
and trivial dualizing sheaf.

(ii) Jc(m) is the smooth locus of J¢(m). In particular, Jo(m) is dense in Jc(m) and J(m) has pure
dimension equal to the arithmetic genus g(C) of C.

(iii) The number of irreducible components of Jc (m) depends only on the curve C and not on the
polarization m.

Therefore, the number of irreducible component of any fine compactified Jacobian of a connected
curve C with locally planar singularities over k = k is an invariant of C, which is usually called the
complexity of C and denoted by ¢(C). We refer the reader to [MRV 1, Sec. 5.1] for an explicit formula
for ¢(C) in terms of the intersection numbers between the subcurves of C. We just mention that if C is
nodal, then ¢(C) is given by the complexity of its dual graph, i.e. the number of its spanning trees.

The above Theorem (2.11) implies that any two fine compactified Jacobians of a curve C with locally
planar singularities over k = k are birational Calabi-Yau (singular) varieties. However, in [MRV1, Sec.
3], the authors constructed some nodal reducible curves which do have non isomorphic (and even non
homeomorphic if £ = C) fine compactified Jacobians. Despite this, Theorem 1.8 implies that any two
fine compactified Jacobians of a curve C with locally planar singularities have the same Betti numbers

13
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if & = C, recovering in particular Theorem 2.11(iii). It is shown in [MRV2] and [MRV3] that all fine
compactified Jacobians are derived equivalent.

2.4.2 Relative fine compactified Jacobians Given a projective family 7 : C — B of geometrically
connected (and geometrically reduced) curves, i.e. a projective and flat morphism 7 whose geometric
fiber C; := 71(b) O (b) k(b) over any point b € B is a connected (and reduced) curve, a relative fine
compactified Jacobian for 7 is a scheme w7/ : Jo — B projective over B, such that the geometric fiber
(Jo)g == () 71(b) Rk k(b) over any point b € B is a fine compactified Jacobian for the curve C;.

In the sequel, we will need the following result of the existence of relative fine compactified Jacobians
for families of geometrically connected (geometrically reduced and projective) curves.

THEOREM 2.12. Let 7 : C — B be a projective tamily of geometrically connected curves.

(i) Up to passing to an étale cover of B, there exists a relative fine compactified Jacobian 7 : Jo — B
for m.

(ii) Fix a point b € B and a general polarization m on the fiber C, over b. Then, up to replacing B with
an étale neighborhood of b, there exists a family of fine compactified Jacobians 7/ : J¢(m) — B
such that Jc(m), = J¢,(m). Moreover we have (up to replacing B with an open neighborhood of
b):

(i) if Cy has locally planar singularities and B is geometrically unibranch (e.g. normal) and re-
duced at b, then 7/ is flat with geometric fibers of pure dimension 9(Gy);
(i) if C; has locally planar singularities and  is versal at b, then Jc(m) is regular.

Proof. The proof is similar to the one of [MRV1, Thm. 5.4, Thm. 5.5] (which deals with the effective
semiuniversal deformation family of a curve C), building upon the work of Esteves [Est]. We omit the
details. O

3. Nodal curves

In this section we express the counting function of the Hilbert scheme of a nodal curve defined over a
finite field as a sum of trace-functions of Cattani-Kaplan-Schmid complexes. This is the most important
step in the proof of Theorem 5.10.

Throughout this section, we always consider the following

SETUP 3.1. Let C, be a nodal curve defined over a finite field k := F,; and I' = I'¢ is the dual graph
of C = C, xp, F,.Letm, : C, — B, be a versal family of nodal curves with central fibre the curve
C, = C,p and assume, up to localizing at b, that B, is smooth and irreducible. Denote by 7 : C — B the
base change of the family 7, to the algebraic closure k = F. The discriminant locus A of 7 is a normal
crossing divisor on B which has a component A, for each node e of C. We set Bieg := B\A.

Sometimes we will need to assume that the cardinality of the base field F,; is big enough (compared
to the cogenus 6(C) of C), which is enough for our applications since the families 7, : C, — B, we will
be considering arise from the reduction of families defined over the complex numbers.

3.0.1 The dual graph We write I' = I'c for the dual graph of the curve C: its vertices v € V
correspond to the irreducible components of C, and its edges e € E correspond to the nodes of C. We

will also be considering the set E of oriented edges of I" and we will denote by ¢ and e the two oriented
edges corresponding to an (unoriented) edge e of I'. Note that, since we do not assume C, geometrically

14
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connected, I" may be disconnected.
The Galois group Gal(k/k), which is topologically generated by Frobenius, acts on the graph I, and
in particular on the sets E and V. The action of Frobenius on the vertex set V corresponds to the action of

Frobenius on the irreducible components of C. The action of Frobenius on the set E of oriented edges is
determined by the types of the nodes of C, as we now explain. A node of C, is identified by one integer
r and one “sign” € = £1. By this we mean that:

(i) (The split case.) (r, +) is analytically isomorphic to Spec F,+[[ X, Y]]/(X? — Y?) as a F,; scheme,
i.e. the point correspond to r geometric points with rational tangents. In this case the normalization
is Spec (Frr[[X]] x Frr[[Y]]) = Spec (Fxr [[X]]) [T Spec (Frr[[Y]]) .

(ii) (The non-split case.) (r, —) is analytically isomorphic to Spec F.+[[X,Y]]/(X? — aY?) as a F,
scheme, with a ¢ [F2, i.e. the point correspond to r geometric points with non rational tangents (a
further quadratic extension is needed). In this case the normalization is Spec (F 2 [[X]]) .

—

Frobenius acts on the set of 2r oriented edges {?1, N - S PRER ,?T} corresponding to the r
nodes of C that lie over the node of C,: in the first case, one can number and orient the edges so that
Fr(e;) = €1 fori < rand Fr(e,) = €1, and similarly with the e;’s so that there are two orbits of r
elements each, whereas in the second case Frr(e;) = ¢4 fori <7, Fr(e,) = e1and Fr(e;) = eit1,
so that there is just one orbit.

We write V = Vp := Co(I',Q,) and E = Er := C1(T,Q,) for the Gal(k/k)-modules of zero-
and one-simplicial chains on I". Explicitly, V is the Q,-vector space of Q,-linear combination of vertices
of I' and E is the Q,-vector space of Q,-linear combination of oriented edges of I' modulo the relation

—

¢ = —e, where ¢ and e denote the two oriented edges corresponding to an (unoriented) edge e of I'.

The actions of Gal(k/k) on V and E are induced by the action on V and E so that V is a permutation
representation while E is only a signed permutation representation (because the Galois action can reverse
the oriented edges of I', as explained above). The homology of the graph I' is defined via the following
exact sequence

3.1) 0— H (I, Q) - E -5V — Hy(T, Q) — 0,

where ¢ is the boundary map which sends an oriented edge into the difference between its target and its
source.

We write V¥ = C%(I",Q,) and E* = C'(I',Qy) for the dual Gal(k/k)-modules of zero- and one-
simplicial cochains on I'. Since V and E are both signed permutation representations, there are isomor-
phisms of Gal(k/k)-modules E =~ E* and V =~ V*. The cohomology of I is defined by mean of the
following exact sequence

(3.2) 0— HY(, Q) — V¢ 25 B - HY(T, Q) — 0,

where 0* is the dual of the map 0.
Since the Gal(k/k) action on E, V, E*, V*, Ho(T, Q,), H1(T',Q,), H*(I',Q,), H(I',Q,) factors
through a finite group, all these spaces are pure of weight zero.

3.0.2 Geometric interpretation of the cohomology of the dual graph. The homology and cohomol-
ogy groups of the dual graph I' of C' arise geometrically from curves related to C by normalization and
deformation.

Cohomology of the graph I" comes from the normalization v : C¥ — C. The sequence of sheaves

0— Q — v:Q — v:Q,/Qr — 0
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yields by taking cohomology:
0— H%(C,Qy) — H*(C", Q) — H"(C,1.Q,/Qy) — H'(C, Q) — H'(C", Q) — 0.
We have defined V*, E* so as to have canonical, Gal(k/k)-equivariant identifications
V* = H%(C",Qy),
E* = H°(C,1.Q/Q)
Substituting in H*(T',Q,) = Cok(H®(C",Q,) — H°(C,v+Q,/Qy)), we find the short exact se-
quence
(3.3) 0— H'(T, Q) — H'(C,Q) — H'(C",Qy) — 0,
which, since H'(T', Q) is pure of weight zero and H'(C¥,Q,) is pure of weight one, gives the weight

filtration of H'(C, Q).

On the other hand, homology of the graph comes from a one-parameter smoothing o : C — D of
C, with special fibre Cy = C and geometric generic fibre C;. The cohomology of the nearby-vanishing
sequence gives:

(3.4) 0— H'(C,Q,) — H'(Cy, Q) — H'(C,2,Q,) — H*(C,Qy) — H*(Cy, Q) — 0.
By Poincaré duality we have

H?(C,Q,) = H*(C", Q) = H*(C",Qy)*®L = VRL
and, likewise

H*(Cy, Qp) = H(C;,Qp)* ® L = H°(C,Q))* ® L.
Finally, we have by Picard-Lefschetz formula ([Mil], p.207):
HY(C,®,Q)) = ER®L.

Substituting in formula (3.4) we find:
(3.5) 0— H'(C,Q) — H'(C7,Qy) — H1(I',Qy) ® L — 0.

The (monodromy-)weight filtration on H* (Cq, Q) is:
WoH' (C,Q,) = HN(T',Qy),
WIHl (Cﬁa QZ) = Hl(ca Qé)a
WZHI(Cﬁa Q@) = Hl(cﬁa Q@)v

with associated graded pieces

Grgle(Cﬁa QZ) H (F7@€)7
Gr}/VHl(Cﬁv@f) Hl(cu7@£)’

GT;/VHI(Cﬁa @6) Hl(rv@f) ®L.

—_

3.0.3 Subgraphs and partial normalizations. For every subset I < E, we factor the normalization
map

el
where v7 : C! — C is the partial normalization of the nodes of the subset I, and v/ : C¥ — C/ for the
remaining normalization.
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We have sequences
0— H%(C,Q,) — H(C',Q,) — H*(C,v1:Q,/Qp) — H'(C, Q) — H'(C', Q) — 0
and
0— H°(C", Q) — H°(C", Q) — H(C',v;Q,/Qp) — H'(C', Q) — H'(C”, Q) — 0.

