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Abstract. We propose a novel convolutional neural network (CNN), called \Psi DONet, designed for learning
pseudodifferential operators (\Psi DOs) in the context of linear inverse problems. Our starting point is
the iterative soft thresholding algorithm (ISTA), a well-known algorithm to solve sparsity-promoting
minimization problems. We show that, under rather general assumptions on the forward operator,
the unfolded iterations of ISTA can be interpreted as the successive layers of a CNN, which in turn
provides fairly general network architectures that, for a specific choice of the parameters involved,
allow us to reproduce ISTA, or a perturbation of ISTA for which we can bound the coefficients of
the filters. Our case study is the limited-angle X-ray transform and its application to limited-angle
computed tomography (LA-CT). In particular, we prove that, in the case of LA-CT, the operations
of upscaling, downscaling, and convolution, which characterize our \Psi DONet and most deep learning
schemes, can be exactly determined by combining the convolutional nature of the limited-angle X-
ray transform and basic properties defining an orthogonal wavelet system. We test two different
implementations of \Psi DONet on simulated data from limited-angle geometry, generated from the
ellipse data set. Both implementations provide equally good and noteworthy preliminary results,
showing the potential of the approach we propose and paving the way to applying the same idea to
other convolutional operators which are \Psi DOs or Fourier integral operators.
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1. Introduction. In the context of microlocal analysis, the theory of pseudodifferential
operators (\Psi DOs), introduced by Kohn and Nirenberg in 1965, and Fourier integral opera-
tors (FIOs), defined by H\"ormander in 1971, finds remarkable applications in many fields of
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mathematics, from spectral theory to general relativity, from the study of the behavior of
chaotic systems to scattering theory, and inverse problems [26, 27]. A prominent example
in the inverse problem field is given by the X-ray transform or, in the two-dimensional case,
Radon transform:

(1.1) R(u)(s, \omega ) =

\int \infty 

 - \infty 
u(s\omega \bot + t\omega ) dt, s \in \BbbR , \omega , \omega \bot \in S1,

where \omega \bot denotes the vector in the unit sphere S1 obtained by rotating \omega counterclockwise
by 90\circ [39]. It is possible to show (see, e.g., [44]) that the normal operator R\ast R of the Radon
transform R is an elliptic \Psi DO of order  - 1 and a convolutional operator associated with
the Calder\'on--Zygmund kernel K(x, y) = 1

| x - y| for x \not = y. When the direction vector \omega is

restricted within a limited angular range [ - \Gamma ,\Gamma ], the normal operator R\ast 
\Gamma R\Gamma of the limited-

angle Radon transform R\Gamma is a convolutional operator associated with the kernel

K(x, y) =
1

| x - y| \chi \Gamma (x - y) for x \not = y,(1.2)

where \chi \Gamma denotes the indicator function of the cone in \BbbR 2 between the angles  - \Gamma and \Gamma . The
operator R\ast 

\Gamma R\Gamma is no longer a \Psi DO, but it belongs to a wider class of FIOs, which includes
operators associated with a kernel showing some discontinuities along lines [27].

The inverse problem arising from the limited angle Radon transform, i.e., limited-angle
computed tomography (LA-CT), appears frequently in practical applications, such as dental
tomography [32], damage detection in concrete structures [24], breast tomosynthesis [56], or
electron tomography [15].

Microlocal analysis has been widely applied on the Radon transform, especially in the case
of incomplete data, with the purpose to characterize its behavior with respect to singularities
in the images (see, e.g., [20, 45, 46, 30, 29, 16]). In particular, some recent works are focused
on the treatment of artifacts appearing in reconstructions from limited-angle data (see [40,
41, 7]). In this framework, microlocal analysis can be used to predict which singularities can
be reconstructed in a stable way from limited-angle measurements [7, 18, 33, 43]. In practice,
thanks to microlocal analysis, we are able to identify the part of the wavefront set of the target
corresponding to the missing wedge from the measurement geometry.

Even with this fundamental information, the task of robustly recovering the unknown
quantity of interest from such partial indirect measurement is a challenging one, due to the
ill-posedness of the CT problem, which is even more severe because of the limited angular
range [13]. As a result, classical methods, such as the filtered backprojection (FBP) [39], yield
poor performances. Traditional inversion methods of the form (2.3)--(2.5), based on comple-
menting the insufficient measurements by imposing a priori information on the solution, define
effective regularization methods which generally allow for accurate reconstructions from fewer
tomographic measurements than usually required by standard methods like FBP. In more
recent years, machine learning approaches, in particular, deep learning, with convolutional
neural networks (CNNs) being the most prominent design in the context of imaging, are in-
creasingly impacting the field of inverse problems [4], and (LA-)CT is no exception (see, in
particular, [4, section 4] for an overview of learning approaches from a functional analyticD
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regularization perspective and [4, section 7] for their applicability to prototypical examples of
inverse problems, including CT). The majority of recent data-driven approaches for LA-CT
focuses on recovering or inpainting the missing part of the wavefront set from the measured
data (see, e.g., [9, 49] and the references therein for a thorough review of model-based and
data-driven approaches based on sparsifying transforms and edge-preserving regularizers in
the context of LA-CT).

In this paper, we are not interested in designing an(other) approach for inferring the
missing wedge in LA-CT, but rather we aim at investigating neural networks inspired by
FIOs and \Psi DOs, for which LA-CT is a case study. Our starting point is the traditional
sparsity-based minimization problem of the form (2.3)--(2.5). A well-known technique for its
solution is the iterative soft thresholding algorithm (ISTA), introduced in 2004 in the seminal
paper by Daubechies, Defrise, and De Mol [12]. The convergence result in the paper relies on
the assumption that the sparsifying system forms an orthogonal basis, as is the case for many
families of wavelets [36]. ISTA iteratively creates the sequence \{ w(n)\} Nn=1 as follows:

(1.3) w(n) = \scrS \lambda /L

\biggl( 
w(n - 1)  - 1

L
K(n)w(n - 1) +

1

L
b(n)
\biggr) 
,

where, in our case, K(n) =WR\ast 
\Gamma R\Gamma W

\ast with W wavelet transform associated with an orthog-
onal family, b(n) =WR\ast 

\Gamma m, and S\beta (w) is the (componentwise) soft-thresholding operator (see
(2.7) and (3.1) for all the details). It is well known that the unrolled iterations of ISTA can
be considered as the layers of a neural network. Learned ISTA (LISTA), introduced in [22],
and ISTA-Net, introduced in [54], are examples of neural networks obtained by laying out
the operations of ISTA for a few iterations. The major difference with our approach is that
LISTA and ISTA-Net are not CNNs. Unrolled schemes coming from proximal primal-dual
optimization methods are also proposed in [2, 3], where the proximal operators are replaced
with CNNs. While in [2, 3] the goal is to learn a proximal operator, in the approach we pro-
pose the regularization term is fixed and we learn a correction of the normal operator R\ast 

\Gamma R\Gamma .
Deep unfolded schemes for problems other than CT are introduced, for instance, in [25, 55].
In [35] the authors propose an unsupervised approach, combined with unrolled schemes, to
learn adversarial regularizers and apply it to the case of full-angle CT. In [28] the authors in-
vestigate the relationship between CNNs and iterative optimization methods, including ISTA,
for the case of normal operators associated with a forward model which is a convolution.
However, the resulting U-net, FBPConvNet, does not aim at imitating an unrolled version
of an iterative method, which makes it fundamentally different in spirit to the methodology
we propose. Indeed, the goal of our work is to show that, under some assumptions on the
operator R\Gamma W

\ast , it is possible to interpret the operations in (1.3) as a layer of a CNN, which
in turn provides fairly general network architectures that allow us to recover standard ISTA
for a specific choice of the parameters involved.

Motivated by this, we propose a new CNN, which we name \Psi DONet, aimed at learning
convolutional FIOs and \Psi DOs. The key feature of \Psi DONet is that we split the convolutional
kernel into K = K0 + K1, where K0 is the known part of the model (in the limited-angle
case, K0 = R\ast 

\Gamma R\Gamma ) and K1 is an unknown \Psi DO to be determined or, better, to be learned.
Basically, inK1 lays the potential to add information in the reconstruction process with respect
to the known part of the model K0. \Psi DONet takes advantage of the possibility to use smallD
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filters encoding a combination of upscaling, downscaling, and convolution operations, as it is
common practice in deep learning. Remarkably, we prove that such operations can be exactly
determined combining the convolutional nature of the limited-angle Radon transform and
basic properties defining an orthogonal wavelet system. While this might seem contrary to the
machine learning philosophy which finds its strength in avoiding any predefined structure for
neural networks, our recipe gives insight into understanding and interpreting the results of the
proposed CNN, combining results from FIOs, \Psi DOs, and classical variational regularization
theory. At the same time, the possibility to deploy such operations allows for a significant
reduction of the parameters involved, especially when compared to the standard interpretation
of ISTA as a recurrent neural network: this is fundamental when it comes to a practical
numerical implementation of the proposed CNN. Overall, \Psi DONet is able to reproduce ISTA,
or a perturbation of ISTA for which we can bound the coefficients of the filters, and has the
potential to learn \Psi DO-like structures which are intrinsic to the problem at hand.

As a proof of concept, we test \Psi DONet on simulated data from limited-angle geometry,
generated from the ellipse data set. We provide two different implementations of \Psi DONet:
filter-based \Psi DONet (\Psi DONet-F), where the backprojection opererator is approximated by
its filter equivalent, and operator-based \Psi DONet (\Psi DONet-O), where the backprojection
opererator encoded inK0 is not approximated but explicitly computed. Both implementations
provide equally good and noteworthy preliminary results, the main difference being a greater
computational efficiency for \Psi DONet-O. The improvement provided by our results, compared
to standard ISTA (and FBP), bodes well for further numerical testing which we leave to future
work.

Finally, we stress that the contribution of our paper is mainly theoretical and is in line
with current research in data-driven inversion, which combines knowledge from traditional
inverse problems theory with data-driven techniques. While in our paper we derived the
result contingently to the case of limited-angle Radon transform, our approach is actually
very general and can be extended to any convolutional operator which is a FIO or \Psi DO. This
is the case, for instance, of the geodesic X-ray transform [50], and its applications in seismic
imaging, or synthetic-aperture radar [42]. Finally, our paper paves the way to theoretical
generalization results, in light of recent contributions like [14].

The remainder of this paper is organized as follows: section 2 is devoted to reviewing the
theoretical background of sparsity promoting regularization, and the wavelet transform. In
section 3, we detail the key idea of our approach, namely, we give a convolutional interpre-
tation of ISTA using the wavelet transform. The neural network architecture we propose,
\Psi DONet, is introduced in section 4, where we also prove our main theoretical result. Two
different implementations of \Psi DONet, which we call filter-based \Psi DONet and operator-based
\Psi DONet, are described in section 5. Finally, we demonstrate the performance of our net-
work by a series of numerical experiments (see section 6). Concluding remarks and future
prospects are briefly summarized in section 7. The appendices collect proofs of some of the
results presented in section 2.

2. Theoretical background. In this section, we collect some theoretical results which are
preliminary to the main discussion of the paper.D
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2.1. Sparsity-promoting regularization via ISTA. Consider the inverse problem of deter-
mining u\dagger \in X from the measurements m = Au\dagger + \epsilon , being A : X \rightarrow Y a linear bounded
operator between the Hilbert spaces X and Y . The perturbation \epsilon \in Y is such that \| \epsilon \| Y \leq \delta .
The main application we have in mind is the limited-angle Radon transform R\Gamma , which is a
continuous linear operator, e.g., from X = L2(\Omega ) (being \Omega \subset \BbbR 2) to Y = L2([ - \Gamma ,\Gamma ]\times [ - S, S])
(see [39, Theorem 2.10]).

Introduce an orthonormal basis \{ \psi I\} I\in \BbbN in X. For later purposes, we will assume that
such a basis is a wavelet system. Define W : X \rightarrow \ell 2(\BbbN ) as the operator associating with any
u \in X the sequence of its components with respect to the wavelet basis (Wu)I = (u, \psi I)X ,
where (\cdot , \cdot )X denotes the inner product in X. We assume to know a priori that the exact
solution u\dagger is sparse with respect to the wavelet basis \psi I :

(2.1) Wu\dagger = w\dagger \in \ell 0(\BbbN ).

The reconstruction of u\dagger (or, equivalently, w\dagger ) from the noisy measurementsm is in general
an ill-posed problem, hence we introduce the following regularized problem:

(2.2) min
w\in \ell 1(\BbbN )

\| AW \ast w  - m\| 2Y + \lambda \| w\| \ell 1

with \lambda > 0. The requirement w \in \ell 1(\BbbN ) is in general not satisfied by any w = Wu, u \in X;
hence, we define Z \subset X, Z = \{ u \in X :Wu \in \ell 1(\BbbN )\} . In particular, in the tomography appli-
cation, it is possible to show that the \ell 1 norm of the components of the wavelet representation
of an L2(\Omega ) function is equivalent to the Besov norm B1

1,1(\Omega ) (see, e.g., [12, formula (A3)]).
Hence, the minimization problem (2.2) is equivalent to

(2.3) min
u\in Z

\| Au - m\| 2Y + \lambda \| u\| Z .

