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On the determination of ischemic regions in the

monodomain model of cardiac electrophysiology from

boundary measurements

Elena Beretta∗, Cecilia Cavaterra†, Luca Ratti‡

In loving memory of Maria Assunta Pozio

Abstract

In this paper we consider the monodomain model of cardiac electrophysiology. After an

analysis of the well-posedness of the model we determine an asymptotic expansion of the

perturbed potential due to the presence of small conductivity inhomogeneities (modelling

small ischemic regions in the cardiac tissue) and use it to detect the anomalies from partial

boundary measurements. This is done by determining the topological gradient of a suit-

able boundary misfit functional. The robustness of the algorithm is confirmed by several

numerical experiments.

1 Introduction

Cardiac ischemia consists in a restriction of blood supply to the heart tissue usually caused

by atherosclerosis or coronary syndrome. The shortage of oxygen may lead to dysfunction of the

cell metabolism and eventually to their death. The possible outcomes range from ventricular

arrhythmia, fibrillation and ultimately to myocardial infarction. The ischemic heart syndrome

is the most common cardiovascular disease, and the most common cause of death. Hence, the

detection of ischemic regions at early stage of their development is of primary importance. This

is usually performed by imaging techniques such as echocardiography, gamma ray scintigraphy

or magnetic resonance imaging. Nevertheless, the most common test for patients not exhibiting

evident symptoms is the electrocardiogram (ECG), which consists in recording electrical impulses

across the thorax by means of a set of electrodes. Physicians are often able to identify myocardiac

ischemia by analysing the evolution of the voltage recorded in the ECG leads, although with

several technical difficulties (see the mathematical studies in [29] and [12]).

The approach we propose in this paper is to obtain information regarding the electrical func-

tioning of the tissue (and ultimately the presence of ischemic regions) from the knowledge of

the electrical potential on the surface of the heart. In a simplified anatomical description, the

boundary of the cardiac organ can be divided in two regions: the epicardium is the external

surface of the heart, whereas the endocardium is the inner surface, delimiting the ventricular
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cavities. A map of the surface electrical potential on the epicardium can be considered as the

outcome of the well-known inverse problem of electrocardiography, which consists in reconstruct-

ing the epicardiac voltage starting from ECG recordings, often relying on a passive conductor

model for the torso. Furthermore, it is possible to obtain electrical measurements on the endo-

cardium. Although much more invasive than the ECG, intracardiac ECG (iECG) has become

a standard of care in patients with symptoms of heart failure, and allows to get a map of the

endocardial potential by means of non-contact electrodes carried by a catheter inside a heart

cavity. We therefore assume that the distribution of the electrical potential is available on the

heart boundary, or on some portion of it. After a reliable model is introduced for the description

of the evolution of the electrical potential within the heart, the problem of detecting ischemic

regions is hence formulated as an inverse boundary value problem: identifying parameters in a

nonlinear reaction diffusion system from boundary data.

In this paper we focus on the determination of small ischemias from boundary measurements

of the electrical potential, generalizing the results obtained in previous papers (see [8],[9],[7]) to

a more realistic and accurate model of cardiac electrophysiology.

More in details, the monodomain model is a genuinely nonlinear system describing the evo-

lution of the transmembrane potential in the heart, i.e., the difference of potential across the cell

membrane. Such model is obtained by homogenization techniques, and consists in a system of

a semilinear parabolic equation coupled with several nonlinear ordinary differential equations.

The nonlinear reaction terms appearing in the system take into account the presence of ionic

currents across the cell membrane, modeling the peculiar nonlinear evolution of the voltage,

characterized by the propagation of an initial pulse, a plateau phase and a slow repolarization

(see [36]). The additional variables in the system represent the concentrations of some ionic

species and the properties of the ionic channels across the cell membranes.

An accurate description of the electrical activity of the heart has been object of several

studies in the last decades, producing different physiological models based on conjectures and

experimental evidence: we recall here the Hodgkin-Huxley model, the Beeler-Reuter and the Luo-

Rudy one. Nonetheless, it is possible to describe the evolution of the transmembrane potential

even with some less complicated models, involving a smaller set of equations and variables.

Such models are referred to as phenomenological models, and the state variables are called

recovery variables. These models provide a fair trade-off between the complexity of the physical

phenomenon and the possibility to perform a detailed mathematical analysis; for this reason, we

mainly focus on them.

Another crucial aspect that the monodomain model is able to capture is the anisotropic

behavior of the cardiac tissue. This property is induced by the peculiar structure of the heart

muscle, consisting of several fibers collected in superimposed sheets, often referred to as laminas.

The presence of preferred directions in the diffusion of the electrical stimulus is modeled by a

tensor valued conductivity coefficient in the higher-order term of the parabolic equation. The

eigenvectors of the conductivity tensor, representing the fiber direction, the orthogonal laminar

direction and the so-called transmural direction, vary continuously in the domain.

It is worth reminding that the monodomain model can be derived from the more complex

bidomain one (see [16] and [11]). This last model, introduced for the first time in [37], allows for

a different description of the electric properties in the intracellular domain and the extracellular

one. By assuming proportionality between the intracellular and the extracellular conductivity

tensors the bidomain model reduces to the monodomain one. In particular, in this case, the
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corresponding conductivity tensor becomes the harmonic mean of the extra and intracellular

conductivities. On the other hand, this choice of the conductivity tensor turns out to be the

best one to approximate the electrical propagation described by the bidomain model (see, e.g.,

[30],[17]).