The dual graph of the partial normalization C/ is the graph I"\ I, which is obtained from I' = I'c: by delet-
ing the edges corresponding to /. As in §3.0.2, we have canonical identifications EF\ ;=H ot vlQ,/Qy)
and Vl”i\l = H(C",Qy) = Vi = V*. Moreover, we set E¥ = HY(C,v1,Q,/Q,) so that we have a
canonical splitting E* = Ef. = El’i\  @ET.

We now introduce a collection of subsets of E which will play an important role in what follows.

DEFINITION 3.2. We write ¢'(I") for the collection of subsets of E whose removal disconnects no com-
ponent of I, i.e. a subset I < E belongs to ¢'(I') if and only if I"\I has the same number of connected
components of I'.

We set n;(T) 1= #{I € (L) | dim H; (T\I) = 4.

Note that ng(I"), i.e. the cardinality of the set of maximal elements of % (I"), is also equal to the
complexity ¢(I') of T, i.e. the number of spanning forests of I.

An alternative characterization of the elements of ¢’(I") is provided by the following

LEMMA 3.3. A subset I < E belongs to ¢ (T") iff the composition E¥ — E* — H(T',Q,) is injective.
In that case, the following sequence is exact:

0— E}‘ - Hl(rv@ﬁ) - HI(F\Iv@f) — 0.

Proof. The inclusion of graphs I'\I < I" induces a pull-back map from the sequence (3.2) to the analo-
gous sequence for I'\ 7. Applying the snake lemma to this map of sequences and using that VI"i\ ;= Vi,
we get the exact sequence

0— H(T, Q) — H'(I\L, Q) — Ef — H'(D, Q) - H'(T\I,Q,) — 0.
By Definition 3.2, the subset I belongs to ¢'(T") if and only if the map H®(I',Q,) — H®(T'\I, Q) is an

isomorphism. By the above exact sequence, this happens precisely when the map E} — H YT, Q) is
injective and in that case we get the required short exact sequence. O

Remark 3.4. Tt follows from Lemma 3.3 that %'(T") is the collection of all subsets of E whose images
under the map E* — H!(T", Q) remain linearly independent. Thus %'(T") is the collection of independent
elements of a (representable) matroid — in particular, a simplicial complex — which is usually called the
cographic matroid of the graph I.

Fixing orientations of each edge e € E of I" and an ordering on E determines, for all I c E, ‘volume’
elements e € A 1 ‘E?, well defined up to a sign. Lemma 3.3 may be reformulated as the assertion that
I € €(T) if and only if the image of e} in A/H(T",Q,) is non-zero. Indeed, even more is true as the
following Lemma shows.

LEMMA 3.5. If I € € (I"), there is an injective map, well-defined up to a sign,
i~ - i -
nei: \ HY(I\L Q) — N\ HY(T, Q).
Proof. The map is defined by lifting n € /\i_m H'(I'\I, Q) arbitrarily to an element in /\i_m HYT,Qy),
and then wedging by e7. This is well defined because the ambiguity in the lift is killed by Aej. O
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3.1 Determination of /C(A'R'7,,.Qy)
In the setup 3.1, consider the local system 7! := le*@” Bireg ON Breg, which, defines (see §2.2) a local
system “l/ﬁ A, = Yon [, Ac 3 b, endowed with | E| commuting twisted nilpotent endomorphisms

Ne: YA a. — 7. a. ®L.

We also have the local systems ¥ := A’ ¥, and corresponding sheaves VA A =TV on (. A,
endowed with commuting twisted nilpotent endomorphisms )

Ne(l) : nf/ﬁ A, - 7/(-2] Ae ®]Ld.

It is known that the local system 7!, and therefore also its exterior powers ¥, are tamely ramified
[Ab, Thm. 1.5]. As we are interested in pointwise computations, we may consider a normal slice so we
assume [ ), A, = {b} and identify “//ﬁ A= H 1(Cy,Qy), where Cy is a geometric generic fiber of a one-
parameter smoothing of C. Remark that the monodromy filtration is independent of the one-parameter
smoothing that we choose as it coincides with the weight filtration. The monodromy-weight filtration of
“l/ﬁe A, is hence identified with that of H 1(Cz,Qy) described in §3.0.2.

It follows immediately from weights considerations that the map
N.: H'(C7,Q;) — H'(C7, Q) ® L
factors as
3.6 H(F,Q)®L=Gry ' (C;, Q) — Gry H' (G, Q) ®L = H'(I, Q) ® L,
and it is easily seen to be given by

t—(e* ty-e*
_

3.7 H{(T,Q) — E E* - H'(T', Q)

where € is an orientation of the edge e and €* is its dual element in E* (note that the above is inde-
pendent of the orientation of e). Similarly, for the exterior powers, we have the identification ”Vﬁ A, =

N H (Cs, Qp) under which the operators N become
N = N'HY(Cq, @) — A\ H'(C7, Q) O L

K3
cl/\---/\cir—>ch/\---/\Ne(ck)/\---/\ci.
k=1

For I < E we write

N = [N N H G @) — N H (€. Q) @ LY.

ecl

_ The stalk of IC(7 4 at {b} = . Ae is quasi-isomorphic to the following complex of continuous
Q-representations of Gal(k/k):

(3.8) 0— A" H'(Cr. Q) > @repypor Ny — @jepypje Ny — -

where the first term /\Z H 1(65, Q) is in homological degree zero. Omitting, for brevity of notation, to
indicate the nilpotent endomorphisms, we denote this complex by C*( A\’ H*(Cz, Qy)).

We also define operators by restricting the above to the even weight pieces of the associated graded
pieces, H!(Cq, Qp)ev := H'(I', Q) ® H1(T, Q) ® L, i.e.,

N, : H(T,Q) ® H\(T,Q) ® L — HYT,Q,) ® L ® H,(T, Q) ® L2,

18



A SUPPORT THEOREM FOR HILBERT SCHEMES OF PLANAR CURVES, II

and similarly for the operators ]\Afe(i) and N I(i).
We want now to describe the image of the maps N @ Recall from Lemma 3.5 that if I € Z(I),

then there is an injective map Ae’ @ A"~ Y (T\I,Q,) — N H( ). Using the natural injection
Hy(T\I, Qg) < H1(T, Q) coming from the inclusion of graphs F\I c F we get an injective map
(3.9) o ANTH (HY(I\I,Q,) ® H1(T\I,Q,) QL) — N (HYI, Q) @ Hi(I', Q) ®L) .

LEMMA 3.6. (the main calculation) The image of N I(Z) is zero unless I € € (I"), and in this case, it is
equal to to the image of the map (3.9) twisted by LI,

Proof. We recall how the choice of a spanning forest of I" (i.e. a spanning tree on each connected com-
ponent of I') gives rise to dual bases for Hy(T') := Hy(T',Q,) and H'(I") := HY(T',Q,). Let J < E be
a maximal element of €’ (I") so that I'\.J is a spanning forest of I". Then on one hand, for each e € J,
we have the corresponding &* € E*, and their images in H'(T") give a basis. On the other hand, for each
e € J, there is unique loop in I'\ (J\e) which gives rise to an element of H;(I") denoted by e; this again
gives a basis. We have <é;",gj> = +6;; foreach e;, e € E.

We return to the problem at hand. By induction on |/| and the obvious compatibility of N, with the
analogous operator on the complex associated to a subgraph I'\¢’, it suffices to consider the case when
I = {e}. Let ', be the component of I" containing e. If the removal of the edge e disconnects I, then
certainly no cycle ¢t € H;(I") can contain the edge e, hence {¢*, ¢) = 0 for any ¢, and so N, = 0.

Otherwise, there exists some maximal e € J € € (I"). Let {e = e;,e,,...} and {e* = €, €5,...} be
the corresponding dual bases. Observe that J\e € € (I"\e) is again maximal, and the resulting dual basis
of H1(T\e) and H(T'\e) are {e,, ...} and {€%,...}.

We compute the action of Ne(i):

7(2) [ =% —rk
N()(e /\"'/\ed/\ghA”'/\Qde)

_* A
Z ad/\gbl/\.../\Ne(ng)/\.../\gbiid

<Z .e .../\ézd/\ebl/\.../\ébr/\.../\ebi_d>/\é‘*

If any of the a; = 1, then this sum vanishes. In any case, the sum has at most one nonvanishing term, that
of b, = 1. Assuming without loss of generality that a; < az < --- and by < by < - - -, the sum vanishes
unless a; > 1 and by = 1; and

RO @t h o A A Aoy Ao Aty ) = 50 A (g Ao ATy Ayt A A,

This completes the proof. O

Remark 3.7. In particular, if i < |I| or h'(T") < |I| then Nl(i) vanishes. This is true also for the map
N NHY (G, Q) = A\ HY (G, Q) @ LI,

Indeed, if i < |I| then N I(i) vanishes because the weights of the source go from 0 to 27 while those of

the target from 2|| to 2|I| + 2i. Moreover, if h!(T") < |I| then the map N I(i) vanishes because of the

factorization (3.6).
3.2 The Hilbert scheme of a nodal curve

In this subsection, we will be using the following
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NOTATION 3.8.

@

(ii)

(iii)

@iv)

Equalities in this section are in the counting sense, as we now explain. To any element ) ; \; X, ; of
the Grothendieck ring K (Vary, ) of varieties over F, it is associated the counting function

reN— Z )\iXoﬂ;(Fﬂ-T‘).

And to any element >, A\;W; of the K-ring Ko(Rep(Fr)) of (finite dimensional) Q,-vector spaces
with an action of Frobenius Fr, it is associated the counting function

reNe- Y NTe(F: W — W),

Two objects belonging to either Ky(Varp_ ) or Ko(Rep(Fr)) are said to be equal if they have the
same counting function. And two formal power series in ¢ with coefficients in either Ko(Varp, ) or
Ky(Rep(Fr)) are said to be equal if each of their coefficients has the same counting function.
For example, if C, is a geometrically connected, nonsingular projective curve, the Grothendieck-
Lefschetz trace formula is written as the equality

C, = HC) - HY (C)+ H*(C)=1—-H'C) + 1,
where C = C, Xg—Fr, and H “(C) denotes the i-th étale cohomology group of C with coefficients
in Q,, endowed with the action of Frobenius.
Given a variety C, over F, we denote by Z(C,, q) its Hilbert zeta function:

)i= Y Cl g™ e Ko(Varg ) [[q]]

Note that this formal power series is invertible since it starts with 1.