It is well known that the regularization term involving the \ell 1 norm is a good choice to encode
the a priori information regarding the sparsity of w\dagger . In particular if the noise level tends to
0, there exists a suitable choice of \lambda = \lambda (\delta ) ensuring the convergence of w\delta 

\lambda to w\dagger with w\delta 
\lambda the

solution of (2.2). We report a result from [17] which also shows that such a convergence occurs
with linear rate. In particular, [17, Corollary 2] does not require w\dagger to satisfy a classical source
condition, but relies on the sparsity assumption (2.1) and on the injectivity of the operator
A. Such a property can be restrictive in some applications, and as a consequence many
alternative results involve some weaker assumptions (as the well-known restricted isometry
property); nevertheless, in our tomographic application, we can rely on the injectivity of the
Radon transform, even in the limited-angle case.

Proposition 2.1. Let w\dagger satisfy (2.1), and suppose A : X \rightarrow Y is injective. Define w\lambda 
\delta as a

solution of problem (2.2) associated with a regularization parameter \lambda and a noise level \delta . For
sufficiently small \delta , provided that \lambda is chosen such that \lambda = c0\delta , then there exists a positive
constant c1 = c1(c0, A, \| w\dagger \| \ell 0) such that

(2.4) \| w\dagger  - w\lambda 
\delta \| \ell 1 \leq c1\delta .D
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This proposition is an immediate consequence of [17, Corollary 2], relying on [17, Lemma
2] to ensure that A is weak*-to-weak continuous. From now on, we suppose that \lambda is chosen
as a linear function of \delta and denote u\lambda \delta as u\delta and w\lambda 

\delta as w\delta .
We now introduce a finite-dimensional approximation of the regularized problem (2.2).

Consider the subspace Xp \subset X, Xp = span\{ \psi I\} pI=1, mapped by W into the space Wp = \{ w \in 
\BbbR \BbbN : wI = 0 \forall I > p\} (which is isomorphic to \BbbR p). Denote by \BbbP p the orthogonal projection of

\ell 2(\BbbN ) onto Wp and by \widetilde \BbbP p = W \ast \BbbP pW the orthogonal projection of X onto Xp. Moreover, we
introduce an orthogonal basis \{ \varphi j\} \infty j=1 on Y and define Yq = span\{ \varphi j\} qj=1 and the projection
\BbbP q : Y \rightarrow Yq. For any choice of p, q > 0, let Ap,q be the representation of the operator A in

the subspaces Xp, Yq, namely, Ap,q = \BbbP qA\widetilde \BbbP \ast 
p. Consider the following minimization problem:

min
w\in Wp

\| Ap,qW
\ast w  - \BbbP qm\| 2Y + \lambda \| w\| \ell 1 .(2.5)

Denote by w\delta ,p,q a solution of (2.5). We can prove the following convergence result.

Proposition 2.2. Let w\dagger satisfy (2.1) and A be an injective operator. Suppose moreover
that for a suitable choice of p, q it is possible to ensure that \| w\dagger  - \BbbP pw

\dagger \| \ell 2 \leq cp\delta and \| (I  - 
\BbbP q)A\| X\rightarrow Y \leq cq\delta . Then, provided that \lambda is chosen as \lambda = c0\delta , there exists a positive constant
c2 (depending on \| A\| , \| w\dagger \| \ell 1, on the choice of \{ \psi I\} , \{ \varphi j\} , and on the constants c0, c1,cp,cq)
such that

(2.6) \| w\delta ,p,q  - w\dagger \| \ell 1 \leq c2\delta .

The proof, which follows by an application of the variational source condition reported in
[17, section 3], is reported in Appendix A.

Remark 2.3. Upper bounds of the kind \| w\dagger  - \BbbP pw
\dagger \| \ell 2 \leq f(p) can be explicitly computed

under some particular assumptions on w\dagger . If, for example, we suppose that u\dagger is a cartoon-like
image (i.e., u\dagger is a C2-smooth function apart from a jump discontinuity along a finite set of
C2-curves) and \{ \psi I\} is the Haar wavelets basis, it is well known that \| w\dagger  - \BbbP pw

\dagger \| \ell 2 \leq p - 1

(see, e.g., [36, Chapter 9]).
On the other hand, an estimate for the term \| (I - \BbbP q)A\| X\rightarrow Y can be obtained by standard

results of finite-rank approximation of compact operators. For example, suppose that the
operator A is a compact operator. Define \{ sj\} as its singular values (i.e., let \{ (sj , ej)\} be

the eigenvalues and eigenfunctions of (A\ast A)
1
2 ) and suppose the sequence sj is nonincreasingly

converging to 0. A sufficient condition for this is that A is a Schatten operator of any class p.
If we select the basis \{ \varphi j\} such that \varphi j = Uej , where U is the partial isometry in the polar

decomposition A = U(A\ast A)
1
2 , then it holds that \| (I  - \BbbP q)A\| X\rightarrow Y \leq sq+1. In the case of the

Radon transform in 2 dimensions, according to [38, section IV.3], sj = cRj
 - 1

2 , hence to get
\| (I  - \BbbP q)A\| X\rightarrow Y \leq cR\delta it is enough to consider q \geq 1

\delta 2
 - 1

A well-know technique for the solution of the minimization problem (2.5) is the ISTA
(introduced in [12]), which consists in selecting an initial guess w(0) \in \BbbR p(\sim = Wp) and in
iteratively creating the sequence \{ w(n)\} Nn=1 as follows:

(2.7) w(n) = \scrT (w(n - 1)) = \scrS \lambda /L

\biggl( 
w(n - 1)  - 1

L
WA\ast 

p,qAp,qW
\ast w(n - 1) +

1

L
WA\ast 

p,qm

\biggr) 
,D
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where 1
L > 0 is interpreted as a (fictitious) time step and, for \beta > 0, S\beta (w) is the (component-

wise) soft-thresholding operator:

[\scrS \beta (w)]I = S\beta (wI); S\beta (wI) =

\left\{ 
  
  

wI + \beta if wI <  - \beta ,
0 if | wI | \leq \beta ,

wI  - \beta if wI > \beta .

The convergence of \{ w(N)\} to a minimizer w\delta ,p,q of (2.5) is analyzed, in an infinite-dimensional
context, in [8]. The following result for the discrete problem under consideration is instead a
direct consequence of [6, Theorem 25].

Proposition 2.4. If L is chosen such that L \geq \| WA\ast 
p,qAp,qW

\ast \| /2 then the sequence \{ w(N)\} 
generated via (2.7) by any w(0) \in \BbbR p converges in \ell 2 to the solution w\delta ,p,q of (2.5). Moreover,
there exist c3 > 0 and 0 \leq a < 1 (both depending on Ap,q, L, and \| w\dagger \| \ell 2) such that

(2.8) \| w(N)  - w\delta ,p,q\| \ell 2 \leq c3a
N .

2.2. A modification of ISTA. We now consider a perturbation of ISTA (2.7). Let Z :
\ell 2(\BbbN ) \rightarrow \ell 2(\BbbN ) satisfy

(2.9) \| WA\ast 
p,qAp,qW

\ast  - Z\| \ell 2\rightarrow \ell 2 \leq \rho .

Then, we substitute Z in place of the matrixWA\ast 
p,qAp,qW

\ast in the expression of ISTA. To note

the dependency on the perturbation amplitude \rho , we denote by \{ w(n)
\rho \} the sequence obtained

by selecting w
(0)
\rho \in \BbbR p and iterating

(2.10) w(n)
\rho = \scrT \scrZ (w(n - 1)

\rho ) = \scrS \lambda /L

\biggl( 
w(n - 1)
\rho  - 1

L
Zw(n - 1)

\rho +
1

L
WA\ast 

p,qm

\biggr) 
.

The following result shows a connection between the convergence of the sequence \{ w(n)
\rho \} to

the minimizer w\delta ,p,q and the magnitude of the perturbation \rho .

Proposition 2.5. Let w(0) = w
(0)
\rho , L \geq \| WA\ast 

p,qAp,qW
\ast \| , and consider N0, \eta 0 > 0. Then

there exists a constant \widetilde c4, depending on L,A,w(0), \| w\dagger \| \ell 2, and on N0, \eta 0, such that if N \geq N0

and \rho N \leq \eta 0, then

(2.11) \| w(N)
\rho  - w\delta ,p,q\| \ell 2 \leq c3a

N + \widetilde c4\rho N.

If, moreover, N, \rho are chosen as N > \mathrm{l}\mathrm{n}(\delta  - 1)
\mathrm{l}\mathrm{n}(a - 1)

and \rho < \delta 
N , then (for c4 = c3 + \widetilde c4)

(2.12) \| w(N)
\rho  - w\delta ,p,q\| \ell 2 \leq c4\delta .

The proof of this proposition follows by the nonexpansivity of the soft-thresholding oper-
ator and is reported in Appendix B.

We collect the results obtained in Propositions 2.2 and 2.5 in the following final convergence
estimate.D
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Theorem 2.6. Let w\dagger satisfy (2.1) and let A be injective. For sufficiently small \delta , select
a regularization parameter \lambda = c0\delta . Select p, q such that \| w\dagger  - \BbbP pw

\dagger \| \leq cp\delta and \| (I  - 
\BbbP q)A\| X\rightarrow Y \leq cq\delta . Let L \geq \| WA\ast 

p,qAp,qW
\ast \| and consider the perturbed ISTA iterations

(2.10), where the operator Z satisfies (2.9), N = loga \delta , and \rho = \delta 
N . Then, there exists a

positive constant c5 (depending on the previously introduced constants c0, c1, c2, c3, c4, cp, cq)
such that, for sufficiently small \delta ,

(2.13) \| w(N)
\rho  - w\dagger \| \ell 2 \leq c5\delta .

2.3. Wavelets in 2 dimensions. In order to derive the main results of the paper, we need
to assume that the orthogonal basis \{ \psi I\} \infty I=1 is a wavelet basis in X = L2(\Omega ). Although our
approach is sufficiently general to handle higher-dimensional spaces, we are going to focus on
the two-dimensional case, i.e., \Omega \subset \BbbR 2 (e.g., \Omega = [0, 1]2). Before moving to the representation
of the operator A\ast A with respect to such a basis, we need to describe in more details its
structure.

A common way to define a wavelet basis in \BbbR 2 is to rely on two real functions \psi and
\varphi , respectively, defined as mother wavelet and scaling function, whose support is in [0, 1].
We identify an element \psi I of the basis by its scale j, its translation k \in \BbbN 2

0, and its type
(t) \in \{ (v), (h), (d), (f)\} (respectively, vertical, horizontal, diagonal, and low-pass filter). We

denote \psi I(x) as \psi 
(t)
j,k(x) = 2j\psi (t)(2jx - k), x \in [0, 1]2, where we have

\psi (v)(x1, x2) = \phi (x1)\psi (x2), \psi (h)(x1, x2) = \psi (x1)\phi (x2),

\psi (d)(x1, x2) = \psi (x1)\psi (x2), \psi (f)(x1, x2) = \phi (x1)\phi (x2).

When selecting a maximum scale J (and J0 < J as coarsest scale), we can define a wavelet
basis of p = 22J elements as follows: take j \in \{ J0, . . . , J1 = J  - 1\} ; for each j \not = J0, consider
wavelets of the types (v), (h), and (d), whereas for j = J0 include also the type (f). For each
level j and type (t), consider offsets k = (k1, k2), k1 = 0, . . . , 2j  - 1, k2 = 0, . . . , 2j  - 1.

We group the wavelet basis functions in subbands, each of which is identified by a scale j
and a type (t), obtaining 3(J  - J0) + 1 subsets.

3. ISTA and CNNs. It is already well known that the unrolled iterations of ISTA can be
considered as the layers of a neural network (see, e.g., [22]). Indeed, the nth iteration of ISTA
can be written as

(3.1) w(n) = \scrS \lambda /L

\biggl( 
w(n - 1)  - 1

L
K(n)w(n - 1) +

1

L
b(n)
\biggr) 
,

being that K(n) =WA\ast 
p,qAp,qW

\ast and b(n) =WA\ast 
p,qm, independently of n. At the same time,

(3.1) can be seen as the nth layer of a recurrent neural network, whereK(n) is the matrix of the
weight coefficients and b(n) is the bias vector. Notice that the resulting architecture is the one
of a recurrent neural network although, due to its theoretical deduction, it does not present any
advanced residual block (such as skip connections) which are common features in the related
literature. We also point out that formula (3.1) enforces a specific choice of the nonlinear
activation function, namely, the soft-thresholding operator, instead of the more widely usedD
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rectified linear unit (ReLU) or sigmoid functions. Additionally, the soft thresholding operator
S\alpha can be written in terms of ReLUs as follows:

(3.2) S\alpha (x) = max(0, x - \alpha ) - max(0, - x - \alpha ) = ReLU(x - \alpha ) - ReLU( - x - \alpha )

for x \in \BbbR ; for vectors, it is applied componentwise.
When considering only the first N iterations of ISTA, we can collect the parameters

appearing in the layers in a vector \theta \in \Theta . Together with the entries of the matrices K(n), we
may consider as parameters the step length L as well as the regularization parameter \lambda ; see
subsection 5.3 for more details. Conversely, the bias vectors b(n) are not to be considered as
parameters: they are fixed and equal to WA\ast 

p,qm in each layer. We then introduce the map
f\theta : Y \rightarrow \ell 1(\BbbN ), parameterized by \theta \in \Theta , which takes as an input m \in Yq and computes N
iterations like (3.1), where, for each n, K(n) \in \BbbR p\times p is specified in \theta and b(n) = WA\ast 

p,qm.
For any selected value of p, q,N, \lambda , L, we know that there exists a particular choice \theta 0 which
corresponds to the ISTA iterations associated with the measurements m.