As a first attempt, we limit ourselves to analyzing a coupled system of two equations in

the transmembrane potential u and a single recovery variable w. This corresponds to a large

class of phenomenological models, which are characterized by the choice of the nonlinear terms

appearing in the partial differential equation and in the ordinary differential equation. Among

the most important two-equation systems we mention FitzHugh-Nagumo, Rogers-McCulloch

and Aliev-Panfilov models. Throughout this paper, we focus on the commonly used version

of the Aliev-Panfilov model (originally introduced in [1]), even though the analysis could be

extended also to the other two (more details are reported in Remark 3).

In order to detect ischemic regions, we extend the approach of [7], determining a rigorous

asymptotic expansion for the perturbed boundary potential due to small conductivity anoma-

lies. To accomplish this task, we need an accurate analysis of the well-posedness of the direct

problem for the coupled system in the case of discontinuous anisotropic coefficients and suitable

regularity estimates for solutions. In particular, we establish a comparison principle for this class

of systems, which to our knowledge was not present in the literature. Here, we consider the case

of an insulated heart and we assume to have measurements of the potential on a portion of the

boundary.

The theory of detection of small conductivity inhomogeneities from boundary measurements

via asymptotic techniques has been developed in the last three decades in the framework of

Electrical Impedance Tomography (see, e.g., [5],[15],[3]). A similar approach has also been used

in Thermal Imaging (see, e.g., [4]). Here, we are able to extend in a non trivial way the results

obtained previously in [9] and [7] for simplified versions of the monodomain model. The main

element of novelty of this work (namely, the investigation of the coupled nonlinear system) allows

for a more accurate electrophysiological description of the whole heartbeat. On the other hand,

the complexity of the model entails new mathematical difficulties, starting from the analysis

of the direct problem. The main theoretical issues concern the derivation of fine regularity

estimates for the solution of the coupled system in the presence of discontinuous coefficients

and the analysis of the remainder term in the expansion of the perturbed potential, due to the

presence of small conductivity inhomogeneities modeling the ischemic regions. Further numerical

difficulties are reported in Section 5.

The paper is organized as follows. In Section 2 we analyze the well-posedness of the forward

problem in the unperturbed and perturbed case. Section 3 is devoted to obtaining energy

estimates of the difference between the perturbed and unperturbed electrical potential and an

asymptotic expansion of suitable integral terms involving such difference on the boundary. In

Section 4 we describe our topological-based optimization algorithm and derive rigorously the

topological gradient of a suitable mismatch functional. This is obtained by using the results

of Section 3 and some interior regularity results for the solution of parabolic systems. Finally,

in Section 5 we outline the numerical implementation of the proposed algorithm, relying on

the Finite Element Method for the discrete formulation of the problem. A significant set of

numerical experiments is provided in order to assess the effectiveness of the reconstruction, even

in presence of data noise.
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2 Analysis of the direct problem

The well-posedness analysis of the monodomain system has been object of several studies.

We refer to [16, Chapter 3] for a general overview. In [13] a result of existence and uniqueness of

weak solution is proved for the FitzHugh-Nagumo, the Aliev-Panfilov and the Rogers-MacCulloch

models by means of a Faedo-Galerkin procedure. A result of existence of strong solutions, local

in time, is also derived. In [38], instead, results of well-posedness are obtained for a wider range

of models, on the base of a fixed point argument.

Regarding the regularity of the solutions of the monodomain system, we report a result in

[18] for FitzHugh-Nagumo, Aliev-Panfilov and Rogers-MacCulloch models: if no discontinuities

are present in the coefficients of the system, existence and uniqueness of strong solutions is

guaranteed, locally in time (see for instance [35] and [21]). A comparison principle is also

provided, by means of the tool of invariant sets, allowing to prove existence of global solutions.

We also report a result of local existence of classical solutions for the bidomain model, recently

obtained in [20].

In this section we focus on the monodomain system in the case of smooth diffusion coefficient

and reaction term, corresponding to the case of the healthy tissue (unperturbed case) and in

the case of discontinuities in the diffusion coefficient and in the reaction term, corresponding

to the presence of an ischemia in the heart tissue (perturbed case). We state an existence,

uniqueness and comparison result for classical solutions of the unperturbed case (a proof of

which, alternative to the approach of [18], is proposed in [32, Chapter 6]) and prove a result

regarding existence, uniqueness and regularity of weak solutions in the perturbed case.

In particular, the initial and boundary value problem associated to the unperturbed mon-

odomain system is the following one

∂tu− div(K0∇u) + f(u,w) = 0 in QT ,

K0∇u · ν = 0 on ΓT ,

∂tw + g(u,w) = 0 in QT ,

u(·, 0) = u0 w(·, 0) = w0 in Ω,

(1)

where Ω is the region occupied by the hearth tissue, ν is the outward unit normal vector to the

boundary ∂Ω, QT := Ω × (0, T ) and ΓT : ∂Ω × (0, T ). A slightly different formulation of the

monodomain model (see, e.g., [16]) involves the presence of a source term in the right-hand side

of the first equation in (1), representing an applied current, during a limited time window (the

initial activation of the tissue). We replace the effect of such a current with the presence of a non-

null initial value u0. Since the modeling differences between the two formulations are negligible

after the first instants, we choose the one proposed in (1) more suited for the mathematical

analysis of the problem.