Given a Q,-vector space W with an action of Frobenius, we denote by A*(—qW) the generating
series of its exterior powers:

k
(3.10) A*(—qW) == D (—q)F \ W € Ko(Rep(Fr))[[q]].
k
This formal power series satisfies the identity
(3.11) A*(—g(W1 + W2)) = A" (—gW1) A" (—gW2).
In particular, if W7, Wy are Q,-vector spaces with trivial Frobenius action,
(3.12) A*(—q(Wi + Wal)) = (1 — )™ (1 — gL) ™72,

a formula which we will often use.
Using this formalism, the classical MacDonald formula [Mac] for a nonsingular (projective) curve
C, with r geometrically connected components which are defined over the base field IF; reads as:
A*(—qH'(C)) _ A*(—qH'(C))
(1=q)(1—qL))"  A*(—q(H(C) + H*(C)L))
Let C, be a nodal curve over F, and letE = I'c be the dual graph (if C =G, xp, F,. For any
i = 0,1, we will set H(T'¢) := H(I'¢,Qy) and H;(T'¢) := H;(T'c, Q,) endowed with the action
of Frobenius (see §3.0.1).
For any I < E(I'c) and any k& > 0, consider the map
k k
N9 A (HYTe) + Hy(Te)L) — /\ (H'(Tc) + Hy(Te)L) L

(3.13) ZH(Co,q) =
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defined in §3.1. We now set

K(Co) = D (=a)* D1 (~1)m NP e Ko(Rep(Fr))[[q]].
k=0 ICE(l')

Using Lemma 3.6, it is easy to check that

(3.14) K(Co)= Y, (—qL)lefA* (—q (H'(T\) + Hi(TA\T)L)) -
Ie4(T'c)

Note that the homology and cohomology groups of I'c\I are not acted on by the Frobenius unless
the subset I is Frobenius invariant. However, the sum on the right hand side of (3.14) is the sum
over all the subsets of 4 (I'c), and is therefore acted on by the Frobenius, hence it belongs to

Ko(Rep(Fr))[[q]].
Remark 3.9. By the discussion in §3.1 (and using the Setup 3.1), the class in Ko(Rep(Fr))[[¢]] of

D410 (A By, ), [

is equal to
A*(—qH'(C")) - K(Co).

COROLLARY 3.10. We have the following evaluations of weight polynomials:

o <Z ¢IC (/\i Rlﬂ*@e‘Breg)b [—i]) = (1 + qt)%(©") Z ni(T) - (gt (O~ (1 —gt*)(1 - q))i.

120

In particular, setting ¢ = 1, we get that

(3.15) w (Z e, ( A R'r,Q, Bmg)b [—i]) — (1 + £)29(C) 2 (D (),
Proof. By Remark 3.9, we have that

(3.16) 1w (Z ¢'1C (N Rlﬁ*@é&eg)b[_i]> =10 (A*(—¢H'(C"))) - w0 (K(Co)) -

By (3.10), we have that

3.17)
s prliewn) _ Nk A Ny e (29(C)N e 29(C¥)
w (A (—aB () = V0w [ A () ) = D=0 (P07 ) (-0 = (e gn©.
k k
From (3.14) and (3.12), and substituting (L) = #2 and ro(e*) = (—1)/I, we compute
w(K(C) = Y (a0 (- gy (1 - )" =

Ie‘ﬁ(FC)

= Y (D) - (gt D7 (1 - gt?)(1 - ),

1=0

(3.18)

where we used Definition 3.2 in the last equality. We conclude by putting together (3.16), (3.17) and
(3.18).

O]

Using the above notation, we can restate the main result of [MY, MS2] as it follows.
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THEOREM 3.11. (MacDonald formula for geometrical irreducible nodal curves, [MY, MS2]) Let C,, be
a geometrically irreducible nodal curve over [F.. Then the Hilbert zeta function of C, is equal to

A*(—qH'(C")) - K(Co) _ A*(—qH'(CY)) - K(C,)
A (~q(HOC) + HA(OL)) ~ (1-@)-qL)

(3.19) Z1(Co,q) =

The aim of this subsection is to generalize the above MacDonald formula to a (reducible) nodal curve
C,, defined over a finite field IF,;, under the assumption that the geometrically irreducible components of
C, are defined over the finite field [F;.

We will first find a formula for the Hilbert zeta function of C, in terms of the (co)homology of its
spanning subgraphs.

PROPOSITION 3.12. Let C, be a nodal curve defined over a finite field ¥ of cardinality sufficiently big
with respect to §(C,). Assume that the irreducible components of C = C, xp_ F, are defined over F.
Then we have the following formula for the Hilbert zeta function of C,:

A (emi(c e AT (Sa(H (To\T) + Hy(To\J)L)
6200 Z(Cort) = A (=al(C) | 2, (S R () + Fo(T D)

As above, note that the homology and cohomology groups of I'+\J are not acted on by the Frobenius
unless the subset J is Frobenius invariant. However, the sum on the right hand side of (3.20) belongs to
Ko(Rep(Fr))[[¢]]. being the sum over all the subsets of E(I'c).

Proof. Since the cardinality of the finite field F is big enough with respect to §(C,) (which is the number
of nodes of C), we can find a rational curve D, with the same set of nodes of C, and of the same type
(see the description of nodes in §3.0.1).

Denoting v : C — C,and v : D}, — D, the normalization maps, by C, s, and D, s, the nonsingular
sets, and by C, x = D, x the singular (nodal) sets, we also have

v HCox) = v 1Dy x).

Recall how the Hilbert scheme of points factors into local contributions. Given a subset S < C,,
[n]

every point in Cg
a factorization

q)=<20q” Co\S)I" ) (Zq )— (Co\S,q) - <Zq )
[n]

where Cg™ is the fibre of the Hilbert-Chow morphism over S.

Applying this to C, with S = C, «, and to C}, with S = v1 (Co,x ), (resp. to D, with S = D,, », and
to DY with S = v~ 1(D, «)), we find that

Z1(Co9) _ Zn(Commd)(X(Cox)Mq")  BD,0Mgt 30N
Zu(©5.0) ~ ZaCosm ) (S (Cor W)~ S0 1D PIgs ~ S0 1Dy I

and similarly

is the union of a subscheme supported on S and a subscheme supported off S, whence

[n

ZH(D07Q) _ ZH(Do,smaQ>(Z(Do,><)[n]qn) ZDo,an
Zu(D5,9)  Zir(Dosm, ) (S (Dop))g™) — 307 (Do )Pl
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Hence we conclude that
Zu(Co,q)  Znu(Do,q)
Zu(Cya)  Zu(Dy,q)
Therefore, in order to conclude the proof, it remains to compute the Hilbert zeta functions of CY, DY
and D,.

The curve DY is smooth and rational, hence it is geometrically irreducible and with H*(D¥) = 0.
Hence MacDonald formula (3.13) for smooth curves gives that

1
(1-q)(1—qL)
The curve C¥ is smooth and its geometrically irreducible components, whose number is equal to the

cardinality |V (I'c)| of the dual graph I'c of C, are defined over F, by our assumptions on C,. Hence
MacDonald formula (3.13) for smooth curves gives that

A*(—gH' (C))
(1= q)(1 = L))" Tl

The curve D, is geometrically irreducible; hence MacDonald formula for geometrical irreducible
nodal curves (see Theorem 3.11) gives that

(3.21)

(3.22) ZH(D(’;7Q) =

(3.23) Z1(Co,q) =

K(D,)
(1—¢)(1 —qL)

We are left with computing K(D,). Since taking out any subset of edges does not disconnect I'p, we
have that C(I'p) (see Definition 3.2) is equal to the collection of all the subsets of the edge set E(I'p) of
I'p. Hence formula (3.14) gives that
(3.25) K(D,) = Y, (—qL)le5A* (H'(Tp\J) + Hi(Tp\J)L) .

JCE('p)

(3.24) Z1(Do,q) =

We now want to relate the (co)homology of the spanning subgraphs of I'c with the ones of I'p.
Observe that, by the construction of D, and the discussion in §3.0.1, the dual graphs I'p and I'c have the
same set of oriented edges with the same Frobenius action, which implies that Erj, = Er, := E and
E(I'c) = E(I'p) := E. On the other hand, since D,, is a rational curve, the vertex set of I'p is one point
with the trivial Frobenius action. Hence the exact sequences (3.1) and (3.2) applied to I'p give that

H(Tp) ~E and HY(I'p) = E*.
Substituting this into the exact sequences (3.1) and (3.2) applied to I'c and passing to the K-ring, we get
the following equality in Ko(Rep(Fr)):
H,(Tp) = Hi(I'c) + V — Hy(T'¢) and HY(I'p) = H(I'¢) + V* — H(I'c),
where V := Vr. Note that our assumption on the irreducible components of C, is equivalent to the

fact that the action of Frobenius on the vertex set V' (I'¢) is trivial, hence the action of Frobenius on V is
trivial.

The same relations hold between the graphs I'c\J and I'p\ J, obtained, respectively, from I'c and T'p
by deleting a set J < E of edges, namely

Hi(T'p\J) = Hi(Tc\J) +V — Hy(Tc\J) and H'(I'p\J) = HY(Dc\J) + V¥ — HO(Tc\J).
Combining the above relations and using that V =~ V*, we arrive at the relation

HY(Tp\J)+ H;(Tp\J)L = HY(T'c\J) + H (Pc\J)L + V(1 + L) — H*('c\J) — Ho(T'c\J)L.
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By applying the operator A*(—¢(—)) to the above relation and using (3.11) and (3.12) (recall that the
action of Frobenius on V is trivial), we get

(326) A (HATp\J) + Hy(Tp\J)L) = A% (~q (v(1 + 1)) S ULV + ; Hy (' \/)L)

A* (HO(T\J) + Ho(T\J)L)

gL))V(re)l A* (HY(Tc\J) + Hi(Tc\J)L)
)

= (-9 - A (HY(Tc\J) + Ho(Tc\J)L

Substituting (3.26) into (3.25), we obtain

3.27)
) ] A* (=g (H'(Tc\J) + Hi(Tc\J)L))
K(D,) = ((1 - g)(1— q))"V (") <J2< ) e g (BT e\) + o\ L) )

We conclude by putting together (3.21), (3.22), (3.23), (3.24) and (3.27).