In this section we show that, under some assumptions on the operator A, it is possible to
interpret the operations in (3.1) as a layer of a CNN. We therefore provide a fairly general net-
work architecture which allows one to recover the standard ISTA iterations (or a perturbation
of the kind described by (2.9)), for a specific choice of the parameters.

From now on, we focus on the case X = L2(\Omega ), and consider a wavelet basis \{ \psi I\} of the
kind described in subsection 2.3.

3.1. A convolutional interpretation of ISTA. We first show, under additional assump-
tions on operator A, how to translate the neural network encoded by the operator f\theta above into
a CNN, allowing for a significant reduction of the number of parameters involved. Suppose
that A\ast A is a convolutional kernel operator, i.e.,

(3.3)
KI,I\prime = (A\ast A\psi I , \psi I\prime )X =

\int 

\BbbR 2

\int 

\BbbR 2

K(x, x\prime )\psi I(x)\psi I\prime (x
\prime )dxdx\prime ,

K(x, x\prime ) = K(x - x\prime ).

According to the description in subsection 2.3, the wavelet basis can be naturally split into
subbands, each of which is identified by a couple j,(t). This implies that the matrix K
representing A\ast A can be seen as a block matrix. We now aim at describing the application of

each block K
(t)\rightarrow (t\prime )
j\rightarrow j\prime w

(t)
j by means of the following operations:

1. Discrete convolution. Let B \in \BbbR b\times b, C \in \BbbR (2b - 1)\times (2b - 1), and denote the elements of C
with indices i, j with i =  - b + 1, . . . , 0, . . . , b  - 1, j =  - b + 1, . . . , 0, . . . , b  - 1. Then,
C \ast B \in \BbbR b\times b:

(3.4) (C \ast B)k,l =

b - 1\sum 

i=0

b - 1\sum 

j=0

Ck - i,l - jBi,j .

2. Upsampling. Let B \in \BbbR b\times b, then, U (B) \in \BbbR 2b\times 2b satisfies

(3.5) U (B)[2k : 2k + 1, 2l : 2l + 1] =

\biggl[ 
Bk,l 0
0 0

\biggr] 
\forall k, l = 0, . . . , b - 1,D
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where the notation U (B)[2k : 2k + 1, 2l : 2l + 1] is used to denote a submatrix of
U (B) containing the rows from 2k to 2k + 1 and all the columns from 2l to 2l + 1.
We denote by U \eta the iterated application of U : U \eta = U \circ \cdot \cdot \cdot \circ U (\eta times).

3. Downsampling. Let B \in \BbbR 2b\times 2b, then, D(B) \in \BbbR b\times b satisfies

(3.6) D(B)k,l = B2k,2l \forall k, l = 0, . . . , b - 1.

We denote by D\eta the iterated application of D : D\eta = D \circ \cdot \cdot \cdot \circ D (\eta times).
The following crucial result provides a full description of the convolutional interpretation

of the matrix representing A\ast A in the wavelet domain. Such a result can be compared to
the ones already known in the literature (see, e.g., [11, formula (4.2)]), although the more
complicated structure of the wavelet basis entails some significant differences.

Proposition 3.1. Let K \in \BbbR p\times p be the matrix representing an operator A\ast A satisfying (3.3)

in a two-dimensional (2D) wavelet basis \{ \psi I\} pI=1. For a vector w \in \BbbR p, let w
(t)
j be the vector of

the wavelet components related to basis functions of scale j and type (t). Let K
(t)\rightarrow (t\prime )
j\rightarrow j\prime denote

the block of K corresponding to the j, (t) subset of the column indices and the j\prime , (t\prime ) subset of
the row indices. Then

(3.7) K
(t)\rightarrow (t\prime )
j\rightarrow j\prime w

(t)
j =

\left\{ 
    
    

D\delta ( \widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime \ast W (t)

j ) if j > j\prime ,

\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime \ast W (t)

j if j = j\prime ,

\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime \ast U \delta (W

(t)
j ) if j < j\prime 

with \delta = | j\prime  - j| and \widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime \in \BbbR (2

\widehat j+1 - 1)\times (2
\widehat j+1 - 1) (where \widehat j = max(j, j\prime )):

(3.8)

\Bigl[ 
\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime 

\Bigr] 
d
=

\int 

\BbbR 2

\int 

\BbbR 2

K(x - x\prime  - 2 - 
\widehat jd) \psi (t\prime )

j\prime ,0(x
\prime ) \psi 

(t)
j,0(x)dxdx

\prime ,

d = (d1, d2), d1, d2 = \{  - 2
\widehat j + 1, . . . , 0, . . . , 2

\widehat j  - 1\} .

The matrix W
(t)
j \in \BbbR 2j\times 2j is obtained by reshaping the vector w

(t)
j \in \BbbR 22j so that [W

(t)
j ]d is

the component wI whose index is identified by (j, (t), d).

Proof. Let I, I \prime be identified by (j, (t), k) and (j\prime , (t\prime ), k\prime ), respectively. Then,

[K]I\prime ,I =

\int 

\BbbR 2

\int 

\BbbR 2

K(x - x\prime ) \psi 
(t\prime )
j,k\prime (x

\prime ) \psi 
(t)
j,k(x)dxdx

\prime 

=

\int 

\BbbR 2

\int 

\BbbR 2

K(x - x\prime ) \psi 
(t\prime )
j,0 (x

\prime  - 2 - j\prime k\prime ) \psi 
(t)
j,0(x - 2 - jk)dxdx\prime 

=

\int 

\BbbR 2

\int 

\BbbR 2

K(x+ 2 - jk  - x\prime  - 2 - j\prime k\prime )\psi 
(t\prime )
j,0 (x)\psi 

(t)
j,0(x)dxdx

\prime 

=

\int 

\BbbR 2

\int 

\BbbR 2

K(x - x\prime  - 2 - 
\widehat j(2\delta  - k\prime  - 2\delta 

+
k))\psi 

(t\prime )
j,0 (x)\psi 

(t)
j,0(x)dxdx

\prime =
\Bigl[ 
\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime 

\Bigr] 
d
,

where \delta + = max(0, j  - j\prime ), \delta  - = max(0, j\prime  - j), and d = 2\delta 
 - 
k\prime  - 2\delta 

+
k. For the sake of ease,

we use K instead of K
(t)\rightarrow (t\prime )
j\rightarrow j\prime , \widetilde K instead of \widetilde K(t)\rightarrow (t\prime )

j\rightarrow j\prime , w instead of w
(t)
j , W instead of W

(t)
j .D
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Moreover, we denote by \scrI the set of indices \scrI \subset \{ 1, . . . , p\} belonging to the wavelet scale j
and type (t).

Consider first the case j = j\prime . Then \delta = \delta + = \delta  - = 0, and it holds

[K]I\prime ,I =
\Bigl[ 
\widetilde K
\Bigr] 
d
, d = k\prime  - k.

Therefore,

[Kw]I\prime =
\sum 

I\in \scrI 
[K]I\prime ,I wI =

\sum 

I\in \scrI 

\Bigl[ 
\widetilde K
\Bigr] 
k\prime  - k(I)

wI

=

2j\sum 

k1= - 2j

2j\sum 

k2= - 2j

\Bigl[ 
\widetilde K
\Bigr] 
k\prime 1 - k1,k\prime 2 - k2

Wk1,k2 = [K \ast W ]I\prime .

Let now j < j\prime . Then \delta = \delta + > 0, \delta  - = 0, and

[Kw]I\prime =
\sum 

I\in \scrI 
[K]I\prime ,I wI =

\sum 

I\in \scrI 

\Bigl[ 
\widetilde K
\Bigr] 
k\prime  - 2\delta +k(I)

wI

=

2j
\prime 

\sum 

k1= - 2j\prime 

2j
\prime 

\sum 

k2= - 2j\prime 

\Bigl[ 
\widetilde K
\Bigr] 
k\prime 1 - 2\delta +k1,k\prime 2 - 2\delta +k2

U \delta +(W )
2\delta +k1,2\delta 

+k2
= [K \ast U \delta W ]I\prime .

Finally, let j > j\prime . Then \delta + = 0, \delta = \delta  - > 0, and

[Kw]I\prime =
\sum 

I\in \scrI 
[K]I\prime ,I wI =

\sum 

I\in \scrI 

\Bigl[ 
\widetilde K
\Bigr] 
2\delta  - k\prime  - k(I)

wI

=

2j\sum 

k1= - 2j

2j\sum 

k2= - 2j

\Bigl[ 
\widetilde K
\Bigr] 
2\delta  - k\prime 1 - k1,2\delta 

 - k\prime 2 - k2
Wk1,k2 = [D\delta (K \ast W )]I\prime .

Remark 3.2. The most relevant consequence of Proposition 3.1 is a significant reduction
of the number of coefficients required to describe the application of A\ast A as a function from \BbbR p

to \BbbR p. The standard representation, obtained by a matrix in \BbbR p\times p, indeed involves p2 = 24J

parameters, whereas the representation via the convolutional filters \widetilde \scrK (t)\rightarrow (t\prime )
j\rightarrow j\prime involves only

O(p) elements.

This convolutional interpretation also reflects on the neural network architecture proposed
in (3.1): if we substitute the multiplication K(n)w(n - 1) by the operations encoded by (3.7)
(decomposition of w(n - 1) in wavelet subbands, upscaling, application of convolutional filters,
downscaling), the parameters \theta involved in the description of K(n) are reduced. The repre-
sentation of the linear operators K(n) through convolutions, upscaling, and downscaling is a
typical feature of CNNs; thus, by designing a CNN which reproduces exactly the operations
reported in (3.7) and (3.1), we can ensure that such a network is completely equivalent, for a
suitable choice \theta 0 of the parameters, to the application of ISTA.

3.2. A working example. In order to better visualize the convolutional representation of
ISTA reported in (3.8), we now provide a small example. Consider the case of 64\times 64 images,
thus associated with J = 6 and p = 212. Create a wavelet basis consisting of three scales ofD
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W
(h)
4

decomposition

Figure 1. Interpretation of (3.7). Step 1: decompose the wavelet transform into subbands.

wavelets, from J0 = 3 to J1 = 5. The resulting basis \{ \psi I\} pI=1 can therefore be split into 10
subbands: 4 associated with the scale j = 3 (types (h), (v), (d), and (f)); 3 associated with
the scales j = 4 (types (h), (v), (d)) and 3 with j = 5. Each subband consists of 22j elements.
The operator A\ast A is represented in the wavelet basis \{ \psi I\} by a matrix K \in \BbbR p\times p. According
to subsection 3.1, the following procedure is equivalent to applying the matrix K on a vector
w \in \BbbR p (representing the wavelet transform of an image):

1. First, split the vector w into its 10 wavelet subbands, each of which is identified by a

scale j and a type (t). This operation is depicted in Figure 1. The vector w
(t)
j \in \BbbR 2j

can also be interpreted as a matrix W
(t)
j \in \BbbR j\times j . The element [W

(t)
j ]d = [W

(t)
j ](d1,d2) is

the component associated with the basis function \psi 
(t)
j,d(x) = 2j\psi (t)(2jx1 - d1, 2jx2 - d2).

2. Second, for each subband j, (t), compute the 10 vectors K
(t)\rightarrow (t\prime )
j\rightarrow j\prime w

(t)
j , the contributions

of w
(t)
j on the subband j\prime , (t\prime ) of the vector Kw. Each matrix K

(t)\rightarrow (t\prime )
j\rightarrow j\prime is a 22j

\prime \times 22j

block composing the matrix K. According to (3.7), this can be done by means of
usampling, downsampling, and convolution. Consider the case j = J0 = 3:

\bullet if j\prime = 3, then \widehat j = 3 and \delta = 0. Thus, if we compute the convolution of the

15 \times 15 filter \widetilde K(t)\rightarrow (t\prime )
3\rightarrow 3 with the matrix W

(t)
3 \in \BbbR 8\times 8, we get a 8 \times 8 matrix

representing the vector K
(t)\rightarrow (t\prime )
3\rightarrow 3 w

(t)
3 \in \BbbR 64.

\bullet if j\prime = 4, then we shall use the third variant in formula (3.7) with \delta = 1
(whereas in (3.8) we have \widehat j = 4). To compute the 16 \times 16 matrix associated

with K
(t)\rightarrow (t\prime )
3\rightarrow 4 w

(t)
3 , we must first upsample the matrix W

(t)
3 and then convolve

it with the 31\times 31 filter \widetilde K(t)\rightarrow (t\prime )
3\rightarrow 4 .

\bullet if j\prime = 5, then we again use the third variant of (3.7), with \delta = 2; hence the

matrix W
(t)
3 must be upsampled twice before being convolved with the 63\times 63

filter \widetilde K(t)\rightarrow (t\prime )
3\rightarrow 5 .

Consider instead the case j = 4:
\bullet if j\prime = 3, then we need to use the first variant in (3.7) with \delta = 1 (and (3.8)
with \widehat j = 4), which means we first compute the convolution between the 31\times 31

filter \widetilde K(t)\rightarrow (t\prime )
4\rightarrow 3 and the matrix W

(t)
4 \in \BbbR 16\times 16 and then downscale it to recover

the 8\times 8 matrix describing K
(t)\rightarrow (t\prime )
4\rightarrow 3 w

(t)
4 .D
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U

U

U

K̃
(h)→(d)
4→5 *

*

*

*

*

*

*

*

*

*

D

D

D

D

Figure 2. Interpretation of (3.7). Step 2: convolution, upsampling, and downsampling.

\bullet the case j\prime = 4 is analogous to 3 \rightarrow 3, using 31\times 31 filters \widetilde K(t)\rightarrow (t\prime )
4\rightarrow 4 .