In presence of an ischemia ω ⊂ Ω, the perturbed case is described by the model

∂tuω − div(Kω∇uω) + (1− χω)f(uω, wω) = 0 in QT ,

Kω∇uω · ν = 0 on ΓT ,

∂twω + g(uω, wω) = 0 in QT ,

uω(·, 0) = u0 wω(·, 0) = w0 in Ω,

(2)

where χω is the indicator function of ω and Kω = K0 − (K0 − K1)χω. We now specify the

requirements on the domain, the coefficients and the source terms.
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Assumption 1. 1. Ω ⊂ Rd bounded domain, d = 2, 3, and ∂Ω ∈ C2+α, 0 < α < 1;

2. the inclusion ω ⊂ Ω is well separated from the boundary, i.e.,

∃ C0 compact subset of Ω s.t. ω ⊂ C0 and dist(C0, ∂Ω) ≥ d0 > 0. (3)

3. K0,K1 ∈ C2(Ω;Rd×d) are symmetric matrix-valued functions in Ω; ∀x ∈ Ω, the matrices

K0(x) and K1(x) admit d positive eigenvalues k0,1 ≤ . . . ≤ k0,d and k1,1 ≤ . . . ≤ k1,d

respectively, associated to the same eigenvectors ~e1(x), . . . ~ed(x) such that k1,i ≤ k0,i

∀i = 1, . . . , d;

4. u0 ∈ C2+α(Ω) (0 < α < 1), w0 ∈ C2(Ω), and K0∇u0 · ν = 0 on ∂Ω;

5. we assume f, g as in the Aliev-Panfilov model, namely:

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(Au(u− 1− a) + w), (4)

with A, ε > 0 and 0 < a < 1;

6. the initial data satisfy (u0(x), w0(x)) ∈ S ∀x ∈ Ω, where S := [0, 1]× [0, A(a+1)2

4 ]

Remark 1. We point out that the well-posedness and regularity results could be derived with-

out imposing that the tensors K0, K1 share the same eigenvectors, or have constant eigen-

values. Such requirements, which are important for the expression of the polarization tensor

in the asymptotic expansion, are nonetheless deeply motivated by the geometric features of the

heart muscle (see [16, 36]). As reported in Section 1, the cardiac tissue can be modeled as an

orthotropic material, characterized by the presence of fibers and sheets, which define the conduc-

tivity eigenvectors. Moreover, the presence of an ischemia does not affect the direction of the

fibers, but reduces the value of all the associated eigenvalues. From now on, we will indicate by

kmin the minimum eigenvalue of K1 and by kmax the maximum eigenvalue of K0.

Remark 2. As an immediate consequence of (4), f and g satisfy the Tangency condition on

the rectangle S, (see [2]), i.e., indicating by ~p a generalized outward normal on ∂S (as defined

in [2]) then,

~p(ξ1, ξ2) ·

(
−f(ξ1, ξ2)

−g(ξ1, ξ2)

)
≤ 0 ∀(ξ1, ξ2) ∈ ∂S. (5)

Moreover, the functions f, g are Lipschitz continuous on S with constants Lf , Lg ≤ L.

Remark 3. Some alternatives to the choice of the Aliev-Panfilov model (4) are given for instance

by the FitzHugh-Nagumo model, where:

f(u,w) = Au(u− a)(u− 1) + w g(u,w) = ε(u− γw), (6)

and the Rogers-McCulloch model, with:

f(u,w) = Au(u− a)(u− 1) + uw g(u,w) = ε(u− γw), (7)

see [16] for a general overview. We emphasize that the analysis developed in this work could be

generalized also to the aforementioned models. In particular, the expression of the nonlinearities

f and g allows in principle to construct an invariant rectangle S and to extend the results stated

in Theorem 1 and 2.
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Remark 4. For the sake of brevity, in all the formulas we avoid to indicate time and space

integration variables with respect to the classical Lebesgue measure, unless it is necessary.

We now outline the main results regarding the well-posedness of problems (1) and (2).

Theorem 1 (Unperturbed problem). Let Assumption 1 hold. Then, problem (1) admits a

unique classical solution (u,w), namely u ∈ C2+α,1+α/2(QT ), w ∈ Cα,1+α/2(QT ). Moreover,

(u(x, t), w(x, t)) ∈ S, for each (x, t) ∈ QT .

The proof of Theorem 1 is derived by means of classical fixed point argument (see [28, Chapter

8, Sections 9 and 11]). A detailed proof is reported in [32, Theorem 6.1].

Regarding the perturbed problem (2), we note that, although the conductivity tensor and

the nonlinear term are discontinuous, we can extend the results obtained in [13] thanks to the

uniform ellipticity to the boundedness of the conductivity tensors and to the form of the reaction

term, deriving the following existence and uniqueness result.

Theorem 2 (Perturbed problem). Let Assumption 1 hold. Then, problem (2) admits a unique

weak solution (uω, wω) such that uω ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), ∂tuω ∈ L2(0, T ;H∗),

wω ∈ L∞(0, T ;L2(Ω)), ∂twω ∈ L2(QT ) and satisfying, for a.e. t ∈ (0, T ),

〈∂tuω, ϕ〉∗ +

∫
Ω

Kω∇uω · ∇ϕ+

∫
Ω

(1− χω)f(uω, wω)ϕ = 0 ∀ϕ ∈ H1(Ω),∫
Ω

∂twωψ +

∫
Ω

g(uω, wω)ψ = 0 ∀ψ ∈ L2(Ω).