O]

Now we want to express the right hand side of (3.20) in terms of the operator K(—) applied to some
special partial normalizations of the curve C,, that we are now going to define.

Every subset I of the edge set E := E(I") of the dual graph I" := I'¢ defines a partition A([) of the
vertex set V := V(I'¢): two vertices are in the same subset of the partition if they belong to the same
connected component of the spanning subgraph I'\. The partitions of V obtained this way will play a
special role and we need a notation for them.

DEFINITION 3.13. We denote by P := P(I") the set of partitions of the vertex set V of the form A(I),
for some I < E.

Given A\ € P, we let Sy to be the collection of subsets I < E such that A(I) = \. Every S) has a
minimal element J defined as follows: an edge belong to J), if its end points belong to different subsets
of the partition . We set §(\) = |J)|. Using the minimal element .J,, we can give another description of
Sy:asubset I € E belongs to S), if and only if J) < I and the two graphs I'\7 and I'\ J) have the same
number of connected components.

For any A € P, set C), be the (disconnected) nodal curve obtained from C by normalizing the nodes
in Jy. Note that I'c, = I'c\J).

The next theorem is the main result of this subsection.

THEOREM 3.14. Same assumptions as in Proposition 3.12. The Hilbert zeta function of C,, is equal to

aw (e 50 K(Cy)
(3.28) Zi(Co,q) = A* (—qH' (C)) m;m(qﬂ“) A*(—q (H(Tc,) + Ho(Tc, L)

Proof. Using Proposition 3.12, we have to show that the sum in the right hand side of (3.20) is equal to
the sum on the right hand side of (3.28).

Note that we have a partition E(I') = [ [ cp(r) Sx, where I' := T'c. Moreover, for each J € S, we
have an inclusion of graphs I'\ J < I"\ J), that induces a bijection on the number of connected components;
hence we have that H°(T'\J) = H%(T'\\J)) and Ho(T'\J) = Ho(T'\Jy).

The sum in the right hand side of (3.20) can be written as

(3.29)
(qL)SNe s 1
Ae;(l“) A* (=g (HO(T\J)) + Ho(T'\J))L)) J;A(QL) e A (=g (H'(D\J) + Hy(T\J)L)) | -
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Remark that, since J), is canonically attached to the partition A, and since Frobenius acts trivially on this
partition as we assumed that the geometric irreducible components of C,, are defined over F, Frobenius
acts trivially on e’f}A. This, together with the fact that I'c, = I'c\.J,\, implies that we can rewrite (3.29) as
(3.30)

5(\)
& W e ey (%3 ()05, 5, A" (—a (H (D) + H1<Fc\J>L))>

By the characterization of S, given above, we have that
E(Lc,) ={J\Jr : Je Sy}

Moreover, for J € Sy we have I'c\J = I'c,\(J\Jx) and |J| — §(A\) = |J\Jx|. Hence formula (3.14)
gives that

(3.31) K(Cy) = JZS] (qL)! /12 Nex | A* (=g (H'(Tc\J) + Hi(Tc\J)L)) .

Substituting (3.31) into (3.30), we conclude that the sum in right hand side of (3.20) is equal to the sum
in the right hand side of (3.28), and this concludes the proof.

O

4. Relative compactified Jacobian for non-versal families

The main result of this section, namely Theorem 4.11, gives sufficient conditions for a relative fine com-
pactified Jacobian of a non-versal family to be nonsingular. In particular it allows the determination of
the higher discriminants (see Definition 5.1) for the relative compactified Jacobian of many families of
planar curves. If a family of curves C — S contains only irreducible curves, then the relative compactified
Jacobian is non singular if and only if the relative Hilbert schemes of any length are non singular [Sh].
The if implication is still true for families of reducible curves (as we will show in Corollary 4.17), but the
only if implication is no longer true: already in arithmetic genus one, the ”banana” curve, or a triangle of
lines, give examples of fine compactified Jacobians which can be smoothed in a one-dimensional family,
whereas the Hilbert scheme of length two of the curve needs at least a two-dimensional family. It should
be clear from the proof of Theorem 4.11 that the reason for this discrepancy is that certain torsion free
sheaves, which, as points of the Hilbert scheme, can be smoothed only in a high dimensional family, can-
not appear in the compactified Jacobian because of the stability condition. For instance, in the triangle,
a torsion-free sheaf is contained in a fine compactified Jacobian if and only if it is locally free outside at
most one point.

The proof of this fact, which we believe of independent interest, is based on the results of [FGvS] and
a local duality theorem due to T. Warmt [W], which we now review. All the unproven facts here may be
found in [W, Chapter 4] and [FGVS].

Fix the following data:
(i) a planar complete local ring R = k[[z,y]]/(f), with f = [[,cx fa and fo € k[[z, y]] irreducible
elements; assume that k is an algebraically closed field of arbitrary characteristic. The set A is the
set of branches of R, i.e. minimal prime ideals of R, and we set A := §A. The normalization R of

R is isomorphic to R =~ [],., k[[Tu]], where T, is a parameter on the a-th branch. Observe that R
contains R and it is a subring of the total fraction field Q(R) ~ [ [ ,cx k((T%)).

(i) arank one, torsion-free R-module M, which, up to isomorphism, we can assume to contain R and
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to be contained in R:
RcMcR
Consider the conductor ideal of the extension R /R
f = Ann(R/R) = Homp(R, R) = {u € R such that uR R},
which is the biggest ideal of R contained in R. The delta-invariant of the ring R is defined as 0(R) :=
dim R/R. Since R is Gorenstein by our assumptions, we have that

(4.1) &R):dmuﬁﬁzéﬁmﬁﬁ.

One can associate to the module M two objects of primary importance:

The first Fitting ideal Fit; (M) of M, defined as the ideal generated by (N — 1)-minors of a free
resolution

0 «— M «— K[[z,y]]" «— k[[z,y]]" <0
of M as a k[[z, y]]-module. Under the hypotheses above, we have that
Fit1 (M) = {¢(m), form € M and ¢ € Hompg(M, R)},
and f < Fity (M), see [FGVS, Prop. C-2 and Cor. C-3].
— The endomorphism ring of M
Endp(M) ={ce R : eme M forall m e M}.

which is a subring of R containing R and contained in M. Notice that Endz (M) may not be planar
and not even Gorenstein.

We have the series of inclusions
f< Fity(M) € R < Endg(M) < M < R.
The first Fitting ideal of M is dual to the endomorphism ring of M, as stated in the following result.

PROPOSITION 4.1. ([W, Korollar 4.4.2, ii]) Under the hypotheses above, the map
HomR(EndR(M), R) — Fitl(M)

is an isomorphism.

Using the endomorphism ring of a module M, we can introduce an important numerical invariant of
M.

DEFINITION 4.2. Letv = (A1, ..., () be apartition of A = §A. We say that M has type v if End g (M)
is direct product of [(v) local rings, the i-th of which has \; branches. The type of M is denoted by v(M).
Given a partition v = (A1, ..., \;(,)) as above, let
L={l,--- M}, o= {/\1+1,-'- ,Al-l-)\Q},--'Il(V) = {)\—)\l(y) +1,--- ,)\}

and let R, be the subring of R given by

A

Ry, = {(fu(T1),-+ , [A(Ty)) € | [KIIT3] with £(0) = f,(0) if k,1 € I; for some ;}.
i1
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Geometrically, R, is the disjoint union of the complete local rings at 0 of the coordinate axes in A, for
i = 1,...,l(v). Therefore, the rings R, are seminormal and, indeed, they are all the seminormal rings
containing R and contained in R.Ifa partition ¢/ refines v then we have that R,  R,,; the two extreme
case being Ry 1) = R and R(xp,...,0) which is the seminormalization of R. The delta invariant of R, is
easily seen to be equal to

(4.2) dim R/R, := 6(R,) = A — I(v).
From Proposition 4.1 and using that §f = Fitl(fi), we deduce that
(4.3) dimFity (R))/f = A = I(v).

From [Liu, Chapter 7, Ex. 5.9], we deduce the following alternative characterization of the type of
M.

LEMMA 4.3. The type of M is the coarsest partition v such that Endg(M) < R,. Hence, R,y is the
seminormalization of Endg(M).

From the above characterization of the type of M and Proposition 4.1, we deduce the following:

COROLLARY 4.4. For any module as above, we have that Fit (M) 2 Fit1 (R, ).

We now review the nonsingularity condition for a relative fine compactified Jacobian at a given point:
the reference is again [FGvS]. A clear recollection of the results can be found in [W, §4.5].

Let C be a projective reduced connected curve with planar singularities over k& = k , Csing =
{e1,-++ , ¢} its singular set, {A1, - - - , A, } the corresponding sets of branches, with cardinality \; := fA,;.