\bullet the case j\prime = 5 is analogous to 3 \rightarrow 4: we first perform upsampling and then
convolution.

Finally, for j = J1 = 5,

\bullet if j\prime = 3, then we first compute the convolution between \widetilde K(t)\rightarrow (t\prime )
5\rightarrow 3 \in \BbbR 63\times 63

and W
(t)
5 \in \BbbR 32\times 32 and then downsample twice.

\bullet if j\prime = 4, we only downsample once, as in the case 4 \rightarrow 3.
\bullet if j\prime = 5, we only do convolution, as in the cases 3 \rightarrow 3 and 4 \rightarrow 4, but with
63\times 63 filters.

A graphical visualization of these operations is provided by Figure 2.
3. The last step consists of collecting, for each subband j\prime , (t\prime ), all the contributions

coming from the vectors w
(t)
j . Thanks to the previous step, among the 100 computed

matrices, all the ones associated with those contributions have dimensions 2j
\prime \times 2j

\prime 
.

By adding them up we recover the j\prime , (t\prime ) subband of the vector Kw (see Figure 3).

3.3. On the possibility of using smaller filters. When designing a CNN, it is common
practice to employ a large numbers of convolutional filters of small size. In the architecture
determined by (3.7) and (3.8), the required number of filters is exactly (3(J  - J0) + 1)2, and
each part of the vector w(n - 1) interacts only with (3(J  - J0) + 1) of them. Moreover, the size
of each filter must be equal to (2j

\prime +1 - 1)(2j+1 - 1). We now consider the effect of substituting
for such large filters with smaller ones.

We would like to use filters of size \tau \times \tau , with \tau = (2\xi +1) and \xi > 1, obtained by extracting

the central elements of the large filters \widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime . In particular, we define \widetilde K\tau = ( \widetilde K(t)\rightarrow (t\prime )

j\rightarrow j\prime )\tau D
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sum

Figure 3. Interpretation of (3.7). Step 3: reassembling each wavelet subband.

with \tau = 2\xi + 1, as

(3.9)
\Bigl[ 
\widetilde K\tau 
\Bigr] 
d
=

\left\{ 
 
 

\Bigl[ 
\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime 

\Bigr] 
d

if \| d\| \infty \leq \xi ,

0 if \| d\| \infty > \xi .

We claim that this modification is equivalent to performing a perturbation of ISTA of the
type treated in Proposition 2.5, where the parameter \rho is a suitable function of \tau . Although
providing a detailed proof of this would entail cumbersome computation, we prove the most
important result which is required to accomplish this task: we exhibit a bound on the coeffi-
cients of the filters which are discarded due to (3.9).

Such an estimate can be obtained by assuming further hypotheses on the operator A. In
particular, suppose that A\ast A is a convolutional operator of kernel K (as in (3.3)) and, in
addition, that for x \not = x\prime the kernel K(x, x\prime ) is smooth and such that

(3.10) K(x, x\prime ) \leq C

| x - x\prime | , | \nabla xK(x, x\prime )| + | \nabla x\prime K(x, x\prime )| \leq C

| x - x\prime | 2 .

It is easy to verify that (3.10) is satisfied whenever A\ast A is a \Psi DO of order  - 1 with constant
coefficients, that is,

A\ast Af = \scrF  - 1 \{ a(\xi )\scrF \{ f\} (\xi )\} , a(\xi ) \sim 1

| \xi | as \xi \rightarrow 0.

We also assume the first-order vanishing moment property for wavelet basis functions:

(3.11)

\int 

\BbbR 2

\psi I(x)dx = 0.

Such a property is verified even by 2D Haar wavelets, apart from the type (f).D
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Proposition 3.3. Let the operator A satisfy (3.3) and (3.10). Let the indices I, I \prime denote
two wavelets of scales j, j\prime , type (t), (t\prime ), and offsets k, k\prime . Let \psi I and \psi I\prime satisfy (3.11) and
let dI,I\prime be the distance between the supports of \psi I and \psi I\prime . Whenever dI,I\prime > 0, it holds that

(3.12) KI,I\prime = (A\ast A\psi I , \psi I\prime )X \leq c
2 - 2(j+j\prime )

d3I,I\prime 
.

We remark that the decay reported in (3.12) closely resembles formula (9.22) in [10]
(according to the choice n = 2, \widetilde d = 1, r = 2t =  - 1) and with minor changes also formula
(4.26) in [5] (with M = 2).

Proof. According to (3.10), and to (3.11), for any choice of x0 \in supp \psi I , x
\prime 
0 \in supp \psi I\prime 

there exists two points \xi , \xi \prime in the same supports such that

KI,I\prime =

\int 

\BbbR 2

\int 

\BbbR 2

(K(x, x\prime ) - K(x, x\prime 0))\psi I(x)\psi I\prime (x
\prime )dxdx\prime 

\leq 
\int 

\BbbR 2

\int 

\BbbR 2

| \nabla xK(x, \xi \prime )| | x\prime  - x\prime 0| \psi I(x)\psi I\prime (x
\prime )dxdx\prime 

\leq C

\int 

\BbbR 2

\int 

\BbbR 2

| x\prime  - x\prime 0| 
| x - \xi \prime | 2\psi I(x)\psi I\prime (x

\prime )dxdx\prime \leq C

\int 

\BbbR 2

\int 

\BbbR 2

| x - x0| | x\prime  - x\prime 0| 
| \xi  - \xi \prime | 3 \psi I(x)\psi I\prime (x

\prime )dxdx\prime .

The quantity | \xi  - \xi \prime | is bounded from below by dI,I\prime by definition. Moreover, | x  - x0| \leq 
diam (supp \psi I) = c2 - j and, finally,

\int 
\BbbR 2 \psi I(x) \leq 2j | supp \psi I | = 2 - j (analogous arguments

hold for I \prime ).

In view of (3.12) and of (3.8), we can easily obtain a bound on the elements of the
convolutional filters: \Bigl[ 

\widetilde K(t)\rightarrow (t\prime )
j\rightarrow j\prime 

\Bigr] 
d
\leq c

2 - 
\widehat j

(\| d\| \infty  - 1)3
,

provided that \| d\| \infty > 1. This result, together with (3.7), allows one to obtain an explicit
bound (in the form of (2.12)) on the perturbation induced by the thresholding (3.9).

4. \Psi DONet: Formulation and theoretical results. In this section we introduce a recon-
struction algorithm for sparsity-promoting regularization based on CNNs, which leads to a
novel network architecture defined as \Psi DONet. We report the general idea inspiring such
a technique, taking advantage of the theoretical results obtained in section 3 and provid-
ing a comprehensive interpretation. Eventually, we provide a theoretical result ensuring the
convergence of the proposed algorithm.

4.1. \Psi DONet: A network to learn \Psi DOs. Inspired by the results of section 3, if the
operator A\ast A is of convolutional type, we define a reconstruction algorithm by designing
a CNN of N layers, each of which is described by (3.1). In particular, the bias vectors
appearing in (3.1) are b(n) = WA\ast 

p,qm for each n, whereas the linear operators K(n) are
interpreted as a combination of upscaling, downscaling, and convolution as described in (3.7).
As shown in Proposition 3.1, if the entries of the convolutional filters are selected as is (3.8),
this procedure is equivalent to performing N iterations of ISTA. Instead, the key idea ofD
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the proposed algorithm is to split the convolutional filters into two parts: a central \tau \times \tau 
submatrix (where \tau is a predefined hyperparameter of the algorithm) and the outer frame.
For each one of the 3(J  - J0) + 1 filters required by each layer, we suppose that the entries in
the external frame are specified according to (3.8), whereas the central entries are considered
as parameters, to be learned throughout the training process. Such parameters are collected
in a vector \theta n (related to the nth layer) and ultimately stored in the vector \theta , possibly together
with other learnable parameters. The obtained network is denoted as f \tau \theta : the aim of a CNN-
based algorithm is to find a parameter \theta such that the network is a good approximation of
the solution map of our inverse problem, taking as an input the measurements m and giving
as an output the solution w\dagger =Wu\dagger .

It is evident that, among the possible choices of the optimal parameter, the network could
select the vector \theta 0 which exactly replicates the ISTA iterations (it is the one for which, in
every layer, the central entries of each filter are also specified by (3.8)). Nonetheless, if the
optimal choice of \theta differs from \theta 0, it means that the network is learning something more than
the ISTA iterations associated with the operator A\ast A. This can be meaningfully interpreted
as follows: in each layer, the network f \tau \theta applies the filters associated with an operator whose
kernel is K0 + K1, where K0 is the kernel of A\ast A and K1 is the kernel of another, learned,
operator. Since the difference will only occur in the central elements of the convolutional
filters, according to the analysis of subsection 3.3, we can argue that the learned operator is
indeed a suitable approximation of a \Psi DO. This finally allows us to motivate the name we
propose for this novel CNN-based reconstruction algorithm: \Psi DONet.

There are several reasons for which the learning process could attain a better result than
the one provided by ISTA. Indeed, a better choice of the parameters allows us to reduce
numerical errors induced by the discrete representation of A\ast A, which might have a significant
effect due to the error propagation among the iterations. Moreover, we might also mitigate
model errors in the definition of the operator A itself. Finally, this perturbation could provide
a representation of A\ast A with respect to a slightly different basis, which allows us to better
satisfy the sparsity assumption on the solutions. For such reasons, the use of \Psi DONet is
specifically recommended whenever the original operator A\ast A is a \Psi DO itself. Indeed, its
kernel representation by means of convolutional filters might benefit from learned corrections
in all its most important entries, namely, the central ones.

We will show that \Psi DONet is also highly recommended for FIOs: in this case, the largest
entries of the convolutional filters representing A\ast A are located in the center and along some
lines, possibly stretching away from the center. This is the case of the limited-angle Radon
transform (deeply analyzed in the following sections), which is associated with the kernel

K(x, y) =
1

| x - y| \chi \Gamma (x - y),

with \chi \Gamma the indicator function of the cone in \BbbR 2 between the angles  - \Gamma and \Gamma . As reported
in section 5, the convolutional filters related to this operator show large values only in the
central elements and along two lines having the same slope as the ones delimiting the cone.
This provides a curious shape for the filters, which resemble a bow tie. We will show that the
application of \Psi DONet on this operator, providing learned corrections only to the center of
the bow ties, is still extremely effective.D
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In addition to the numerical verification of the previous statements (depicted in section 6),
we provide here a theoretical argument to explain why \Psi DONet is expected to outperform
ISTA even when A\ast A is a FIO.

4.2. A theoretical justification for \Psi DONet using microlocal analysis. If a \Psi DO cor-
rection is learned for the normal operator, the modified ISTA iterations read as

w(n) = \scrS \lambda /L

\biggl( 
w(n - 1)  - 1

L
W (A\ast 

p,qAp,q + \Lambda p)W
\ast w(n - 1) +

1

L
WA\ast 

p,qm

\biggr) 
,

with \Lambda p the discrete representation of a \Psi DO. This is equivalent to performing the standard
ISTA iterations on a modified version of a minimization problem (2.5), namely,

min
w\in \ell 1(\BbbN )

\| (A\ast 
p,qAp,q + \Lambda p)

1/2W \ast w  - (A\ast 
p,qAp,q + \Lambda p)

 - 1/2A\ast 
p,qm\| 2X + \lambda \| w\| \ell 1 .

This minimization problem is a discretised version of the continuous minimization problem

min
u\in Z

\| (A\ast A+ \Lambda )1/2u - (A\ast A+ \Lambda ) - 1/2A\ast m\| 2Y + \lambda \| u\| Z .

Eventually, this amounts to finding a regularized solution, with a regularization penalty pro-
moting solutions for which w =Wu \in \ell 1(\BbbN ) is sparse, of the problem

(A\ast A+ \Lambda )1/2u = (A\ast A+ \Lambda ) - 1/2A\ast m

or, equivalently,

(A\ast A+ \Lambda )u = A\ast m.(4.1)

Assume next that A\ast A is a FIO that defines a bounded map between Sobolev spaces in a
ball B(R) of radius R and that there is r \in \BbbR such that for all s \in \BbbR , A\ast A : Hs

0(B(R)) \rightarrow 
Hs+r(B(R)). Let \Lambda be a (possibly unbounded) self-adjoint, positive definite, and invertible
operator \Lambda : L2(B(R)) \rightarrow L2(B(R)). Moreover, assume that \Lambda is given by an elliptic \Psi DO
of order h and h > r. Then the operator A\ast A\Lambda  - 1 is an operator smoothing Sobolev spaces
by order r + h, that is, A\ast A\Lambda  - 1 : Hs(B(R)) \rightarrow Hs+r+h(B(R)) for all s \in \BbbR . Moreover, the
operator (A\ast A+ \Lambda ) - 1 can be written as

(A\ast A+ \Lambda ) - 1 = \Lambda  - 1(I +A\ast A\Lambda  - 1) - 1 = \Lambda  - 1

\left( 
 

k\sum 

k=0

( - A\ast A\Lambda  - 1)k +Rk

\right) 
 ,

where Rk : Hs \rightarrow Hs+k(r+h) is bounded for all s \in \BbbR . Thus the solution u\Lambda of (4.1) can be
written as

u\Lambda =
k\sum 

k=0

uk + \Lambda  - 1RkA
\ast m, uk =  - \Lambda  - 1(A\ast A\Lambda  - 1)k = ( - \Lambda  - 1A\ast A)k\Lambda  - 1A\ast m.