(8)

Moreover, uω ∈ Cα,α/2(QT ), wω ∈ Cα,α/2(QT ) and (uω(x, t), wω(x, t)) ∈ S, ∀ (x, t) ∈ QT .

Proof. To start with, note that uniqueness of the weak solution of (2) has been shown in the

case of Aliev-Panfilov model in [22, Theorem 1.3] as a byproduct of a stability result obtained

by exploiting the specific nonlinear expression of f and g.

We proceed now introducing a sequence of regularized problems (Pk), k ∈ N, of (2) and

showing that the sequence of their solutions converges to a weak solution of (2). We then exploit

additional properties inherited by the approximation process to conclude the stated regularity

results. The uniqueness argument is briefly sketched.

Since χω is an indicator function, surely χω ∈ L2(Ω); by density arguments and according to

(3),

∃{φk} ⊂ C2
c (Ω) : 0 ≤ φk(x) ≤ 1 ∀x ∈ Ω, φk → χω in L2(Ω) and a.e., (9)

being C2
c (Ω) the space of C2 functions with compact support in Ω. Define Kk = K0+(K1−K0)φk

and let (uk, wk) be the solution of the following problem

∂tuk − div(Kk∇uk) + (1− φk)f(uk, wk) = 0 in QT ,

K0∇uk · ν = 0 on ΓT ,

∂twk + g(uk, wk) = 0 in QT ,

uk(·, 0) = u0 wk(·, 0) = w0 in Ω,

(10)

where we have used the fact that Kk = K0 on ∂Ω. We observe that, for any fixed k, an

application of Theorem 1 ensures the existence and uniqueness of a classical solution of Problem

(10). Moreover by (9) we have that (1−φk)f and g satisfy the Tangency condition on S. Hence,

from Theorem 1 we deduce (uk, wk) ∈ S, for all k.
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We now prove that φk
L2

−−→ χω implies the convergence of (uk, wk) to a weak solution (u,w)

of (2). We start by showing some a priori estimates. Consider the weak form of the problem

solved by (uk, wk) and take the classical solutions uk, wk as test functions. Then, we get

1

2

d

dt

(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+

∫
Ω

Kk∇uk(·, t) · ∇uk(·, t)

= −
∫

Ω

(1− φk)f(uk(·, t), wk(·, t))uk(·, t)−
∫

Ω

g(uk(·, t), wk(·, t))wk(·, t).

Recall now that kmin is the minimum eigenvalue of K1, whereas kmax is the maximum eigenvalue

of K0. Moreover, since φk, uk, wk are uniformly bounded independently of k (indeed, φk(x) ∈
[0, 1] and (uk, wk) ∈ S) and f, g are continuous, we can introduceMf := max(x,t)∈QT

|(1− φk)f(uk, wk)|
and Mg := max(x,t)∈QT

|g(uk, wk)|, which are independent of k. Hence, by Young inequality,

1

2

d

dt

(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+ kmin‖∇uk(·, t)‖2L2(Ω)

≤ 1

2

(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
+

1

2
|Ω|(M2

f +M2
g ).

(11)

Using Gronwall’s inequality, we get(
‖uk(·, t)‖2L2(Ω) + ‖wk(·, t)‖2L2(Ω)

)
≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω) + |Ω|(M2

f +M2
g )t
)
et,

which implies

‖uk‖2L∞(0,T ;L2(Ω)) + ‖wk‖2L∞(0,T ;L2(Ω))

≤
(
‖u0‖2L2(Ω) + ‖w0‖2L2(Ω) + |Ω|(M2

f +M2
g )T

)
eT := c21.

Integrating (11) in time from 0 to t and using the last estimate it also follows that

‖uk‖2L2(0,T,H1(Ω)) ≤ c
2
1T +

1

2kmin

(
(|Ω|(M2

f +M2
g ) + c21)T + ‖u0‖2L2(Ω) + ‖w0‖2L2(Ω)

)
=: c22.

A bound for the H∗ norm of ∂tu can be found by considering that, for each ϕ ∈ H1(Ω),

|〈∂tuk(·, t), ϕ〉∗| ≤ kmax‖∇uk(·, t)‖L2(Ω)‖∇ϕ‖L2(Ω) +Mf |Ω|
1
2 ‖ϕ‖L2(Ω)

and computing the L2 norm in time

‖∂tuk‖L2(0,T,H∗) ≤ (kmaxc2 +Mf |Ω|
1
2 ) =: c3.

Analogously, one proves that ‖∂twk‖L2(QT ) ≤ c4, with c4 independent of k.

As a consequence of the uniform bounds we can ensure that (up to a subsequence) ∃u ∈
L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), ∃w ∈ L∞(0, T ;L2(Ω)), ∃u∗ ∈ L2(0, T ;H∗), ∃w∗ ∈ L2(QT )

such that

uk
L2(0,T,H1)−−−−−−−⇀ u, ∂tuk

L2(0,T,H∗)−−−−−−−⇀ u∗, wk
L2(QT )−−−−−⇀ w, ∂twk

L2(QT )−−−−−⇀ w∗.