Given a singular point ¢; € Cging, let f; be a local equation of C' at ¢;, so that @cyci ~ k[[z, y]]/(fi)-
We have the deformation functor V; := Defg ., of the local ring @CM’ whose tangent space T'V; is
the underlying vector space of the k-algebra k[[x,y]]/(fi, 0z fi, Oy fi). There is the canonical subspace
Vf < T'V,, the support of the tangent cone at c¢; of the equigeneric locus. The subspace Vf is the class in
TV; = k[[x,y]l/(fi, 0z fi, 0y fi) of the conductor ideal f; := Ann(@qci/(’)c,ci). By (4.1), we have that

(4.4) codim V¢ = 6(¢;) = dimy, Oce,/Oc.c,

Given a partition v; of the set A; of branches at ¢;, we have the partial normalization with local ring
(Oc.c;)v; and the subspace V", representing the class in T'V; = k[[z, y]]/(fi, 0z fi, Oy fi) of the ideal
Fit1((Oc,¢;)v;)- By (4.3), we have that

(4.5) dim V¥ /V? = dim Fit1 ((Oc e, )i,)/§i = Ai — L(v3)-

We set V := DeflS® = [[V,; and V° := [[V? < TV = [[TV;, a codimension §(C) = 36(c;)
linear subspace. Given a multipartition v = {v;}, where v; is a partition of \;, we have the subspace
V¥ := [[V)" < TV and the corresponding partial normalization C¥ of C, with local ring (Oc, ), at
the point ¢; € C. The curve C¥ is seminormal and indeed all seminormal partial normalizations of C are
of the form C% for some unique multipartition v = {;}. By (4.5), we get that

T T T
(4.6) codim V¥ =} codim V¥* = Y (8(c;) + 1(vi) — Ai) = 6(C) + >, (1(wi) — No).
i=1 i=1 i=1

Let 7 be arank one torsion free sheaf on C with stalk Z; at ¢;. The deformation functor Def ((C, ¢;), Z;)
of the pair (Oc ¢,,Z;) is endowed with a forgetful morphism p; : Def((C, ¢;),Z;) — V; = Defc ¢, and
we set

pi= Hpi : HDef((C,ci),Ii) — V = Deflg°.
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Let W;(Z) = Im(dp;) and W(Z) = Im(dp) = | | W;(Z) be the images of the differentials.
The linear subspace W;(Z) is determined by the first Fitting ideal of Z;.

PROPOSITION 4.5. ([FGVS, Prop. C-1]) The subspace W;(Z) is the class in k[[x, y]|/(fi, 0z fi, Oy fi) of
the first Fitting ideal Fity (Z;) of the stalk Z; of T at c;.

The linear subspace W (Z) allows to characterize when a relative fine compactified Jacobian is regular
at the point Z. Recall that given a family of curves 7 : C — B and a point b € B such that C := 7~ 1(b) =
Cp, we have the local Kodaira-Spencer map (see (2.4)):

k%5« Ty(B) — T Def® = TV.

PROPOSITION 4.6. Given a family w : C — B, with C = Cy, a relative fine compactified Jacobian Jc is
regular at a point Z lying in the central fiber (J¢), = J¢ if and only if W (Z) 4+ Im (kf‘g) =TV.

Proof. This is proved in [FGvS, Cor. B-3] for a family 7 : C — B of integral curves. The proof in our
setting is similar and it goes as follows.

By Theorem 2.12, up to passing to an étale neighboorhood of b € B, we can assume that there exists a
versal deformation % : (C,C) — (B, b) of C and a relative fine compactified Jacobian e Jg— B such
that 7 is the pull-back of % via a morphism f : (B,b) — (B, 5) and the given relative fine compactified

Jacobian Trj : 72 — B is the pull-back of 7/ via f. Denote by 7 the > image of 7 via the pull-back
morphism J¢ — J 5. Since J 5 is regular by Theorem 2.12, it follows that J¢ is regular at a point Z if and

~

only if the image of dp(f) : Tp(B) — Tg(é) is transversal to the image of dx(77) : T3(J5) — Ty(B),
ie.

@.7) Tm (dz (7)) + Tm (dy(f)) = T5(B).
Since the local Kodaira-Spencer map k?i of m: C — B factors as
Kloe
ks 1 (B) 2 1 (B) 5 T Defl® = T,

where the local Kodaira-Spencer map k;‘)% of ¥:C - Bis surjective by the versality of 7 (see the
discussion after Fact 2.3(iii)), and since we have that Im (di(ﬂ'j ) = (k;’%)_l(W(I)) by [FGvS, Prop.

A.1] and the fact that J > is a relative fine compactified Jacobian, condition (4.7) is equivalent to the
condition W (Z) + Im (k%) = T'V, and this concludes the proof. O

Consider the endomorphism sheaf End,,(Z) of Z: it is a sheaf of finite O¢-algebras such that Oc
Endy, . (Z) = Ocv. The sheaf T is naturally a sheaf on the partial normalization C* := Spec, (Endo (7))
of C; the original Z being recovered by the pushforward along the partial normalization morphism
vr : CT — C. For every singular point ¢; of C, denote by v;(Z;) the type of Z; at ¢; (see Definition
4.2) and we set ¥(Z) = {v;(Z;)}. It follows from Lemma 4.3 that C(Z) is the seminormalization of CZ.
The following remark is obvious and it is recorded for later use.

Remark 4.7. The sheaf 7 is simple if and only if CZ is connected, or equivalently, if and only C%(%) is
connected. In particular, if Z belongs to some fine compactified Jacobian of C, then C“2) are connected.

We want now to establish a necessary combinatorial criterion in order to check when the partial
normalization C¥ is connected.

To any reduced projective curve C (not necessarily locally planar), we associate an hypergraph Hc =
(V(Hc), E(Hc)) as follows: the vertices V (H¢) correspond to the irreducible components of C and to
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each singular point n € Cging We associate an hyperedge e,, which is a multiset of V' (H¢) consisting
of all irreducible components that contain n, each one of which counted with multiplicity equal to its
number of branches at . In this way, the cardinality |e,,| of the hyperedge e,, is equal to the total number
of branches of C at n. Note that if C is a nodal curve, then the hypergraph Hc is actually a graph and it
coincides with the dual graph of C.

LEMMA 4.8. If the curve C is connected then

b(He):= Y, (le[=1) = |[V(He)|+1>0.
eeE(Hc)

Proof. Clearly the curve C is connected if and only if its associated hypergraph H¢ is connected, i.e.
there does not exist a partition of the vertex set V (H¢) = Vi [ [ Va such that every hyperedge e contains
only elements of either V; or Vo. We will therefore prove more generally that if a hypergraph H =
(V(H),E(H)) is connected then b(H ) > 0.

In order to show this, consider the bipartite simple incidence graph I" ;7 constructed from H as follows:
its vertices V (I'gy) are the disjoint union of V(H) and of E(H) and its edges are given by E(I'y) :=
{(v,e) € V(H)]]E(H) : v € e}. Clearly H is connected if and only if I'; is connected and, by
construction, we have that |V (I'y)| = [V/(H)| + |[E(H)| and |[E(T'iy)| = Xc () |e]- Therefore, if H is
connected then b(H) coincides with the first Betti number of b1 (') = |[E(Tg)| — |V (Tg)| + 1 of Ty,
which is non-negative. 0

We are now ready to prove the main result of this section, namely a sufficient criterion for the reg-
ularity of relative fine compactified Jacobians. The criterion will be expressed in terms of the following
closed subset of T'V:

DEFINITION 4.9. Let C be a curve as above. Consider the closed locus W < TV given by the union of
the linear subspaces V¥, as v varies among all the maximal multipartitions such that C¥ is connected.

The locus W has the following properties:

LEMMA 4.10.

(i) The locus W < T'V has pure codimension §*(C).
(ii) We have the inclusion V° € W with equality if and only if C is irreducible.
(iii) If C* is connected then V¥ contains some irreducible component of W.

(iv) IfZ is a simple torsion-free rank one sheaf then W (Z) contains some irreducible component of W.

Proof. Part (i): the irreducible components of W are given by V¥, where v is a maximal multipartition
such that C¥ is connected. Lemma 4.8 implies that b(Hcv) > 0. However, due to the maximality of v we
must have that b(Hcx) = 0, for otherwise it is easy to check that we could find a refinement v/ with L
still connected, violating the maximality of v. (This argument is the analogue for a hypergraph of the fact
that every connected graph has a spanning tree.) By the definition of C%, it follows that if v = {;} with
vi = ((Vi)1,- -, (¥i)i,)) a partition of the set A; of branches of C at ¢;, then the hyperedges of Hcw
have cardinality (1;);. Therefore, by the definition of b(Hcx), we get

r l(vi) r
@8 0=b(He) = 3 3 ()~ 1)~ [V(He)| +1= Y (h — 1))~ 4(C) +1.
i=1 k=1 =1

Combining (4.6) and (4.8), we deduce that
codim V¥ = §(C) — v(C) + 1 = 6%(C),
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which concludes the proof of part (i).

Part (ii): consider the maximal multipartion v, .., i.e. the one for which each partition v; appearing in
it has the form v; = (1,...,1). From the above discussion, it follows that C¥max is the normalization C
of C and that V® = V¥max, Therefore, we have the inclusion VO € W by Proposition 4.1 and Proposition
4.5, and equality holds if and only if C is connected, which holds if and only if C is irreducible.

Part (iii): if v is a multipartition such that C¥ is connected, then as observed above we can find a
refinement v/ of v such that C is connected and it is maximal with this property. Therefore V£ is an
irreducible component of W and V¥ N by Proposition 4.1, q.e.d.

Part (iv): if Z is a simple torsion-free rank one sheaf then the seminormalization @ of C7T s
connected (see Remark 4.7) and we have that V2(Z) < W (Z) by Corollary 4.4 and Proposition 4.5.
Therefore, we conclude by part (iii). 0

Finally we can state and prove the main result of this section.

THEOREM 4.11. Letw : C — S be a projective family of connected curves, with C = Cy having locally
planar singularities, and let kif?) : Ty(B) — TDefl(‘;’C = TV be the local Kodaira-Spencer map (see
(2.4)). Let W < TV be the locus of Definition 4.9. Then a relative fine compactified Jacobian J¢ is
regular along (J¢), = J¢ if Im (k}fg) is transverse to each irreducible component of W. In particular,

this is the case if Im (k!°$) is a generic subspace of TV of dimension at least 5%(C).

Proof. By Proposition 4.6, a relative fine compactified Jacobian .J¢ is regular along (J¢), = J¢ if and
only if Im (klﬁ’i) is transverse to any linear subspace W (Z) for any sheaf Z € Jc. By Remark 4.7 and
Lemma 4.10(iv), any such linear subspace W (Z) contains an irreducible component of W; therefore, if
Im (kf‘g) is transverse to each irreducible component of W, then Im (k;?‘,;) is transverse to every such
linear subspace W (Z) and the regularity of J¢ along (J¢), = J¢ follows.

Since W has pure codimension 0*(C) by Lemma 4.10(i), a generic linear subspace of dimension
d%(C) is transverse to every irreducible component of W. Ul

Example 4.12. Let C be the banana curve. Then Def(C) is 2-dimensional, since C has two nodes. We
have 0%(C) = 6(C) +1 —~(C) =2+ 1 —2 = 1, and indeed the relative fine compactified Jacobian of
a general 1-parameter family containing a banana curve is smooth — indeed, it is the family itself.