Note that here the operator \Lambda  - 1A\ast A is an FIO whose canonical relation is determined by A
and whose symbol is determined by both A and \Lambda . The training of the neural network canD
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be considered as optimizing \Lambda so that for a given datum m the solution u\Lambda of (4.1) is close to
u\dagger . Roughly speaking, this means to optimize \Lambda so that the imaging artifacts in terms of uk,
caused by iteration of the operator \Lambda  - 1A\ast A, are minimized. Note that the remainder term
\Lambda  - 1RkA

\ast m becomes smoother when k grows.
We are interested in applying this argument in limited-angle tomography. As a first step,

we start by considering the case when X-rays are measured only from finitely many directions
\omega j \in S1, j = 1, . . . , J . As can be seen, the normal operator obtained via backprojection is
associated with the kernel

K(x, y) =
J\sum 

j=1

\delta ((x - y) \cdot \omega \bot 
j ),(4.2)

where \delta \in \scrD \prime (\BbbR ) is the Dirac delta distribution. In this case, K = A\ast A \in I\mu (C \prime 
K) is an FIO

of order \mu =  - 1
2 and its canonical relation CK =

\bigcup J
j=1Cj , where

Cj = \{ (x, \xi ; y, \eta ) \in (T \ast \BbbR 2 \setminus 0)\times (T \ast \BbbR 2 \setminus 0) | \xi = \eta , \eta \bot \omega j , (x - y) \cdot \omega j = 0\} ,

and K : Hs
0(B(\BbbR )) \rightarrow Hs+1/2(B(\BbbR )) for all s \in R. This entails that if (y, \eta ) is in the wavefront

set of u, then the elements (x, \xi ) in the wavefront set of Ku satisfy (x, \xi ; y, \eta ) \in CK , that
is, the operator K moves singularities along CK . This provides a theoretical justification for
the appearance of the well-known streaking artifacts in sparse tomography; see [30, 43]. The
presence of a \Psi DO \Lambda might affect the symbol of the operator, but not the canonical relation
of the operator \Lambda  - 1A\ast A. This amounts to saying that the strength of the singularities of
uk = ( - \Lambda  - 1A\ast A)k\Lambda  - 1A\ast m can be reduced by \Lambda , without transporting them.

We finally consider the limited-angle tomography problem, in which the the operator K is
defined as in (1.2). It is possible to show that such an operator belongs to a class of generalized
FIO whose properties are studied, e.g., in [21, 20]. In addition, K can be treated as an FIO if
considered far from the diagonal, namely, if a smooth truncation function \phi is introduced such
that \phi \in C\infty 

0 (\BbbR 2) and \phi vanishes near zero, the kernel \phi (x  - y)K(x, y), where K is given in
(1.2), defines an FIO. We can thus apply the strategy proposed in subsection 4.1 by supposing
to split the kernel K = K0 +K1, where now K0 is the kernel of A\ast A away from the diagonal
and K1 is the kernel of \Lambda , a learned correction concentrated on the diagonal. Analogously
as above, we see that the operator \Lambda changes the strength of the artifacts appearing in uk =
( - \Lambda  - 1A\ast A)k\Lambda  - 1A\ast m but not their locations. Therefore, even in the limited-angle problem,
the \Psi DO correction can be seen as a regularization technique, from a microlocal analysis
standpoint.

4.3. A convergence result. We now provide a theoretical result which holds true for the
\Psi DONet algorithm, regardless of its specific implementation. In analogy with the approach
of [14], we introduce the following probabilistic approach. Let \scrB = \{ u \in Xp : Wu \in 
\ell 1(\BbbN ); \| Wu\| \ell 1 \leq C\scrB \} and u be a random variable having a probability distribution \mu on the
space \scrB . We can consider \mu as some prior information on the solution of the inverse problem.
Moreover, let \epsilon be a random variable in Yq with distribution \nu , which models the error on the
measurements. Assume that u and \epsilon are independent, hence, the measurement m = Ap,qu+ \epsilon 
is a random variable on the product space Xp \times Yq with density A\ast \mu \otimes \nu , where A\ast \mu denotesD
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the pushforward of \mu to Y via the linear map A. In order to measure the performance of the
network f \tau \theta , we introduce the loss function associated with the network f \tau \theta as

(4.3) \scrL (\theta ;\mu , \nu ) = \BbbE u\sim \mu ,\epsilon \sim \nu 

\bigl[ 
\| f \tau \theta (Ap,qu+ \epsilon ) - Wu\| 2\ell 2

\bigr] 
.

We define the optimal neural network as the one associated with \theta \ast satisfying

(4.4) \theta \ast = argmin
\theta \in \Theta 

\scrL (\theta ;\mu , \nu ).

Before focusing on the properties of the optimal network f \tau \theta \ast , it is convenient to recall that,
for a specific choice of parameters \theta 0, the network f

\tau 
\theta 0

is equivalent to performing N iterations
of (modified) ISTA. The following rough estimate will be useful.

Lemma 4.1. There exist two constants k1, k2 > 0 (depending on C\scrB , L, \rho , \| Ap,q\| , w(0),N)
such that, for all u \in \scrB and \epsilon \in Yq,

(4.5) \| f \tau \theta 0(Ap,qu+ \varepsilon ) - Wu\| \ell 2 \leq k1 + k2\| \epsilon \| Yq .

Proof. According to (3.1), defining \kappa = 1 +
\| A\ast 

p,qAp,q\| +\rho 

L , we get

\| f \tau \theta 0(Ap,qu+ \varepsilon ) - Wu\| \ell 2 \leq \| f \tau \theta 0(Ap,qu+ \varepsilon )\| \ell 2 + \| u\| Xp

\leq \kappa N\| w(0)\| +
\bigl( 
1+\kappa + \cdot \cdot \cdot +\kappa N - 1

\bigr) 
\| Ap,qu+ \epsilon \| Yq+C\scrB 

\leq \kappa N\| w(0)\| + C\scrB +
\kappa N  - 1

\kappa  - 1
(\| Ap,q\| C\scrB + \| \epsilon \| Yq).

We now focus on the case in which \epsilon is a Gaussian random vector, i.e., \nu = N(0, \sigma 2Iq),
with Iq the identity matrix in \BbbR q\times q. In this case, it is useful to recall that

(4.6) \BbbE [\| \varepsilon \| 2Yq
] = q\sigma 2, \BbbE [\| \varepsilon \| 4Yq

] \leq 3q2\sigma 4.

In addition to Lemma 4.1, we can rely on the results reported in section 2 (and in particular
on Theorem 2.6) to provide a more refined estimate. Indeed, we observe that the convergence
result reported in (2.13) is independent of the choice of \epsilon = m  - Au\dagger , as long as \| \epsilon \| \leq \delta .
Moreover, the constant c5 appearing in (2.13) can depend on u\dagger , but only through an upper
bound on \| w\dagger \| \ell 1 (see, in particular, [17, Theorem 1] and [6, Theorem 25] for the constant
derived from Proposition 2.2 and Proposition 2.5, respectively). This allows us to conclude
the following.

Lemma 4.2. Suppose \epsilon \sim N(0, \sigma 2Iq) and let \delta = \sigma 1/\eta , with \eta > 1. There exists \sigma 0 > 0
such that, for \sigma < \sigma 0, for every u \in \scrB 

\BbbE \varepsilon \sim \nu 

\bigl[ 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2

\bigr] 
\leq c25\delta 

2 + 2
\surd 
2k21\delta 

\eta  - 1 + 2
\surd 
6k22q\delta 

3\eta  - 1.

If, moreover, \eta = 3 and \sigma < min\{ \sigma 0, q - 1/2\} , then there exists a constant c\ast (depending on
c5, k1, k2) such that

(4.7) \BbbE \varepsilon \sim \nu 

\bigl[ 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2

\bigr] 
\leq c\ast \delta 2.D
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Proof. We start by considering that

\BbbE \varepsilon \sim \nu 

\bigl[ 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2

\bigr] 
=

\int 

Yq

\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2d\nu (\epsilon )

=

\int 

\| \varepsilon \| <\delta 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2d\nu (\epsilon ) +

\int 

\| \varepsilon \| >\delta 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2d\nu (\epsilon ).

We now employ (2.13) on the first term and the H\"older inequality on the second term. More-

over, in view of Chebyshev's inequality, \nu (\{ \| \varepsilon \| > \delta \} ) \leq \sigma 2

\delta 2
. Therefore,

\BbbE \varepsilon \sim \nu 

\bigl[ 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 2\ell 2

\bigr] 
\leq c25\delta 

2

\biggl( 
1 - \sigma 2

\delta 2

\biggr) 
+
\sigma 

\delta 

\bigl( 
\BbbE \varepsilon \sim \nu 

\bigl[ 
\| f \tau \theta 0(Au+ \epsilon ) - Wu\| 4\ell 2

\bigr] \bigr) 1
2

\leq c25\delta 
2 +

\sigma 

\delta 

\Bigl( 
8k41 + 8k42\BbbE 

\bigl[ 
\| \epsilon \| 4Yq

\bigr] \Bigr) 1
2
.

By (4.6) and by \sigma = \delta \eta we immediately verify the first thesis, and imposing \eta = 3 and \delta 2\eta q < 1
we get (4.7) with c\ast = c25 + 2

\surd 
2k21 + 2

\surd 
6k22.

In view of Lemma 4.2, we can easily prove the following convergence result regarding the
optimal network f \tau \theta \ast .

Proposition 4.3. Consider \varepsilon \sim N(0, \sigma 2Iq) with \delta = \sigma 1/3 and let \theta \ast satisfy (4.4). There
exists \sigma 1 > 0 such that, for \sigma \leq min\{ \sigma 1, q1/2\} , it holds that

(4.8) \scrL (\theta \ast ;\mu , \nu ) \leq c\ast \delta 2.

This also amounts to saying that the random variable f \tau \theta \ast (Ap,qu+ \epsilon ) converges to Wu in the
mean as \delta \rightarrow 0.

Proof. By the definition of \theta \ast and by Lemma 4.2,

\scrL (\theta \ast ;\mu , \nu ) \leq \scrL (\theta 0;\mu , \nu ) =
\int 

\scrB 

\int 

Yq

\| f \tau \theta 0(Ap,qu+ \epsilon ) - Wu\| 2\ell 2d\nu (\epsilon )d\mu (u)

\leq 
\int 

\scrB 
c\ast \delta 2d\mu (u) = c\ast \delta 2.

Although the optimal network f \tau \theta \ast allows for a precise approximation of the solution map
of the inverse problems, it is impractical for solving the minimization problem stated in (4.4).
Instead, neural network algorithms require one to draw a sample from the random variables
U and E and to find the parameter \theta which allows for the best reconstruction on such a
sample (training process). This task is addressed by minimizing a discretized loss functional,
as reported in subsection 5.4, and results in the definition of the trained neural network. The
quality of the trained network can be verified by analyzing its generalization, namely, its ability
to provide good predictions even when tested on data outside the training sample. Such an
analysis has been performed in detail (although with some different assumptions with respect
to the ones in this work) in [14], and can be extended also to the problem under consideration.D
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5. In practice: The particular case of CT. In this section, we focus on the practical
aspects of the reconstruction algorithm introduced in subsection 4.3, in the particular case
of LA-CT with the discrete setting. In the remainder of the article, the discrete counterpart
of the operator Ap,q representing the LA-CT will be denoted by R\Gamma . We first define the
regularized minimization problem, and then propose an effective method for the computation
of the convolutional kernel filters approximating the backprojection operator in the wavelet
domain. Third, we present and discuss the general reconstruction workflow and finally give
more details on the two CNN architectures we propose in this paper.

5.1. The CT minimization problem. After suitable discretization, we are given the mea-
surements (i.e., the so-called sinogram or observed image) m \in \BbbR q such that

(5.1) m = R\bfGamma u
\dagger + \epsilon ,

where u\dagger \in \BbbR p denotes the (unknown) discrete and vectorized image, R\bfGamma \in \BbbR q\times p describes a
discretized version of the Radon transform where the angles are limited in the arc specified by
\Gamma , and \epsilon \in \BbbR q models the measurement noise. We call w\dagger the \BbbR p-vector such that Wu\dagger = w\dagger ,
where W \in \BbbR p\times p represents a discretization of the wavelet transform. Thus, the regularized
minimization problem is given by

(5.2) min
\bfw \in \BbbR p

\| R\bfGamma W
\ast w  - m\| 22 + \lambda \| w\| 1.

Our recovery algorithm for finding a reconstruction u of u\dagger involves convolutional archi-
tectures incorporated into the iterative structure of standard ISTA, as described in section 3.
In the next paragraphs, we detail the implementation of such an algorithm.

5.2. Convolutional kernel operator for limited-angle CT. Building a convolutional al-
gorithm that reproduces the behavior of standard ISTA first requires identifying the various
blocks of the matrix K representing the backprojection operator in the wavelet domain. In
other words, the very first step in the development of our method is to establish the convolu-
tional filters of K which, once applied as defined in (3.7), provide a reliable approximation of
the operator WR\ast 

\bfGamma R\bfGamma W
\ast .