Using the result contained in [34, Theorem 8.1] and the uniqueness of the weak solution of the

perturbed problem we have that uk
L2(QT )−−−−−→ uω (see [34, Theorem 8.1]), hence uk → uω a.e.

in QT . Moreover, also wk → wω a.e. in QT as it can be straightforwardly obtained by the

expression

wk(x, t) = e−εtw0(x) + εAe−εt
∫ t

0

((1 + a)uk − u2
k)eεsds. (12)
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Consider now the weak form of the problem solved by (uk, wk), ∀ϕ ∈ H1(Ω), ψ ∈ L2(Ω),

〈∂tuk, ϕ〉∗ +

∫
Ω

Kk∇uk · ∇ϕ+

∫
Ω

(1− φk)Auk(uk − a)(uk − 1)ϕ

+

∫
Ω

(1− φk)ukwkϕ+

∫
Ω

∂twkψ +

∫
Ω

Aε(u2
k − (1 + a)uk)ψ +

∫
Ω

εwkψ = 0.

(13)

Taking the limit in k, exploiting the weak convergence of uk, wk, ∂tuk, ∂twk, we obtain that

u∗ = ∂tuω, w∗ = ∂twω in D′(0, T ) and that the limit (uω, wω) satisfies, ∀ϕ ∈ H1(Ω), ψ ∈ L2(Ω),

〈∂tuω, ϕ〉∗ +

∫
Ω

Kω∇uω · ∇ϕ+

∫
Ω

(1− χω)f(uω, wω)ϕ

+

∫
Ω

∂twωψ +

∫
Ω

g(uω, wω)ψ = 0.

(14)

Indeed, the convergence of the terms involving the time derivatives is a direct consequence

of the weak convergence of ∂tuk, ∂twk and of the definition of distributional derivative. The

limit of the nonlinear reaction terms can be proved by taking advantage of the dominated

convergence theorem and of the pointwise (a.e.) convergence of uk and φk. The convergence of

the diffusion term is obtained by combining the weak convergence of uk in H1(Ω), the pointwise

(a.e.) convergence of φk and the uniform L∞(Ω) bound on φk. According to (14), we can ensure

that the limit (uω, wω) is the weak solution of (2).

The weak solution (uω, wω) is moreover a pointwise (a.e.) limit of the regularized solu-

tions (uk, wk). As a consequence, the uniform bound on (uk, wk) is valid also for the limit:

(uω(x, t), wω(x, t)) ∈ S a.e. in QT . This allows to prove the additional Hölder regularity of uω.

Indeed, since Kω ∈ L∞(Ω), f(uω, wω) ∈ L∞(QT ), we can apply Theorem 10.1 of [23, Chapter

3] on the first equation in (2)

∂tuω − div(Kω∇uω) = −(1− χω)f(uω, wω)

to get uω ∈ L∞(QT ). Now, we can extend the regularity result up to the boundary due to the

hypothesis on ∂Ω and on u0 contained in Assumption 1, and conclude uω ∈ Cα,α/2(QT ). Using

the analytic expression of wω that can be obtained by (12) and the regularity of uω, we can also

deduce that wω ∈ Cα,1+α/2(QT ).

3 Analysis of the inverse problem

We now tackle the inverse problem of identifying a perturbation ω from boundary measure-

ments. Suppose to know umeas, the trace of the solution of (2) in presence of an unknown

inclusion. The inverse problem reads

find ω ⊂ Ω s.t. uω|∂Ω = umeas. (15)

Although the analysis of the direct problem has been performed considering an arbitrary inclu-

sion ω ⊂ Ω, for the purpose of solving the inverse problem and derive a reconstruction algorithm,

we limit ourselves at considering the case of inclusions of small size, in analogy to what done in

[8], [7]. In particular, we consider a family of inclusions ωε satisfying (3) for each ε and such

that

|ωε| → 0 as ε→ 0. (16)
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We define χε the indicator function of ωε, Kε := K0− (K0−K1)χε and (uε, wε) the solution

of problem (2) with ω = ωε, in the sense of Theorem 2.

In this section, in order to achieve a reconstruction algorithm for the identification of small

inclusions, we use a perturbation technique based on an asymptotic expansion of the perturbed

potential uε, which conveys information on the underlying inhomogeneity ωε. To derive the

expansion, we first need to estimate the difference between the perturbed and unperturbed

solutions, both in H1 and L2 norms. Such estimates, generally referred to as energy estimates

require a careful treatment because of the nonlinear coupling in the model. Afterwards, we

study the convergence of some relevant quantities in the weak* topology of C(Ω), yielding the

desired asymptotic expansion. The latter analysis is complicated by the presence of anisotropic

conductivity coefficients K0,K1.

3.1 Energy estimates

We now derive some energy estimates for the difference between (uε, wε) and (u,w), the

solution of the unperturbed problem (1), in terms of |ωε| when ε→ 0.

From now on we will indicate by C a positive constant depending on the data, independent

of ε and that may vary also in the same line.

Proposition 1. Under Assumption 1 the following inequalities hold:

‖uε − u‖L∞(0,T,L2(Ω)) + ‖wε − w‖L∞(0,T,L2(Ω)) ≤ C|ωε|
1
2 ,

‖uε − u‖L2(0,T,H1(Ω)) ≤ C|ωε|
1
2 ,

‖uε − u‖L2(QT ) ≤ C|ωε|
1
2 +η, for some η > 0.