Example 4.13. Let C be a nonsingular projective curve of genus g > 2. Let h : M — A be the Hitchin
fibration for Higgs bundles over C of rank n and degree d with (d,n) = 1. We have the spectral curve
family 7 : C — A: For every a € A the fibre h~!(a) is isomorphic to the fine compactified Jacobian
of the spectral curve C, = 7 1(a), mapping n : 1 to C. Reducible spectral curves consist of a union of
curves C; mapping n; : 1 to C, with >, n; = n. For such a curve, the polarization of the corresponding
Jacobian is described in Appendix A in [MRV?2]. In this case, the loci where §* = r have exactly codim
r, that is, by Theorem 4.11, the Hitchin system exhibits the minimal transversality to the 6% loci which is
allowed in order to have a smooth total space.

Remark 4.14. The regularity criterion in Theorem 4.11 is sharp (in other words, the only if implication is
also true) if the following Conjecture is true:

CONJECTURE 4.15. Let J¢ be a fine compactified Jacobian of a (reduced and projective) connected
curve C with planar singularities and let C¥ be a connected seminormal partial normalization of C that is
maximal with these properties (or, even more generally, any connected partial normalization of C). Then
there exists a sheaf T € J such that CT = C%.
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The above Conjecture is easily checked to hold if C is irreducible: in this case the unique C¥ as in
the statement of the conjecture is the normalization C of C and it is enough to take Z = v, (L) for a line
bundle L on C of suitable degree. Therefore, if C is irreducible we have that W = V? by Lemma 4.10(ii)
and Theorem 4.11 above is sharp.

The above Conjecture holds true for nodal curves by [MV, Thm. 5.1]; in particular, Theorem 4.11 is
sharp if C is a nodal curve.

Finally we compare the nonsingularity of relative fine compactified Jacobians 4.11 with that of the
relative Hilbert schemes.

THEOREM 4.16. Let m : C — S be a projective tamily of (non necessarily connected) curves, with
C = Cp having locally planar singularities, let k}fg : Ty(B) — TDeflé’C = TV be the local Kodaira-

Spencer map (see (2.4)) and let C [4] . B be the relative Hilbert scheme of length d. Then:
(i) The regularity of Cl% along (Cl#), = Cl depends only on Im(klff)).
(ii) IfCl9 is regular along CI, then dim Im(k!§) > min(d, §(C)).

(i) Cl9 is regular along Cl9 for all d if and only if Tm(k!°$) is transverse to V°. In particular, this is the
case if Im (k:}fg) is a generic subspace of V of dimension at least §(C).

Proof. This is proved in [MS, Thm. 8], using the results of [Sh] and [FGvS]. Note that although [MS,
Thm. 8] is stated for families of integral curves with locally planar singularities, its proof relies uniquely
on the properties of the deformation theory of locally planar curve singularities (recalled in §2.3), and
hence the proof of loc. cit. extends to our more generally setting. 0

COROLLARY 4.17. Letn : C — S be as in Theorem 4.11. If Cl% is regular along (C%), = Cl¥ for all
d, then any relative fine compactified Jacobian J is regular along (J¢), = Jc.

Proof. Tt follows by comparing Theorem 4.11 with Theorem 4.16 and using that V0 < W. O

The implication in the above Corollary can be reversed if C is irreducible because in this case W = V¢
by Lemma 4.10(ii); if C is a reducible nodal curve this is not true, in view of Remark 4.14, and we expect
it not to be true for every reducible curve with planar singularities. This would follow from Conjecture
5.14.

5. Support theorems for versal families

In this section, relying on the results of §3 and §4, we establish Theorems 5.12 and 5.10, which are the
main results of this paper. In this section we work over an algebraically closed field.

The results of §4 can be interpreted as determining the higher discriminants of the relative compact-
ified jacobian and relative Hilbert scheme families. This allows us to reduce the determination of the
supports to the nodal locus, which is precisely what we did in §3.

5.1 Higher discriminants

Higher discriminants [MS] give a-priori bound on supports which may appear in the direct image of the
constant sheaf by a proper map.

DEFINITION 5.1. Let f : X — Y be a proper map between nonsingular varieties. For any ¢ > 1, the
i-th discriminant A’(f) is the locus of y € Y such that there is no (i — 1) dimensional subspace of T,
transverse to df, (T, X) for every x € f~1(y).
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Observe that the i-th discriminants A’( f) form a chain of closed subsets and moreover Al(f) is the
discriminant locus of the map f, i.e. the complement of the biggest open subset of Y where the restriction
of the morphism f is a smooth morphism.

THEOREM 5.2. [MS2, Theorem 3.3] Let f : X — Y be a projective map between algebraic varieties,
with X nonsingular. Let G be a summand of R f.Qy, and let k be the codimension of supp G. Then

supp G < A*(f).
In particular, if, for every k, we have that
(5.1) codim AF(f) = k for all k,

then every summand of R f,Qy is supported on the closure of a k-codimensional component of A*(f).

Notice that, over the complex numbers, it follows easily from the existence of stratifications that the
estimate 5.1 always holds. The following Theorem, an easy consequence of the results of §4, gives a
description of the higher discriminants loci of the relative Hilbert scheme and of any relative fine com-
pactified Jacobian for a versal family in terms of § (resp. d%)-loci. As a consequence, estimate 5.1 holds
over any algebraically closed field for the maps 7 and wlnl,

THEOREM 5.3. Letw : C — B be a projective versal family of curves with locally planar singularities,
let7’ : Je — B be a relative fine compactified Jacobian (which exists after passing to an étale cover of
B by Theorem 2.12), and let nl"! : C!"] — B be the relative Hilbert scheme of length n.

Then we have:
(i) The i-th discriminant of 7/ is equal to
(5.2) A¥(7?) = {b e B such that 5(Cy) > i}.
Moreover, the geometric generic point of each codimension i irreducible component of A (7”) is
an irreducible nodal curve.

(ii) For every n, we have
(5.3) Al (zl"y < {b € B such that 5(Cy) > i}.

Moreover, the geometric generic point of each irreducible component of A*(7”) and of A*(x[™) is
a nodal curve.

Proof. Statement (i): the first part follows from Theorem 4.11. For the second part: if C5 is a geometric
generic point of a component of codimension i of Af(7”), then, since i < §%(C;) < §(Cy), Fact 2.4
implies that C,, is a nodal curve with 6(C;) = 4; hence we must also have that 6*(C;) = 6(Cy) which
implies that Cy is irreducible.

Statement (ii): the first part follows from Theorem 4.16 while the second part follows from Fact
2.4. O

5.2 The sheaf Irr(X/Y)

We shortly discuss the sheaf of irreducible components of a family of curves. Let f : X — Y be a proper
family of geometrically reduced curves. By [Ng0, Prop. 6.2] applied to the restriction fe, : Xgm — Y
of f to the smooth locus, there is a constructible sheaf Irr(X /Y") of finite sets, whose stalk Irr(X/Y), at
the point y is the set of irreducible components of the fibre X,, = f~!(y). Let {Y,} be the stratification
of Y such that Irr(X/ Y)y, is locally constant. Let us fix 0 € Y. Up to shrinking ¥ we may assume that
every stratum contains o in its closure.
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Since the fibre X, = f~!(0) is geometrically reduced, we may find, after shrinking Y again, a set
{ov}ven(x,) : Y — X of sections of the family such that:

— the point o, (0) belongs to the smooth locus of the irreducible component corresponding to v;

— for every v and for every y € Y, the point o, (y) lies in the smooth locus of X, hence it belongs to
a unique irreducible component of X.

Therefore, we get a map of sets

Yy Irr(X,) = Irr(X/Y), — Irr(X/Y),, = Irr(X)
v — irreducible component of X, that contains o, (y),
defined for y in a neighborhood of o. By the hypothesis on the strata, this map is surjective. It follows in
particular that, on an appropriate neighborhood of every point, the restriction of the sheaf Irr(X/Y) to
the connected components of the strata containing the point in their closure is not only locally constant
but in fact constant. More precisely, for every point y € Y there is a partition A, of Irr(X,)

Irr(X,) = L[ Va
aelrr(Xy)
defined by V, :=V, 1(a). Let Y, € Y be the locally closed subset of points y € Y such that Ay = A. The
choice of a section in every subset of the partition gives a trivialization of the restriction of Irr(X /Y") to
Y. We summarize the discussion above in the following

PROPOSITION 5.4. Let f : X — Y be a proper family of geometrically reduced curves, and let Irr (X /Y)
its sheaf of irreducible components. For a point o € Y, let P, be the set of partitions of the set Irr (X /Y'),
of irreducible components giving rise to a decomposition of X, into connected subvarieties. Then, there
exists a neighborhood U of o in the étale topology endowed with a stratification {U)}, indexed by P,,
with the property that the restriction of the sheaf Irr(X /Y") to every {U,} is a constant sheaf of sets.

Remark 5.5. The restriction on the set of partitions stems from the fact that the specialization of an
irreducible component is connected.

5.3 The families associated with a miniversal deformation
We apply the considerations of section 5.2 to versal families of curves.

Let 7 : (C,C) — (B, 0) be a projective versal deformation of the (reduced) curve with planar singu-
larities C over a connected variety B (see Fact 2.3(i)). Up to passing to an open subset of B containing
b, we can assume that 7 : C — B is a versal family of curves with locally planar singularities (see
Fact 2.3(ii)), which implies that B is smooth and irreducible (see the discussion that follows Fact 2.3).
Moreover, up to passing to a further Zariski open subset of b, we can assume that the family satisfies the
conclusions in Proposition 5.4.

Let V := V(C) denotes the set of irreducible components of C. By Fact 2.4, for any d, we have
that the locus B‘izd parameterizing nodal curves is open and dense in the stratum B°>?. By the discus-
sion in §5.2, every curve Cs of the family determines a partition \s = {Vi}aev(c,) of V(C), hence a
decomposition of C into a union of connected subcurves.