One way to compute such convolutional filters that proves to be a numerically advan-
tageous alternative to (3.8), is represented in Figure 4. Let us consider an object whose
representation in the wavelet domain has only one nonzero pixel, located at the center of
one of its wavelet subbands. Applying the operator WR\ast 

\bfGamma R\bfGamma W
\ast to this initial object leads

to a new object whose subbands present a bow-tie-shaped structure. Those ``bow-tie"" sub-
bands constitute a first set of convolutional filters. By reiterating this operation until the
central pixel of all the wavelet subbands in the initial object has been visited, one obtains the
entire collection of convolutional filters necessary for the approximation of WR\ast 

\bfGamma R\bfGamma W
\ast . A

numerical example of convolutional filter is shown in Figure 5.
In order to imitate the behavior of the operator WR\ast 

\bfGamma R\bfGamma W
\ast , the convolutional filters so

computed are then to be applied to the wavelet subbands of an object as illustrated in Figure 6.
First, each wavelet subband of the object of interest is replicated 3(J  - J0) + 1 times. ThoseD
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Wavelet

W∗

Image

R∗
ΓRΓ

Image

W

Wavelet

Figure 4. Illustration of the proposed way to compute the filters of the convolutional kernel operator K in
the LA-CT case. The initial object (on the left) is created such that all its pixels but one are set to zero. The
only nonzero pixel is located at the center of one of its wavelet subbands. By applying the operator \bfW \bfR \ast 

\bfGamma \bfR \bfGamma \bfW 
\ast 

to this initial object, one obtains a new object in the wavelet domain, whose subbands present a bow-tie-shaped
structure. The set of bow-tie subbands thus computed from all the possible initial objects constitute the filters of
the convolutional kernel operator. Here we have represented three levels of decomposition in the wavelet domain,
meaning that the total number of convolutional filters amounts to (32 + 1)2 = 100.

Figure 5. Example of a bow-tie subband that can be used as a convolutional filter of the kernel operator
K. It was generated from a 256 \times 256 initial object, according to the procedure detailed in subsection 5.2 and
illustrated in Figure 4. Theory suggests that the pixels with highest intensities are spread according to a bow-
tie-shaped structure. In practice, they are even more condensed: most of the energy is concentrated along two
diagonal lines that intersect in the center and whose inclination is defined by the limited angle: 95.8\% of the
\ell 2-norm of the filter is concentrated along those two lines, from which 94.8\% are inside the central red square.

replicas are either upsampled, or downsampled, or kept with the same dimensions, depending
on the scale of the filter they are to be convolved with. The set of convolutional filters used on
the replicas of a particular wavelet subband of scale j and type (t) is the set of filters generated
beforehand by applying the operator WR\ast 

\bfGamma R\bfGamma W
\ast to an object whose only non-zero pixel is

located at the center of its wavelet subband of the exact same scale j and type (t). Once the
convolutions between the replicas and the filters have been performed, the resulting subbands
are reassembled to form the wavelet representation of a new object. This process is reiterated
for all the subbands of the initial object and, ultimately, the 3(J  - J0) + 1 resulting items are
summed. The final outcome is an approximation of the wavelet representation of the operator
WR\ast 

\bfGamma R\bfGamma W
\ast applied to the initial object (cf. Figure 7).D
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decomposition

convolution
sum

*

*

*

*

*

*

*

*

*

*

=

=

=

=

=

=

=

=

=

=

Figure 6. Illustration of the way the filters of the convolutional kernel operator are applied to each wavelet
subband of the initial object, after up- and down-sampling operations, in order to approximate the operator
\bfW \bfR \ast 

\bfGamma \bfR \bfGamma \bfW 
\ast .

Two remarks are worth mentioning regarding the creation and use of the above-defined
convolutional filters. First, our practical implementation very slightly differs from the theory
presented in (3.7) as far as the downsampling is concerned. In our codes, downsampling is
indeed applied before computing the convolution between the filter and the wavelet subband
replica, and not after as it is presented in the theory. This choice is motivated by the reduction
in terms of storage needs and running time such a change allows while preserving the accuracy
of the approximation. Second, both the theoretical analysis and the experimental tests showed
that the dimensions of the convolutional filters used for the approximation of WR\ast 

\bfGamma R\bfGamma W
\ast do

affect the accuracy of the results. Initially, we assumed that the convolutional filters should
be generated from only-one-nonzero-pixel objects with the same dimensions 2J \times 2J as the
image of interest (recall that p = 22J). However, we reached the conclusion that they actually
have to be generated from twice bigger objects, that is of dimensions 2J+1\times 2J+1, in order to
get an accurate approximation of the operator WR\ast 

\bfGamma R\bfGamma W
\ast . An illustration of the effects of

the size of the filters can be seen on Figure 7.

5.3. Our CNN architectures. The above described method for generating and applying
the filters of the kernel operator K makes the concrete implementation of a convolutional
algorithm that imitates the behavior of standard ISTA possible. Thus, the convolutional
implementation of ISTA, resultwise equivalent to the standard one, could be written as

(5.3) w(n+1) = \scrS \lambda 
L

\biggl( 
w(n) +

1

L

\Bigl( 
WR\ast 

\bfGamma m - Kw(n)
\Bigr) \biggr) 

, n = \{ 0, . . . , N\} .

This algorithm offers the merits of the iterative model-based method ISTA, while allowing
the incorporation of data-driven approaches, such as machine learning and deep neural net-
work techniques. The implementation of K indeed involves operations that are all perfectly
adaptable to the framework of CNNs. Our goal is precisely to take full advantage of this com-D
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(a) (b) (c) RE: 0.121

(d) (e) (f) RE: 0.003

Figure 7. Illustration of the effect of the standard backprojection operator and of its approximations based
on convolutional filters of different sizes. (a) shows the ground truth \bfu \dagger of interest and (d) its standard back-
projection \bfR  \star 

\bfGamma \bfR \bfGamma \bfu 
\dagger , computed with the basic functions of the Python package scikit-image. (b) (resp., (e))

represents the approximation \bfK \bfu \dagger obtained with convolutional filters beforehand generated from 2J \times 2J (resp.,
2J+1\times 2J+1) only-one-nonzero-pixel object. (c) and (f) show the absolute differences between the approximation
of the backprojection operator and the expected value (d). The dynamic range of the plot is modified for better
contrast.

patibility and profit from the remarkable potentials of deep neural networks by converting
the hitherto fixed operator K into a partially trainable CNN. Thus, the center of the convo-
lutional filters so far precomputed with the deterministic method presented in subsection 5.2
can henceforth be considered as parameters to be learned from data. The choice of learning
only the central part of the convolutional filters of K rather than the whole filters is motivated
by the need to reduce the model complexity which, in the latter case, makes the training of
the model burdensome if not impractical.

In order to further improve reconstruction performance, we also propose to learn the
soft-thresholding parameter as well as the step length so far set at 1/L. The so-defined
convolutional architecture results in our proposed algorithm \Psi DONet, whose convergence
results are detailed in subsection 4.3. In subsections 5.3.1 and 5.3.2, we propose two differ-
ent implementations of \Psi DONet, that prove to be resultwise similar as can be observed in
subsection 6.2.D
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filter of convolutional
operator K

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

filter of non trainable
operator K̆τ

+

τ

τ

filter of trainable
operator Λτ

ζ

Figure 8. Illustration of the way the convolutional filters of the two operators in \Psi DONet-O are computed
based on the filters of operator \bfK . Each filter of \bfK is partitioned into two filters, which sum is equivalent to
the initial one. The filter of \u \bfK \tau is a copy of the filter of \bfK with the exception that the \tau \times \tau central weights
are set to zero. The filter of \Lambda \tau 

\zeta has dimensions \tau \times \tau and is initialized with the central \tau \times \tau central weights
of the filter of \bfK .

5.3.1. \Psi DONet-F. The most natural way to implement \Psi DONet consists in partitioning
the convolutional operator K into two operators: a fixed one, \u K\tau , and a trainable (single-
layer) CNN referred to as \Lambda \tau 

\zeta , where \tau is a tunable hyperparameter. The two operators have
the exact same architecture as K and their sum, before any training, is strictly equivalent to
K. The first operator \u K\tau is nontrainable and its filters are a copy of the filters of K with the
exception that the \tau \times \tau central weights of each filter are set to zero. The second operator
\Lambda \tau 
\zeta , on the contrary, is composed by \tau \times \tau -trainable filters that are initialized with the \tau \times \tau 

central part of the filters of K (cf. Figure 8). This first implementation of \Psi DONet, referred
to as filter-based \Psi DONet or \Psi DONet-F, is formulated as

(5.4) w(n+1) = \scrS \gamma n

\Bigl( 
w(n) + \alpha n

\Bigl( 
WR\ast 

\bfGamma m - \beta n

\Bigl( 
\u K\tau w(n) + \Lambda \tau 

\zeta nw
(n)
\Bigr) \Bigr) \Bigr) 

,

where n = \{ 0, . . . , N\} and the parameters to be learned are \{ \gamma 0, \alpha 0, \beta 0, \zeta 0, . . . , \gamma N , \alpha N , \beta N , \zeta N\} .
The parameters \{ \beta 0, . . . , \beta N\} have been added in such a way that the influence of the fixed
operator \u K\tau with respect to the constant term WR\ast 

\bfGamma m can be adjusted in order to max-
imize the accuracy of the results. It is worth mentioning that for the particular choice of
\gamma n = \lambda 

L , \alpha n = 1
L , \beta n = 1 for any n = \{ 0, . . . , N\} , this model before any training is exactly

equivalent to standard ISTA.
The trade-off between the number of parameters that can be improved through the learn-

ing process and the trainability of the model is controlled by \tau . For a sound choice of such
a hyperparameter, the complexity of the model is sufficiently reduced to allow for the con-
vergence of the learning algorithm while enabling the enhancement of a significant number of
weights in the filters.

This implementation has the advantage of offering a clear interpretation of the role and
meaning of the convolutional filters belonging to \u K\tau and \Lambda \tau 

\zeta . Those filters are indeed initialized
with the filters of the operator K that imitates the behavior of WR\ast 

\bfGamma R\bfGamma W
\ast . Thus, modifyingD
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WR∗
Γm

Λ0 +
β0

γ0

Λ1 +
β1

WR∗
ΓRΓW

∗ −

α1

γ1

Λ2 +
β2

WR∗
ΓRΓW

∗ −

α2

γ2

(. . .)

(. . .) Λn +
βn

WR∗
ΓRΓW

∗ −

αn

γn

w(n+1)

Figure 9. Block diagram of the proposed model (5.5). Notice that the soft-thresholding operator acts as a
nonlinear activation function.

their weights through the learning process can be thought of as a direct improvement of the
backprojection operator.

\Psi DONet-F has led to very satisfactory preliminary results, presented in section 6. How-
ever, training such a model on big images may quickly become extremely onerous in terms of
running time and storage requirements. Such problems may arise while training \Psi DONet-F
on images of dimensions greater than or equal to 256\times 256. Unlike typical CNNs that usually
make use of small-sized convolutional filters, the filters of \u K\tau in our proposed algorithm are
much bigger than the wavelet subbands they are convolved with. This uncommon procedure,
that inter alia implies the padding, i.e., the addition of many extra pixels to the edge of each
wavelet subband, brings about a severe speed reduction in the training process as well as
the necessity of a substantial memory space. The alternative implementation of \Psi DONet,
described in subsection 5.3.2 , addresses these shortcomings.

5.3.2. \Psi DONet-O. The main flaw of \Psi DONet-F rests upon the use of operator \u K\tau which
implies numerous burdensome convolutions. This issue is worked around in \Psi DONet-O (5.5),
as \u K\tau is not involved anymore. Here, the backprojection operator is not approximated,
meaning that WR\ast 

\bfGamma R\bfGamma W
\ast is indeed implemented as the succession of the inverse wavelet,

Radon, inverse Radon, and direct wavelet transforms applied to the iterate w(n). This second
implementation of \Psi DONet, named operator-based \Psi DONet or \Psi DONet-O, reads as

(5.5) w(n+1) = \scrS \gamma n

\Bigl( 
w(n) + \alpha n

\Bigl( 
WR\ast 

\bfGamma m - WR\ast 
\bfGamma R\bfGamma W

\ast w(n)
\Bigr) 
+ \beta n\Lambda 

\tau 
\zeta nw

(n)
\Bigr) 
,

where n = \{ 0, . . . , N\} , the parameters to be learned are \{ \gamma 0, \alpha 0, \beta 0, \zeta 0, . . . , \gamma N ,\alpha N , \beta N , \zeta N\} ,
and \Lambda \tau 

\zeta n
has the same architecture as the operator K. The block diagram of the method is rep-

resented in Figure 9. For the special choice of \gamma n = \lambda 
L , \alpha n = 1

L , \beta n = 0 for any n = \{ 0, . . . , N\} ,
this model is exactly equivalent to standard ISTA. The only convolutions involved in this
alternative implementation are the ones composing the CNN \Lambda \tau 

\zeta n
, whose filters are chosen to

be small enough to avoid any running time or storage issue. In that sense, \Psi DONet-O offers
an implementation numerically preferable to \Psi DONet-F, while retaining the same properties
on a theoretical level. Furthermore, such a model keeps offering a clear interpretation of its
postprocessing abilities since \Lambda \tau 

\zeta n
, on account of its architecture, can still be seen as an adjunct

for improving the backprojection operator.D
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5.3.3. Note on soft-thresholding parameters. From a theoretical point of view, the pa-
rameters \bfitgamma \bfzero , . . . , \bfitgamma \bfitN in\Psi DONet-F and\Psi DONet-O have to be nonnegative, as they represent
the soft-thresholding parameters. In order to stick to the operator originally involved in stan-
dard ISTA, it is possible to enforce the positivity of the coefficient by replacing each \bfitgamma \bfitn by
10\widetilde \bfitgamma \bfitn , where \widetilde \bfitgamma \bfitn becomes the actual trainable parameter. However, in order to allow for a
greater degree of freedom in the learning process, we decided to implement the operator \bfscrS \bfitgamma \bfitn in
such a way that it is also interpretable for negative values of its parameter \bfitgamma \bfitn . In such a case,
we define the operator \bfscrS \bfitgamma \bfitn <\bfzero as the symmetric of the soft-thresholding curve with respect to
\bfity = \bfitx , while for nonnegative values of \bfitgamma \bfitn , \bfscrS \bfitgamma \bfitn is exactly equivalent to the soft-thresholding
operator. Formally, \bfscrS \bfitgamma \bfitn becomes

For \bfitgamma \bfitn \geq 0 :

\bfscrS \bfitgamma \bfitn (\bfitx ) =

\left\{ 
   
   

\bfitx  - \bfitgamma \bfitn if \bfitx \geq \bfitgamma \bfitn ,

0 if | \bfitx | < \bfitgamma \bfitn ,

\bfitx + \bfitgamma \bfitn if \bfitx \leq  - \bfitgamma \bfitn ,

For \bfitgamma \bfitn < 0 :

\bfscrS \bfitgamma \bfitn (\bfitx ) =

\Biggl\{ 
\bfitx  - \bfitgamma \bfitn if \bfitx \geq 0,

\bfitx + \bfitgamma \bfitn if \bfitx < 0.