Proof. We consider (8) with ω = ωε and the weak formulation of the unperturbed problem (1).

Subtracting term by term and defining Uε = uε−u and Wε = wε−w, we have that Uε(·, 0) = 0,

Wε(·, 0) = 0 and, for almost every t ∈ (0, T ),∫
Ω

∂tUεϕ+

∫
Ω

Kε∇Uε · ∇ϕ+

∫
Ω

(1− χε)(f(uε, wε)− f(u,w))ϕ+

∫
Ω

∂tWεψ

+

∫
Ω

(g(uε, wε)− g(u,w))ψ =

∫
ωε

(K0 −K1)∇u · ∇ϕ+

∫
ωε

f(u,w)ϕ.

(17)

Let ϕ = Uε, ψ = Wε then, according to Theorem 1 and Theorem 2, both (u,w) and (uε, wε)

range within the rectangle S, on which the functions f and g are Lipschitz continuous with

constants less or equal than L. Hence

1

2

d

dt

(
‖Uε‖2L2(Ω) + ‖Wε‖2L2(Ω)

)
+ kmin‖∇Uε‖2L2(Ω) ≤ 2L

(
‖Uε‖2L2(Ω) + ‖Wε‖2L2(Ω)

)
+

∫
ωε

(K0 −K1)∇u · ∇Uε +

∫
ωε

f(u,w)Uε.

Via an application of Schwarz and Young inequalities on the last two terms in the right-hand

side of the previous inequality, and from the regularity of the solution (u,w), we can deduce

1

2

d

dt

(
‖Uε‖2L2(Ω) + ‖Wε‖2L2(Ω)

)
+
kmin

2
‖∇Uε‖2L2(Ω)

≤ C
(
‖Uε‖2L2(Ω) + ‖Wε‖2L2(Ω)

)
+ C|ωε|.

(18)
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An application of Gronwall’s lemma to (18) entails that ‖Uε‖2L∞(0,T ;L2(Ω)), ‖Wε‖2L∞(0,T ;L2(Ω))

and ultimately ‖Uε‖2L2(0,T ;H1(Ω)) can be bounded by C|ωε|. This allows to conclude the first two

statements.

Observe now that the pair (Uε,Wε) is also the solution of
∂tUε − div(K0∇Uε) + (1− χε)(f(uε, wε)− f(u,w)) =

− div((K0 −K1)χε∇uε) + χεf(u,w)

∂tWε + g(uε, wε)− g(u,w) = 0.

(19)

By the mean value theorem, there exist two pairs of functions (uξ1 , wξ1), (uξ2 , wξ2) s.t. ∗∫
Ω

(1− χε)(f(uε, wε)− f(u,w))Uε =

∫
Ω

(1− χε)fu(uξ1 , wξ1)Uε
2 +

∫
Ω

(1− χε)fw(uξ1 , wξ1)UεWε∫
Ω

(g(uε, wε)− g(u,w))Wε =

∫
Ω

gu(uξ2 , wξ2)UεWε +

∫
Ω

gw(uξ2 , wξ2)Wε
2.

By definition, (uξ1 , wξ1) and (uξ2 , wξ2) are convex combinations of (u,w) and (uε, wε), thus they

assume values in the rectangle S. Let now (Uε,W ε) be the solution of the adjoint problem{
∂tUε + div(K0∇Uε)− (1− χε)fu(uξ1 , wξ1)Uε − gu(uξ2 , wξ2)W ε = −Uε

∂tW ε − (1− χε)fw(uξ1 , wξ1)Uε − gw(uξ2 , wξ2)W ε = −Wε,
(20)

with initial conditions Uε(·, T ) = 0, W ε(·, T ) = 0 and homogeneous Neumann boundary con-

dition. Consider the change of variable: z(·, t) = Uε(·, T − t), y(·, t) = W ε(·, T − t) and define

Ûε(·, t) = Uε(·, T − t), Ŵε(·, t) = Wε(·, T − t), f̂u(·, t) = fu(uξ1(·, T − t), wξ1(·, T − t)), and

analogously for f̂w, ĝu, ĝw. Hence z and y solve

∂tz − div(K0∇z) + (1− χε)f̂uz + ĝuy = Ûε in QT ,

∂ty + (1− χε)f̂wz + ĝwy = Ŵε in QT ,

z(0) = 0, y(0) = 0 in Ω,

K0∇z · ν = 0 on ΓT .

(21)

Since Ûε, Ŵε ∈ L2(QT ) and f̂u, f̂w, ĝu, ĝw are bounded in QT , by standard Faedo-Galerkin

technique we obtain that the solution (z, y) of (21) exists and is unique with the properties

z ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)), ∂tz ∈ L2(0, T ;H∗), y ∈ L∞(0, T ;L2(Ω)), ∂ty ∈ L2(QT ).

Moreover

‖z‖L∞(0,T ;L2(Ω)) + ‖z‖L2(0,T ;H1(Ω)) + ‖∂tz‖L2(0,T ;H∗) + ‖y‖L∞(0,T ;L2(Ω)) + ‖∂ty‖L2(QT )

≤ C
(∥∥∥Ûε∥∥∥

L2(QT )
+
∥∥∥Ŵε

∥∥∥
L2(QT )

)
= C

(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
.