Remark 5.6. The partition associated to the generic (smooth) fiber gives the partition associated with the
connected components of C; at the other extreme, the map Vs is a bijection for any fiber C, belonging to
the equigeneric stratum (by Lemma 5.7 below), hence it gives rise to the identity partition. More generally,
if Cy is a specialization of Cs, then the map V; factors through Vy, which implies that Ay is a refinement
of .
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We start by proving the following result which is instrumental for defining the families we need to
consider:

LEMMA 5.7. With the same assumptions as before, consider the equigeneric stratum of maximal cogenus,
A := B9=%(C) and let CA — A be the restriction of the universal family = : C — B to A. Then on A
the following properties hold true

(i) the sheaf of sets Irr(Ca/A) of the irreducible components is constant;

(ii) the sheaf of sets of connected subcurves is constant along A.

Proof. Let us first prove (i). Consider the normalization A — A and denote by Cx — A the pull-back of
the family CA — A. According to Fact 2.5, the normalization 5 — Cj is a simultaneous normalization
of the family Cx — A.In partlcular the sheaf of connected components of the family C x — A, which
coincides with the pull -back to A of the sheaf of irreducible components of the family Cx — A, is
locally constant on A, hence constant, in force of Proposition 5.4, since the central point belongs to the
equigeneric stratum.

Let us now prove part (ii). From (i), we have that if CA = Ufi 1 CX) is the decomposition into
irreducible components, then the decomp;)sition into irreducible components of the geometric fiber C;
i

over any point t € A(C) equals Uf\; 1 Cg( . For each ¢, we have, by Hironaka’s formula [GLS, Lemma

3.3.2]

54

7 k l
s+ Y e acl).

1<k<l<N

||Mz

The delta invariant and the intersection numbers of the subcurves are upper semicontinuous functions in

flat families. As the sum (5.4) is constant, we have that §(C; < )) and |C; N (Z)\ don’t depend on ¢. Assume
OF

Ui, C( is a connected subcurve of the central fibre such that, for some ¢, Ui, Cf
namely, up to a renumbering, we have

qﬂq=gwmq:<uﬁﬁﬂmq:<LJ¢v.
i=1

i=a+1

is disconnected,

Denoting ¢/ = | J_, C® and ¢ = | J; C®, by the argument above we have |C/NC”| = IC;nCY| =

i=a+1
0. Since C’ and C” have no common component, their intersection number is strictly positive unless the
curves are disjoint, which would contradict the connectedness of | J;_, C(¥). ]

5.4 Main Theorems
Let C be a projective curve with planar singularities, defined over C or over F, with big enough cardi-
nality. As in §5.3, consider a versal deformation 7 : (C,C) — (B, b) for C, small enough to satisfy the
conclusions of Proposition 5.4. The index ( ) applied to subsets of B denotes the operation of intersect-
ing with the nodal locus.

Consider any point b € A : by Lemma 5.7(i), V' := V(C) is identified with V' (C;). For any partition
Aof V, giving a decomposition

c=Jc

of C into connected subcurves, we also have a decomposition

Cp = Ucb,i

of Cp, whose subcurves are connected by Lemma 5.7 (ii).
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NOTATION 5.8. For b € A, and A a partition of the set V' decomposing C in connected subcurves, we
let:

(i) E) be the set of nodes joining the different subcurves, i.e. £ = U#j C,i (1 Cp,j, and set §(X) :=
| EX].
(i) By < Bx be the set where the nodes in E) persist.

(iii) my : Cx — B) be the family of reduced nodal curves obtained by normalizing these nodes. Notice
that the subcurves are now disjoint.

(iv) By reg S B) be the open dense set where the family

T CABy oy — BAreg:

is smooth. It is the subset of B, where precisely the nodes in F) persist while the others are
smoothed.

(V) iy : By reg — B be the (locally closed) embedding.

Remark 5.9. Itis clear that this construction does not depend on the choice of b. Furthermore, if a partition
 refines the partition A, then F\ < FE,,, hence the locus B, is naturally contained in B), whereas the
curves in C,, are clearly partial normalizations of those in (Cy), B,» as they are obtained from these latters
by normalizing other nodes.

THEOREM 5.10. Letn : (C,C) — (B, b) be as above and refer to Notation 5.8. Let

[n] . o [n]
T ¢ C)\|B)\,reg - B)\,rega

the associated relative Hilbert scheme of length n (which coincide with the n-th relative symmetric prod-
uct since m is smooth over B}, ;¢s), and set

= @ () Bl Q0) [,

Then we have

(5.5) RelQ, = @ FI W25\ (5(N)
AEP

where P is the set of partitions of the set V (C) decomposing C in connected subcurves.

Proof. We descend to a family 7, : C, — B, defined over a finite, big enough field ;. Since the sheaf
of irreducible components is constant along the stratum A of maximal cogenus by Lemma 5.7(i), we can
also assume, up to passing to a bigger finite field, that the geometric irreducible components of the closed
fibers of 7, are defined over the base field [F;.

By the classical MacDonald’s formula (Equation 3.13), for every A € P we have:
A* (—quﬂ'}\*@g)
A* (—q (RO1x,Qu(1 + L))

Since the local system Roﬂ')\*@g is constant on B) rg, the effect of the denominator results only in some
shifts, direct sums and Tate twists, hence ininfluent to the computation of () )i4. Using formula (5.6)
and applying Theorem 3.14 together with Remark 3.9, we deduce that at every point b € B, (Fr) the
traces of the powers of the Frobenius map on the stalks of the two sides of (5.5) coincide. Now, applying
Corollary 6.4 of §6 we have the isomorphism (5.5) on the whole nodal set B. Since the nodal set is
dense in every higher discriminant by Theorem 5.3(ii), the isomorphism (5.5) holds on the entire B. [

(5.6) > ¢ Ra\) Q, =
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Example 5.11. Let C be the union of pair of lines, C1, Co which meet once and transversely. A repre-
sentative for the base B of a versal deformation of C is given by taking the compactification of the map
(z,y) — xy; in any case we denote this deformation by (C,C) — (B, 0).

We want to compute directly the LHS and RHS of Theorem 5.10.We will just study the stalks at the
point [C]. One has, e.g. from [Ran],

() = (@) + [ ] YD) L

Hence, passing to the generating series, the LHS is given by:

D¢ BT - Y (UP’"] +L- ni [Pj][lP’”‘l‘j]>
n=0

n=0 7=0
1 qlL
= + 5
) (1-¢)(1—qL))

(1—¢q)(1 —qL
On the RHS, we are reduced to summing over decompositions of the curve C; here there are just two,
C = C, corresponding to the partition (2), and C = C; u Cy, corresponding to the partition (1,1). For
this latter decomposition the stratum By 1) is just the point o and we have that 6,1y = 1. All genera are
zero and (hence) all fine compactified Jacobians are just points. Thus, the contribution of the partition (2)

2
. 1 . . .« . 1 .
1S == and the contribution of the partition (1, 1) is (W) , with a term ¢IL to account for

the shifts in 5.10 .

THEOREM 5.12. Letr : (C,C) — (B,b) be as above and let v’ : Jo — B be arelative fine compactified
Jacobian (which exists after passing to an étale cover of B, by Theorem 2.12). Then, if j : Brog — B, we
have

(5.7) Rr{Q = @i (A B'7Qyjp,, ) (1]
i
i.e. no summand of Rm;]Q, has positive codimensional support.

Proof. Over Byeg the isomorphism R @g‘ Brg = @i N\ Rlﬂ*@g| Breg 1] followi from the standard
computation of the cohomology of the Jacobian of a nonsingular curve. Hence RmQ, contains a sum-
mand isomorphic to P, ji« ( /\Z Rlﬂ'*@a Breg) [—¢]. Assume by contradiction that there are other sum-

mands in the decomposition theorem: these must be supported on some codimension ¢ > 0 irreducible
component of A’(7/) by Theorem 5.2. Theorem 5.3(i) implies that the generic point 7 of this support
is such that Cy is an irreducible nodal curve. Since the stalk at 77 of the new summand is a complex of
pure vector spaces, this would imply that the weight polynomial of the compactified Jacobian of C,, and

1o <ZZ e (/\l Rlﬂ'*@g‘Breg) [—z]) disagree. But both polynomials are equal to (1 + ¢)29(C7)¢2h' (1),
n

where C% is the normalization of the curve (7 (see Corollaries 3.10 and 7.4), and this is the desired absurd.

O

Remark 5.13. In the appendix 7 we will compute the weight polynomial of a fine compactified Jacobian
of a general nodal curve, i.e. not necessarily irreducible. The comparison with (3.15) gives an alternative
proof of Theorem 5.12 which avoids the estimate on the dimension of the higher discriminants of Theorem
5.3(@1). The proof given here, though, seems more conceptual to us, as it emphasizes the link between
supports theorems and deformation theory.
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5.5 Independently broken H-smooth families

In this section we consider a class of not necessarily versal families of curves.

DEFINITION 5.14. A projective family 7 : C — B of curves with planar singularities is said indepen-
dently broken H-smooth if

(i) All the relative Hilbert schemes 7"l : C["] — B have nonsingular total space (included the case
n = 0, i.e. B is nonsingular), and there exists a relative fine compactified Jacobian.

(ii) The sheaf of irreducible components Irr(C/B) satisfies the conclusions of Proposition 5.4,

(iii) For every d, the set B=% := {be B : §(C}) = d} contains an open dense subset B=¢ parameter-
izing nodal curves.

Example 5.15. Let C be a projective curve with planar singularities and let 7 : (C, C) — (B, b) be a pro-
jective versal deformation of C over a variety B. Pick a subspace U — B of dimension at least 6(C) + 1
transverse to A. If U is small enough, the restriction of the versal family to U gives an independently bro-
ken H-smooth family by Theorem 4.16. Viceversa, an independently broken H-smooth family is locally
the pullback along a smooth morphism of such a family.

Remark that, in view of Corollary 4.17, the total space of any relative fine compactified Jacobian for
an independently broken H-smooth family is nonsingular. It is almost immediate to notice that the two
main theorems in §5 hold for independently broken H-smooth families. First notice that the constructions
leading to the definitions of the loci B), the families 7, may still be done. Noticing that the higher
discriminants are just the intersections of those for the versal family we easily see:

COROLLARY 5.16. Theorems 5.12 and 5.10 hold for hold for independently broken H-smooth families.

6. Appendix 1

We collect here some consequences of the results contained in §5.3 of [BBD] to justify our reduction to
point counting.