The two implementations \Psi DONet-F and \Psi DONet-O are tested with and without the
positivity constraint on \bfitgamma (cf. results in subsection 6.2).

5.4. Supervised learning. If we denote \bfitf \bfittau 
\bfittheta as the \bfitN -layer CNN that, given m, computes

the final outputw(\bfitN +\bfone ) according to one of the two proposed architectures, we aim at learning
the optimal high-dimensional vector \bfittheta = \{ \bfitgamma \bfzero , \bfitalpha \bfzero , \bfitbeta \bfzero , \bfitzeta \bfzero , . . . , \bfitgamma \bfitN , \bfitalpha \bfitN , \bfitbeta \bfitN , \bfitzeta \bfitN \} that ideally
satisfies the relation

(5.6) \bfitf \bfittau 
\bfittheta (m) \approx Wu\dagger .

For a mathematical formalization, we regard the tuple
\bigl( 
m,u\dagger \bigr) \in \BbbR \bfitq \times \BbbR \bfitp as a random

variable with a joint probability distribution \Xi , as detailed in subsection 4.3. Ideally, we
would like to find a parameter vector \bfittheta \ast minimizing the expected risk

(5.7) min
\bfittheta 

\Bigl( 
\BbbE (\bfm ,\bfu \dagger )\sim \bfXi \| \bfitf \bfittau 

\bfittheta (m)  - Wu\dagger \| \bftwo \bftwo 
\Bigr) 
.

Other loss functions, such as the weighted \bfitl \bftwo -norm, where the wavelet coefficients are weighted
depending on their scale, have been tested and lead to results similar to the nonweighted \bfitl \bftwo -
norm. For the sake of brevity, we will stick to the basic form of (5.7).

In practice, computing the expectation with respect to \Xi is not possible. Instead, we are
typically given a finite set of independent drawings (m\bfone , u

\dagger 
\bfone ), . . . , (m\bfitS , u

\dagger 
\bfitS ) and consider the

minimization of the empirical risk:

(5.8) min
\bfittheta 

1

\bfitS 

\bfitS \sum 

\bfiti =\bfone 

\| \bfitf \bfittau 
\bfittheta (m\bfiti )  - Wu\dagger 

\bfiti \| 
\bftwo 
\bftwo .
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Depending on the properties of \bfitf \bfittau 
\bfittheta , the optimization problem is in general nonconvex. In the

case of neural networks, typically some form of gradient descent is used, where the gradients
are calculated via backpropagation [48]. Computing the gradient over the entire training
set in (5.8) is often not feasible for large-scale problems due to memory limitations. To
circumvent this problem, a stochastic of the minibatch gradient descent is used, in which the
gradient is approximated over smaller, randomly selected batches of training examples [19,
Chapter 8]. The final performance (i.e., the generalization) of the trained map \bfitf \bfittau 

\bfittheta is evaluated
on a separate set of independent drawings, the test set, that were not previously used in the
optimization of \bfittheta in (5.8).

6. Experiments and results. In this section, we evaluate the performance of the proposed
reconstruction schemes by comparing the performance with standard ISTA.

6.1. Preliminaries. Let us begin by describing the considered experimental scenario, the
implementation of the used operators, and the training procedure.

6.1.1. Data set. The data set consists of 10700 synthetic images of ellipses, where the
number, locations, sizes, and intensity gradients of the ellipses are chosen randomly. Using
the MATLAB function radon, we simulate measurements for a missing wedge of 60\circ with
Gaussian noise. To avoid inverse crime [37] the measurements are simulated at a higher
resolution and then downsampled for an image resolution of 128\times 128. 10000 images are used
for training, 200 images for validation, and 500 for testing.

6.1.2. Operators. For the implementation of the discrete limited angle operator R\bfGamma we
use the radon routine of the Python package scikit-image [52], or the 2D parallel beam
geometry of the operator discretization library [1], which is based on the Astra toolbox [51].
The former is employed for generating the backprojections WR\ast 

\bfGamma m provided as inputs to
\Psi DONet-F and \Psi DONet-O, while the latter is used for the implementation of WR\ast 

\bfGamma R\bfGamma W
\ast 

in \Psi DONet-O. The direct and inverse Radon transform operators are multiplied by a constant
so that their norm is equal to one. Regarding the wavelet transform, we make use of the
Python package pywt [34] or a rectified version of the package tf-wavelets [23]. In all our
experiments, we consider the case J = 7 and J0 = 4, implying that the wavelet decomposition
Wu has 10 subbands. For \Psi DONet-F and \Psi DONet-O, we choose to set \bfittau to 32. Note that
according to theory, \bfittau is supposed to be odd, however, in practice we prefer it to be even.
This very slight modification has no effect on the results.

6.1.3. Network structure and training. For the implementation of \Psi DONet-F and
\Psi DONet-O, we fix the number of unrolled blocks \bfitN to 120. In order to reduce the number
of parameters to be learned, we choose to use only 40 different sets of trainable parameters
\{ \bfitzeta \bfitn , \bfitgamma \bfitn , \bfitalpha \bfitn , \bfitbeta \bfitn \} , each of which is being used over 3 consecutive blocks, instead of the the-
oretically expected 120 sets. Implementing and training our algorithms has been performed
using Tensorflow with an Adam optimizer [31] and a learning rate (step size) of 10 - 3. The
number of epochs was chosen to be 3, and the batch size was set to 25. The training, run on
a NVIDIA Quadro P6000 GPU, takes roughly 20 hours.1

1Our codes are available at https://github.com/megalinier/PsiDONet.D
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Table 1
Comparison of reconstruction methods. The similarity values are averaged over the 500 images of the test set.

Method RE PSNR SSIM HaarPSI

\bfu \mathrm{i}\mathrm{s}\mathrm{t}\mathrm{a} 0.44 22.84 0.36 0.37
\bfu \mathrm{F}\mathrm{B}\mathrm{P} 0.64 19.49 0.20 0.30

\bfu +
\bfPsi \mathrm{d}\mathrm{o}-\mathrm{F} 0.29 26.63 0.59 0.47

\bfu \bfPsi \mathrm{d}\mathrm{o}-\mathrm{F} 0.25 27.63 0.78 0.54

\bfu +
\bfPsi \mathrm{d}\mathrm{o}-\mathrm{O} 0.28 26.76 0.60 0.48

\bfu \bfPsi \mathrm{d}\mathrm{o}-\mathrm{O} \bfzero .\bftwo \bfthree \bftwo \bfeight .\bffour \bfthree \bfzero .\bfeight \bfone \bfzero .\bffive \bfeight 

6.1.4. Compared methods. We compare the preliminary results of the architectures we
propose with the reconstructions provided by standard ISTA. In the implementation of the
latter, we make use of the formula introduced in [12]. The regularization parameter \bfitlambda and
the constant \bfitL are respectively set to 2.10 - 6 and 5. The number of iterations for ISTA is
determined by the stopping criterion

(6.1) \| u(\bfitn +\bfone )  - u(\bfitn )\| \bftwo \bftwo /\| u
(\bfitn )\| \bftwo \bftwo < \bfitt \bfito \bfitl ,

where \bfitt \bfito \bfitl is chosen to be 2.10 - 4. Below, we give a list of the abbreviations henceforth used
for the different recovery methods:

u\bfi \bfs \bft \bfa Standard ISTA reconstruction.
u\bfF \bfB \bfP Standard FBP with the ``ramp"" filter of skicit-image.

u+
\bfPsi \bfd \bfo -\bfF Solution provided by \Psi DONet-F with positivity constraint on the soft-

thresholding parameter (\bfitgamma \bfitn = 10\widetilde \bfitgamma \bfitn \forall \bfitn ).
u\bfPsi \bfd \bfo -\bfF Solution provided by \Psi DONet-F without positivity constraint on the soft-

thresholding parameter.
u+
\bfPsi \bfd \bfo -\bfO Solution provided by \Psi DONet-O with positivity constraint on the soft-

thresholding parameter (\bfitgamma \bfitn = 10\widetilde \bfitgamma \bfitn \forall \bfitn ).
u\bfPsi \bfd \bfo -\bfO Solution provided by \Psi DONet-O without positivity constraint on the soft-

thresholding parameter.

6.1.5. Similarity measures. For an assessment of image quality, we are using several
quantitative measures, such as the relative error (RE) given by \| u\dagger  - u\| \bftwo /\| u\dagger \| \bftwo , where
\bfitu \dagger denotes the reference image and \bfitu its reconstruction. Furthermore, we consider the peak
signal-to-noise ratio (PSNR) and the structured similarity index (SSIM) [53] provided by
Tensorflow. Finally, we are reporting the Haar wavelet-based perceptual similarity index
(HaarPSI) that was recently proposed in [47].

6.2. Results. In the following, we will report and discuss the results of our numerical
experiments. The average image quality measures of the 500 test images are reported in
Table 1. Furthermore, a visualization of the reconstruction quality for two of the test images
is given in Figures 10 and 11. Due to the large missing angle of 60\circ , the FBP images in
Figures 10(c) and 11(c) are contaminated with streaking artifacts and contrast changes. TheD
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(a) Sinogram m 0 (b) Ground truth u\dagger 0

(c) uFBP

RE: 0.66, SSIM: 0.14

(d) uista

RE: 0.47, SSIM: 0.24

(e) u\bfPsi do-O

RE: 0.18 , SSIM: 0.83

0
0

(f) | u\dagger  - uFBP| (g) | u\dagger  - uista| (h) | u\dagger  - u\bfPsi do-O| 0

(i) u+
\bfPsi do-O

RE: 0.23, SSIM: 0.56

(j) u\bfPsi do-F

RE: 0.20, SSIM: 0.82

(k) u+
\bfPsi do-F

RE: 0.24, SSIM: 0.58

0
0

(l) | u\dagger  - u+
\bfPsi do-O| (m) | u\dagger  - u\bfPsi do-F| (n) | u\dagger  - u+

\bfPsi do-F| 0

Figure 10. Visualization of the sinogram (or observed image) and corresponding results for one test image.D
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(a) Sinogram m 0 (b) Ground truth u\dagger 0

(c) uFBP

RE: 0.64, SSIM: 0.18

(d) uista

RE: 0.43, SSIM: 0.32

(e) u\bfPsi do-O

RE: 0.23 , SSIM: 0.78

0
0

(f) | u\dagger  - uFBP| (g) | u\dagger  - uista| (h) | u\dagger  - u\bfPsi do-O| 0

(i) u+
\bfPsi do-O

RE: 0.28, SSIM: 0.56

(j) u\bfPsi do-F

RE: 0.25, SSIM: 0.76

(k) u+
\bfPsi do-F

RE: 0.29, SSIM: 0.53

0
0

(l) | u\dagger  - u+
\bfPsi do-O| (m) | u\dagger  - u\bfPsi do-F| (n) | u\dagger  - u+

\bfPsi do-F| 0

Figure 11. Visualization of the sinogram (or observed image) and corresponding results for one test image.D
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standard ISTA offers reconstructions of higher quality (cf. Figures 10(d) and 11(d)), however,
the streaking artifacts are still noticeable as well as the impurities due to the noise in the
measurements. Besides, the ISTA reconstructions are toned down, meaning that for the
most part, the intensity of the pixels remain significantly lower than the expected values.
With our two models, \Psi DONet-F and \Psi DONet-O, whether with positivity constraint on the
soft-thresholding parameter or without, it is possible to substantially reduce those artifacts
and contrast issues. As can be seen in Figures 10 and 11, our proposed methods lead to
undeniably enhanced reconstructions, with a meaningful diminution of the relative error. In
particular, \Psi DONet-O provides slightly better similarity values than \Psi DONet-F, although
both implementations produce comparable results.

In the case where the positivity of the soft-thresholding parameter is enforced, that is
for u+

\bfPsi \mathrm{d}\mathrm{o}-\mathrm{F} and u+
\bfPsi \mathrm{d}\mathrm{o}-\mathrm{O}, one can notice that the streaking artifacts, although greatly lessened

when compared with the ISTA images, are still present on the reconstructions (cf. Figures 10(i),
10(k), 11(i), and 11(k)). In fact, the SSIM measures are greater than in the ISTA case, but still
clearly below the SSIM values obtained with the nonconstrained version of the two models.
The latter (u\bfPsi \mathrm{d}\mathrm{o}-\mathrm{F} and u\bfPsi \mathrm{d}\mathrm{o}-\mathrm{O}) do a noteworthy job in removing the artifacts and sharpening
the edges (cf. Figures 10(e), 10(j), 11(e), and 11(j)).