Additional regularity of z can be proved with an analogous argument as in [23, Chapter 4,

Theorem 9.1], applied on the first equation in (21). Indeed, by the regularity of K0 and the

square integrability of Ûε − ĝuy, we can conclude that z ∈ L2(0, T ;H2(Ω)), ∂tz ∈ L2(QT ) and

‖z‖L2(0,T ;H2(Ω)) + ‖∂tz‖L2(QT ) ≤ C
∥∥∥Ûε − ĝuy∥∥∥

L2(QT )
≤ C

(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
.

∗it follows by an application of the Lagrange’s mean value theorem on the real-valued function h(τ) =
∫
Ω(1−

χε)(f(u+ τ(uε − u), w + τ(wε − w))− f(u,w))Uε on the interval [0, 1]; the same holds for g.
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Moreover, multiplying the first two equations in (21) respectively by ∂tz and ∂ty and integrating

on Ω, straightforward computations allow to conclude that z ∈ L∞(0, T ;H1(Ω)) with

‖z‖L∞(0,T ;H1(Ω)) ≤ C
(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
.

By Sobolev inequality we obtain

∇z ∈ (L2(0, T ;L6(Ω)))d, z ∈ L6(QT ),

all the norms being bounded by ‖Uε‖L2(QT ) + ‖Wε‖L2(QT ); the same bounds hold also for Uε.

Thus, via Nirenberg interpolation estimates (see [26]), we get∥∥∇Uε∥∥L10/3(QT )
≤ C(‖Uε‖L2(QT ) + ‖Wε‖L2(QT )).

Recalling also the previous results, this allows to conclude that, taking p ∈
(
2, 10

3

]
,∥∥Uε∥∥Lp(QT )

+
∥∥∇Uε∥∥Lp(QT )

≤ C
(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
. (22)

Let us multiply the equations of (19) respectively by Uε,W ε and the first two equations of (21)

respectively by Uε,Wε. Integrating on (0, T ) and summing the resulting identities it is easy to

see that ∫ T

0

∫
Ω

(Uε
2 +Wε

2) =

∫ T

0

∫
ωε

(K0 −K1)∇uε · ∇Uε +

∫ T

0

∫
ωε

f(u,w)Uε. (23)

Thanks to (22) and Hölder inequality the first term of the right-hand side can be bounded as

follows∫ T

0

∫
ωε

(K0 −K1)∇uε · ∇Uε ≤ C‖∇uε‖Lq(ωε×(0,T ))

∥∥∇Uε∥∥Lp(ωε×(0,T ))

≤ C‖∇uε‖Lq(ωε×(0,T ))

(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
,

where p ∈
(
2, 10

3

]
and q = p

p−1 ∈
[

10
7 , 2

)
. In addition, again by Hölder inequality,

‖∇uε‖Lq(ωε×(0,T )) ≤ ‖∇u‖Lq(ωε×(0,T )) + |ωε|
2−q
2q ‖∇Uε‖Lq(Ω×(0,T )) ≤ c|ωε|

1
q .

Furthermore, it is straightforward to see that the last term in (23) can be bounded by c|ωε|
1
q

∥∥Uε∥∥L2(QT )
.

Finally, from (23) we conclude that, for q ∈
[

10
7 , 2

)
,

‖Uε‖2L2(QT ) + ‖Wε‖2L2(QT ) ≤ c|ωε|
1
q

(
‖Uε‖L2(QT ) + ‖Wε‖L2(QT )

)
.

Hence

‖Uε‖L2(QT ) + ‖Wε‖L2(QT ) ≤ c|ωε|
1
q = c|ωε|

1
2 +β ,

where β ∈
(
0, 1

5

]
.

3.2 Asymptotic expansion of boundary voltage

In this section we prove the following result.
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Theorem 3. For every sequence {ωεn} with |ωεn | > 0, |ωεn | → 0, there exist a subsequence

(still denoted by ωεn), a Radon measure µ and a matrix-valued function M ∈ L2(Ω, dµ;Rd×d)
such that, for every pair (Φ,Ψ) ∈ (C1(QT ), C(QT )) satisfying{

∂tΦ + div(K0∇Φ)− fu(u,w)Φ− gu(u,w)Ψ = 0

∂tΨ− fw(u,w)Φ− gw(u,w)Ψ = 0
(24)

with the final conditions Φ(·, T ) = 0, Ψ(·, T ) = 0, it holds∫ T

0

∫
∂Ω

K0∇Φ · ν(uεn − u)dσ = |ωεn |
∫ T

0

∫
Ω

[M(K0 −K1)∇u · ∇Φ + f(u,w)Φ] dµ+ o(|ωεn |). (25)

In order to prove Theorem 3, we need to introduce the auxiliary functions v(j), v
(j)
εn solving

div(K0∇v(j)) = F (j) in Ω,

K0∇v(j) · ν = f (j) on ∂Ω,∫
∂Ω

v(j) = 0,


div(Kεn∇v(j)

εn ) = F (j) in Ω,

K0∇v(j)
εn · ν = f (j) on ∂Ω,∫
∂Ω

v(j)
εn = 0,

(26)

with F (j) =
∑
i
∂[K0]ij
∂xi

and f (j) =
∑
i[K0]ijνi. By the choice of F (j) and f (j) it holds v(j) =

xj −
∫
∂Ω
xj . Moreover, v(j) and v

(j)
εn satisfy the following energy estimates (see [14])∥∥∥v(j)

εn − v
(j)
∥∥∥
H1(Ω)

≤ c|ωεn |
1
2 ,

∥∥∥v(j)
εn − v

(j)
∥∥∥
L2(Ω)

≤ c|ωεn |
1
2 +γ , γ > 0. (27)

We need also a preliminary lemma.