In this appendix B, denotes an algebraic variety defined over the finite field k¥ = [, and we will be
considering perverse Q;-sheaves (or more generally complexes of constructible Q,-sheaves) on B,, that
are pure in the sense of [BBD, §5.1]. However, recall that we use (as always throughout this paper) a
different convention on perverse sheaves with respect to [BBD]: a sheaf K supported on an irreducible
closed subvariety Y, < B, is perverse in our convention if and only if K [dim Y] is perverse in the sense
of [BBD].

We will need the following two results from [BBD, §5.3] on the structure of pure perverse sheaves on
B,.

PROPOSITION 6.1. ([BBD, Thm. 4.3.1, Prop. 5.3.9]) A pure perverse sheaf P, on B, admits a unique
decomposition

P, = @ S ® Enia
i
where S; are simple pure perverse sheaves on B, and Ey, is the rank k Jordan block locally constant

Qy-sheaf described in [BBD, p. 138].

Moreover, each S; is of the form J|*(LZ) where j : U,; — B, is a locally closed embedding, U, ; is
smooth and irreducible, and L; is a QQ,-sheaf lisse and irreducible on U, ;. In particular, the support of S;
is the irreducible closed subvariety U, ;.
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The supports of the simple pure perverse sheaves appearing in the decomposition (6.1) of P, are
called the supports of P, (note that the supports are irreducible closed subvarieties of B,). The semisem-
plification of P, is given in terms of the decomposition (6.1) as

Py = @S
[

PROPOSITION 6.2. ([BBD, Cor. 5.3.11]) If P, is a pure perverse sheaf, and j : U, — B, is a dense open
imbedding, then
Po :j!*j*P()@P/

where P’ is a perverse pure sheaf supported on B,\U,,.

Using the above results, we can give the following criterion ensuring that two perverse pure sheaves
have isomorphic semisemplifications.

PROPOSITION 6.3. Let P, and Q, two pure perverse sheaves on B, and let {Yo,a}l&:1 be the collection of
the supports of P, and (Q,. Assume that, forevery o = 1, ..., 1, there is a dense open subset U, o, = Y, «,
with the following property: for every « € U, o (k') with k' a finite extension of k, and for every positive
integer N, we have

TT(Ua]cvv Pa:) = TT(Ua]cV7 Qx)
where o, is the Frobenius conjugacy class in 71 (U, o) associated to x. Then P, and (), have isomorphic
semisimplifications.
In particular, the two sheaves P, and Q, have the same traces of the Frobenius everywhere, i.e.

TT(J:{C\T’ Pﬂ?) = TT(U:{:V? Q33>7
for every point x € B, (k") with k’ any finite extension of k, and for every positive integer N

Proof. The proof is by induction on the number of supports. Consider a maximal support (i.e. a support
that is not contained in any other support), say Y, 1 up to renaming the supports. Consider an open dense
subset j : U, 1 < Y, 1 as in the hypothesis. By the maximality of Y,, ; and the fact that Y}, ; is irreducible,
we can assume, up to passing to a smaller open subset, that U, ; is smooth and disjoint from all the
supports different from Y, 1. Combining Propositions 6.1 and 6.2, we can write (up to further restricting
Uo,l):

P, = ]'*(]*(Po))EDPé with ]*(Po) = ®L1®Emv

(6.1)
Qo = J'*(]*(Qo)) @Q/o with ]*(Qo) = (‘DMZ ®Emi7

where L; and M, are @g—sheaf lisse and irreducible on U, 1, n; and m; are natural numbers, Po’ and Qg
are pure perverse sheaves supported on B,\U, 1.

The Q,-sheaves j*(P,) and j*(Q,) are lisse on U, and they have the same traces of Frobenius
everywhere on U, 1 by the hypothesis and the fact that U, ; is disjoint from all the supports different from
Y, 1. Hence we can apply Chebotarev theorem (see [Lau, Thm. 1.1.2, Prop 1.1.2.1]) in order to conclude
that j*(P,) and j*(Q,) have the same semisemplification, i.e.

6.2) P Ly =% (P.)* = j*(Q0)™ = P M™.

K3 3

In particular, ji.j*(P,) and ji.j*(Q,) have the same traces of Frobenius everywhere on U;, = Y ;.
This implies that the two pure perverse sheaves P, and ()} verify the same hypothesis on the traces of
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Frobenius with respect to their supports {Yma}fx:Q. Hence by the induction hypothesis on the number of
supports, we have that

(6.3) (Py)™ = (@)™
Combining (6.1), (6.2) and (6.3), we conclude that PJ® = Q5°.

COROLLARY 6.4. Let K, and L, two pure complexes of constructible @g-ShC&VCS on B, such that
Ko~ PHH(E,)[~i], Lo =~ PHN(Lo)[—i].

Let {Yy0}a=1,.1 be the collection of the supports of PH'(K,) and PH'(L,). Assume that, for every
a =1,-- -1, there is a dense open subset U, o, < Y, o, with the following property: for every x € U, o (k')
with k' a finite extension of k, and for every positive integer N, we have

TT(O'CJEV,KI) = Tr(aiv, L,)
where o, is the Frobenius conjugacy class in w1 (U, ) associated to x. Then K, and L, have isomorphic

semisimplifications.

Proof. One proceed by induction, starting with the open set on which K, and L, are isomorphic to
a direct sum of pure semisimple (shifted) lisse sheaves. Then, using the fact that every summand is
pointwise pure on an open set of its support, one can separate the different perversities according to the
absolute values of the Frobenius eigenvalues.

O

7. Appendix 2

In this appendix, we work over an algebraically closed field k = k. Our goal is to determine the class
of a fine compactified Jacobian of a nodal curve C in Ko(Varg). As explained in Remark 5.13 this
computation gives an alternative proof of 1.8, and in turns it is a consequence of it. We include it for
completeness, as we believe is of independent interest.

Let us first compute the class in K¢ (V ary) of the generalized Jacobian J¢ of C, which is by definition
the connected component of the Picard scheme Pic(C') of C' containing the identity. The normalization
morphism v : C¥ — C induces the sequence

1 - Gn — Gy, — .G /Gy, — 1,
which yields by taking cohomology:
(7.1) 1 - H°(C,G,,) — H*(C",G,,) — H°(C,v4G,,/G,,) —» H'(C,G,,) - H(C",G,,) — 1.
In terms of the dual graph I' = ' of C, we have

1-H'I,2)®G,, - H(C",G,,) - H*(C,v4G,/Gp,) — HY(T,Z) ® G,,, — 1.

Substituting into (7.1) and restricting to the connected component of the identity gives an exact se-
quence of algebraic groups

(7.2) 1 - HY(D,Z) ® G =~ G & Jo 5 Jow — 1,
where h!(T) is the rank of the free abelian group H'(T', Z).
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Since G,,, = GL; is a special group, the sequence (7.2) is Zariski locally trivial, hence we have the
following equality in Ko(Vary):

(7.3) Jo = JorGE M = Jou (L — 1)M @),

In order to compute the class in Ko(Varg) of a fine compactified Jacobian J¢(m) of C, we need
to recall the stratification of Jc(m) in terms of partial normalizations of C studied in [MV] (see also
[OS, Ale]). Given any torsion free, rank-1 sheaf 7 on C, its endomorphism sheaf LMOC (Z) is a sheaf
of finite O¢-algebras such that Oc < End,(Z) € Ocv. The sheaf T is naturally a sheaf on the partial
normalization C7 := Spec (Endo (Z)) of C; the original Z being recovered by the pushforward along

the partial normalization morphism vz : CZ — C. Since C is nodal, it can be checked that CZ is the
partial normalization of C at all the nodes where 7 is not locally free and Z is a line bundle on CZ. This
gives rise to a stratification of any fine compactified Jacobian .J¢(m) into locally closed subsets

(7.4) Jem) =[] Jesm):= [] {ZTec(m): ¢ =C®}.
SCCsing Sgcsing

The following result describes the stratum J ¢ g(m) in terms of the graph I'\'S obtained from the dual
graph I' = "¢ of C by deleting the edges corresponding to S.

PROPOSITION 7.1. ([MV, Thm. 5.1]) Let C be a connected nodal curve over k and let J ¢ (m) be a fine
compactified Jacobian. Then for every S < Cging, the stratum Jc,s(m) is isomorphic to a disjoint union
of ¢(I'\\S) copies of Js, where

¢(T'\S) = #{spanning trees of '\S}  if'\\S is connected,

0 if '\ is not connected.

(1.5) eT\S) = {

We are now ready to compute the class of a fine compactified Jacobian of a nodal curve in Ko(Vary).

PROPOSITION 7.2. Let C be a connected nodal curve over k and let J be a fine compactified Jacobian
of C. Then, in Ko(Vary) , we have

(7.6) TJo(m) = Jow - (D)LY @),
Proof. From the stratification (7.4) together with Proposition 7.1 and (7.3), we get that
Jo(m) = Y &r\8) - Jos = Jev Y. ET\S) - (L — 1M,
ScE ScE
Thus our goal is to prove
¢OILMT = 3 r\S) - (L — 1)),
ScE

Note that if &(T'\S) is not zero, i.e. if I'\S is connected, then h!(T'\S) = h'(T') — |S|. We substitute
x + 1 = L. Then the above required formula reads

ht(T)

R MON ;- v, R1(T)—|S]
¢r) D] S et = ) er\S) :
1=0 L ScE
This holds for each coefficient of = by the following Lemma 7.3. 0

LEMMA 7.3. For any connected graph I',

S er\s) = <bl E,F )> ().
“Sint
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Proof. The LHS counts the number of ways to first remove 7 edges from I', and then find a spanning
tree of I" from what remains, whereas the RHS counts the number of ways to first find a spanning tree of
I, which amounts to removing some by (I') edges, and then decide which ¢ of those edges you removed
“first’. O

From the above Proposition, we can compute the weight polynomial of fine compactified Jacobians
of nodal curves.

COROLLARY 7.4. Same assumptions as in Proposition 7.2. Then the weight polynomial of Jc(m) is
equal to

(1.7) w (Jo(m)) = (14 6292 D).

Proof. This follows from Proposition 7.2 using that 1o (IL) = ¢ and that w(Jcv) = (1 +1)29"(C) because
(Jov) is an abelian variety of dimension ¢g*(C).
O
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