Overall, \Psi DONet-O without any constraint on the soft-thresholding parameters offers
the best results among the compared methods and allows for an optimized implementation of
\Psi DONet.

7. Conclusions. In the present paper, we introduced a novel CNN, named \Psi DONet,
inspired by the well-known ISTA and the convolutional nature of certain FIOs and \Psi DOs,
like the limited-angle Radon transform. We proved that the unrolled iterations of ISTA can
be interpreted as layers of a CNN, where the downsampling, upsampling, and convolution
operations, typically defining a CNN, can be exactly specified by combining the convolutional
nature of the limited-angle Radon transform and basic properties defining an orthogonal
wavelet system. In addition, we proved that, for a specific choice of the parameters involved,
\Psi DONet recovers standard ISTA or a perturbation of ISTA, up to a bound on the filters
coefficients which we estimated in the case of limited-angle Radon transform.

The key feature of the proposed architecture is its potential to learn \Psi DO-like structures,
which makes it suitable to be extended to any convolutional operator which is a FIO or
\Psi DO. Moreover, the analysis carried out on paper allows one to gain understanding and
interpretability of the results, which gives insight into a whole class of inverse problems arising
from FIO or \Psi DO and opens it up for fundamental theoretical generalization results.

As a proof of concept, we tested two different implementations of \Psi DONet on simulated
data from limited-angle geometry, generated from the ellipse data set. The improvement,
compared to standard ISTA (and classical FBP), is notable and it is promising for further
numerical testing which we leave to future work. Additional directions for future numerical
testing include larger sizes for images, smaller and sparser visible wedges, additional regular-
ization for the loss function, and reconstructions from real data. Also, it may be beneficial for
the reconstruction to introduce more advanced features in the \Psi DONet architecture, such as
skip connections or other residual blocks. Incorporating such elements, while preserving full
interpretability of the network, is left for future work.
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Appendix A. Proof of Proposition 2.2.

Proof. According to [17, section 3], the following variational source condition is satisfied
for every \bfitw \in \ell \bfone (\BbbN ):

(A.1) \bfitbeta \| \bfitw  - \bfitw \dagger \| \ell \bfone \leq \| \bfitw \| \ell \bfone  - \| \bfitw \dagger \| \ell \bfone + \bfitC \| \bfitA \bfitW \ast \bfitw  - \bfitA \bfitW \ast \bfitw \dagger \| \bfitY .

We aim at applying it to\bfitw = \bfitw \bfitdelta ,\bfitp ,\bfitq \in \bfitW \bfitp \subset \ell \bfone (\BbbN ). First consider the term \| \bfitw \| \ell \bfone  - \| \bfitw \dagger \| \ell \bfone 
in the right-hand side. Since \bfitw \bfitdelta ,\bfitp ,\bfitq is a solution of (2.5),

\bfitlambda \| \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bfone =
\bigl( 
\| \bfitA \bfitp ,\bfitq \bfitW 

\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bftwo \bfitY + \bfitlambda \| \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bfone 
\bigr) 
 - \| \bfitA \bfitp ,\bfitq \bfitW 

\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bftwo \bfitY 
\leq \| \bfitA \bfitp ,\bfitq \bfitW 

\ast \BbbP \bfitp \bfitw 
\dagger  - \BbbP \bfitq \bfitm \| \bftwo \bfitY + \bfitlambda \| \BbbP \bfitp \bfitw 

\dagger \| \ell \bfone  - \| \bfitA \bfitp ,\bfitq \bfitW 
\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bftwo \bfitY ,

whence

\| \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bfone  - \| \bfitw \dagger \| \ell \bfone \leq 
1

\bfitlambda 
\| \bfitA \bfitp ,\bfitq \bfitW 

\ast \BbbP \bfitp \bfitw 
\dagger  - \BbbP \bfitq \bfitm \| \bftwo \bfitY  - 

1

\bfitlambda 
\| \bfitA \bfitp ,\bfitq \bfitW 

\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bftwo \bfitY .

We can easily check that \bfitA \bfitp ,\bfitq \bfitW 
\ast \BbbP \bfitp = \BbbP \bfitq \bfitA \bfitW \ast \BbbP \bfitp ; then, since \| \BbbP \bfitq \| \bfitY \rightarrow \bfitY \leq 1, denoting by

\bfitQ = \| \bfitA \bfitp ,\bfitq \bfitW 
\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bfitY , we have

\| \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bfone  - \| \bfitw \dagger \| \ell \bfone \leq 
1

\bfitlambda 
\| \bfitA \bfitW \ast \BbbP \bfitp \bfitw 

\dagger  - \bfitm \| \bftwo \bfitY  - 
1

\bfitlambda 
\bfitQ \bftwo 

\leq 
1

\bfitlambda 
\| \bfitA \bfitW \ast (\BbbP \bfitp \bfitw 

\dagger  - \bfitw \dagger )\| \bftwo \bfitY +
1

\bfitlambda 
\| \bfitA \bfitW \ast \bfitw \dagger  - \bfitm \| \bftwo \bfitY  - 

1

\bfitlambda 
\bfitQ \bftwo .

In conclusion,

(A.2) \| \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bfone  - \| \bfitw \dagger \| \ell \bfone \leq 
1

\bfitlambda 
\| \bfitA \| \bftwo \| \bfitw \dagger  - \BbbP \bfitp \bfitw 

\dagger \| \bftwo \ell \bftwo +
1

\bfitlambda 
\bfitdelta \bftwo  - 

1

\bfitlambda 
\bfitQ \bftwo .

The second term in the right-hand side of (A.1), instead, can be bounded as follows:
(A.3)

\| \bfitA \bfitW \ast (\bfitw \bfitdelta ,\bfitp ,\bfitq  - \bfitw \dagger )\| \bfitY = \| \bfscrP \bfitq \bfitA \bfitW \ast (\bfitw \bfitdelta ,\bfitp ,\bfitq  - \bfitw \dagger )\| \bfitY +\| (\bfitI  - \bfscrP \bfitq )\bfitA \bfitW \ast (\bfitw \bfitdelta ,\bfitp ,\bfitq  - \bfitw \dagger )\| \bfitY 
\leq \| \bfitA \bfitp ,\bfitq \bfitW 

\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bfitY + \bfitdelta + \| (\bfitI  - \BbbP \bfitq )\bfitA \| \bfitX \rightarrow \bfitY \| \bfitw \bfitdelta ,\bfitp ,\bfitq  - \bfitw \dagger \| \ell \bfone + \bfitdelta 

\leq \bfitQ + \bfitM \| (\bfitI  - \BbbP \bfitq )\bfitA \| \bfitX \rightarrow \bfitY + \bfitdelta ,

where the positive constant \bfitM depends on \| \bfitw \dagger \| \ell \bftwo . In order to get an estimate for \bfitQ =
\| \bfitA \bfitp ,\bfitq \bfitW 

\ast \bfitw \bfitdelta ,\bfitp ,\bfitq  - \BbbP \bfitq \bfitm \| \bfitY , we use (A.1): since 0 \leq \bfitbeta \| \bfitw \bfitdelta ,\bfitp ,\bfitq  - \bfitw \dagger \| \ell \bfone , using (A.2) and (A.3)
we have

0 \leq 
1

\bfitlambda 
\| \bfitA \| \| \bfitw \dagger  - \BbbP \bfitp \bfitw 

\dagger \| \bftwo \ell \bftwo +
1

\bfitlambda 
\bfitdelta \bftwo  - 

1

\bfitlambda 
\bfitQ \bftwo + \bfitQ + \bfitM \| (\bfitI  - \BbbP \bfitq )\bfitA \| \bfitX \rightarrow \bfitY + \bfitdelta .

By solving this second-order inequality we get

(A.4)
\bfitQ \leq 

\bfitlambda 

2
+

\bfitlambda 

2

\biggl( 
1 +

4

\bfitlambda \bftwo 
\| \bfitA \| \bftwo \| \bfitw \dagger  - \BbbP \bfitp \bfitw 

\dagger \| \bftwo \ell \bftwo 
4

\bfitlambda 
\bfitdelta \bftwo +

4\bfitM 

\bfitlambda 
\| (\bfitI  - \BbbP \bfitq )\bfitA \| \bfitX \rightarrow \bfitY 

4

\bfitlambda 
\bfitdelta 

\biggr) \bfone 
\bftwo 

\leq \bfitlambda + \bfitdelta + \| \bfitA \| \| \bfitw \dagger  - \BbbP \bfitp \bfitw 
\dagger \| \ell \bftwo + \bfitM \| (\bfitI  - \BbbP \bfitq )\bfitA \| \bfitX \rightarrow \bfitY .

Combining (A.1), (A.2), (A.3), and (A.4) we easily conclude the proof.D
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Appendix B. Proof of Proposition 2.5.

Proof. Consider the sequence \bfite \bfitn = \| \bfitw (\bfitn +\bfone )
\bfitrho  - \bfitw (\bfitn +\bfone )\| \ell \bftwo . Thanks to the nonexpansivity

of the operator \bfitS \bfitlambda /\bfitL , it holds that
(B.1)

\bfite \bfzero = \| \bfscrT \bfscrZ (\bfitw (\bfzero ))  - \bfscrT (\bfitw (\bfzero ))\| \ell \bftwo \leq 
1

\bfitL 
\| \bfitW \bfitA \ast 

\bfitp ,\bfitq \bfitA \bfitp ,\bfitq \bfitW 
\ast  - \bfitZ \| \| \bfitw (\bfzero )\| \ell \bftwo \leq 

1

\bfitL 
\bfitrho \| \bfitw (\bfzero )\| \ell \bftwo .

Analogously, for \bfitn \geq 1,

(B.2)

\bfite \bfitn \leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bfitI  - 

1

\bfitL 
\bfitZ 

\bigm\| \bigm\| \bigm\| \bigm\| \| \bfitw (\bfitn )  - \bfitw (\bfitn )
\bfitrho \| \ell \bftwo +

1

\bfitL 
\| \bfitW \bfitA \ast 

\bfitp ,\bfitq \bfitA \bfitp ,\bfitq \bfitW 
\ast  - \bfitZ \| \| \bfitw (\bfitn )\| \ell \bftwo 

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bfitI  - 

1

\bfitL 
\bfitZ 

\bigm\| \bigm\| \bigm\| \bigm\| \bfite \bfitn  - \bfone +
1

\bfitL 
\bfitrho \| \bfitw (\bfitn )\| \ell \bftwo .

Since \bfitL \geq \| \bfitW \bfitA \ast 
\bfitp ,\bfitq \bfitA \bfitp ,\bfitq \bfitW 

\ast \| , then
\bigm\| \bigm\| \bigm\| \bigm\| \bfitI  - 

1

\bfitL 
\bfitZ 

\bigm\| \bigm\| \bigm\| \bigm\| \leq 
\bigm\| \bigm\| \bigm\| \bigm\| \bfitI  - 

1

\bfitL 
\bfitW \bfitA \ast 

\bfitp ,\bfitq \bfitA \bfitp ,\bfitq \bfitW 
\ast 
\bigm\| \bigm\| \bigm\| \bigm\| +

1

\bfitL 
\| \bfitW \bfitA \ast 

\bfitp ,\bfitq \bfitA \bfitp ,\bfitq \bfitW 
\ast  - \bfitZ \| \leq 1 +

1

\bfitL 
\bfitrho .

Moreover, since the sequence \{ \bfitw (\bfitn )\} is convergent, then it is also bounded: let, e.g., \| \bfitw (\bfitn )\| \ell \bftwo \leq 
\bfitM . As a consequence of (B.1), (B.2),

\bfite \bfitN \leq 
\bfitN \sum 

\bfitn =\bfzero 

\biggl( 
1 +

1

\bfitL 
\bfitrho 

\biggr) \bfitN  - \bfitn 1

\bfitL 
\bfitrho \| \bfitw (\bfitn )\| \ell \bftwo \leq \bfitM 

\Biggl( \biggl( 
1 +

1

\bfitL 
\bfitrho 

\biggr) \bfitN +\bfone 

 - 1

\Biggr) 
.

Let now \bfitN \geq \bfitN \bfzero and \bfitrho \bfitN \leq \bfiteta \bfzero : then, with a constant \bfitc = \bfitc (\bfitN \bfzero , \bfiteta \bfzero ), it holds that

\| \bfitw (\bfitN )
\bfitrho  - \bfitw (\bfitN )\| \ell \bftwo = \bfite \bfitN \leq \bfitM (\bfite 

\bfone 
\bfitL 
\bfitrho \bfitN  - 1) \leq \bfitc 

\bfitM 

\bfitL 
\bfitrho \bfitN .

Combining this result with (2.8), we can guarantee that

\| \bfitw (\bfitN )
\bfitrho  - \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bftwo \leq \| \bfitw (\bfitN )

\bfitrho  - \bfitw (\bfitN )\| \ell \bftwo + \| \bfitw (\bfitN )  - \bfitw \bfitdelta ,\bfitp ,\bfitq \| \ell \bftwo \leq \bfitc \bfthree \bfita 
\bfitN + \widetilde \bfitc \bffour \bfitrho \bfitN ,

which proves (2.11). To obtain (2.12), simply substitute\bfitN = log\bfita \bfitdelta and \bfitrho = \bfitdelta 
\bfitN 

and consider
\bfitc \bffour = \bfitc \bfthree + \widetilde \bfitc \bffour .
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