Lemma 1. For each φ ∈ C1(QT ) such that φ(x, T ) = 0, we have, as |ωεn | → 0,∫ T

0

∫
Ω

χωεn

|ωεn |
(K0 −K1)∇u · ∇v(j)

εn φ =

∫ T

0

∫
Ω

χωεn

|ωεn |
(K0 −K1)∇uεn · ∇v(j)φ+ o(1). (28)

Proof. Since v(j) and v
(j)
εn are the solutions of problems (26), we obtain∫

Ω

Kεn∇v(j)
εn · ∇ϕ =

∫
Ω

K0∇v(j) · ∇ϕ ∀ϕ ∈ H1(Ω).

Take ϕ = Uεnφ, being Uεn = uεn − u. By computation we get∫
Ω

Kεn∇v(j)
εn · ∇Uεnφ+

∫
Ω

Kεn∇v(j)
εn · ∇φUεn =

∫
Ω

K0∇v(j) · ∇Uεnφ+

∫
Ω

K0∇v(j) · ∇φUεn

that we can rewrite as∫
Ω

Kεn∇(v(j)
εn φ) · ∇Uεn −

∫
Ω

Kεnv
(j)
εn ∇φ · ∇Uεn +

∫
Ω

Kεn∇v(j)
εn · ∇φUεn

=

∫
Ω

K0∇(v(j)φ) · ∇Uεn −
∫

Ω

K0v
(j)∇φ · ∇Uεn +

∫
Ω

K0∇v(j) · ∇φUεn .
(29)

Proposition 1 and (27) lead to∫ T

0

∫
Ω

Kεnv
(j)
εn ∇φ · ∇Uεn −

∫ T

0

∫
Ω

K0v
(j)∇φ · ∇Uεn =

∫ T

0

∫
Ω

(Kεn −K0)∇uεn · ∇φv(j)

−
∫ T

0

∫
Ω

(Kεn −K0)∇u · ∇φv(j)
εn + o(|ωεn |),
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whereas,∫ T

0

∫
Ω

Kεn∇v(j)
εn · ∇φUεn −

∫ T

0

∫
Ω

K0∇v(j) · ∇φUεn

=

∫ T

0

∫
Ω

(Kεn −K0)∇v(j)
εn · ∇φUεn +

∫ T

0

∫
Ω

K0∇(v(j)
εn − v

(j)) · ∇φUεn = o(|ωεn |).

Collecting the previous two relations in (29), we conclude∫ T

0

∫
Ω

Kεn∇(v(j)
εn φ) · ∇Uεn −

∫ T

0

∫
Ω

K0∇(v(j)φ) · ∇Uεn

=

∫ T

0

∫
Ω

(Kεn −K0)∇uεn · ∇φv(j) −
∫ T

0

∫
Ω

(Kεn −K0)∇u · ∇φv(j)
εn + o(|ωεn |).

(30)

It can be easily verified that, for every ϕ ∈ H1(Ω), the following identities hold∫
Ω

∂tUεnϕ+

∫
Ω

Kεn∇Uεn · ∇ϕ+

∫
Ω

(1− χωεn
)(f(uεn , wεn)− f(u,w))ϕ

=

∫
Ω

(K0 −Kεn)∇u · ∇ϕ+

∫
Ω

χωεn
f(u,w)ϕ,∫

Ω

∂tUεnϕ+

∫
Ω

K0∇Uεn · ∇ϕ+

∫
Ω

(1− χωεn
)(f(uεn , wεn)− f(u,w))ϕ

=

∫
Ω

(K0 −Kεn)∇uεn · ∇ϕ+

∫
Ω

χωεn
f(u,w)ϕ.

Taking ϕ = v
(j)
εn φ in the first identity and ϕ = v(j)φ in the second one, integrating in time and

subtracting we obtain∫ T

0

∫
Ω

∂tUεn(v(j)
εn − v

(j))φ+

∫ T

0

∫
Ω

Kεn∇Uεn · ∇(v(j)
εn φ)−

∫ T

0

∫
Ω

K0∇Uεn · ∇(v(j)φ)

+

∫ T

0

∫
Ω

(1−χωεn
)(f(uεn , wεn)−f(u,w))(v(j)

εn − v
(j))φ =

∫ T

0

∫
Ω

χωεn
f(u,w)(v(j)

εn −v
(j))φ

+

∫ T

0

∫
Ω

(K0 −Kεn)∇u · ∇(v(j)
εn φ)−

∫ T

0

∫
Ω

(K0 −Kεn)∇uεn · ∇(v(j)φ).

(31)

Via integration by parts, and taking advantage of the homogeneous initial and final conditions

satisfied respectively by Uεn and φ it follows∣∣∣∣∣
∫ T

0

∫
Ω

∂tUεn(v(j)
εn − v

(j))φ

∣∣∣∣∣ ≤ ‖φ‖C1(QT )‖Uεn‖L2(QT )

∥∥∥v(j)
εn − v

(j)
∥∥∥
L2(Ω)

= o(|ωεn |).

Analogous bounds can be proved for the last term in the left-hand side and the first term in the

right-hand side of (31), thanks to the energy estimates of v
(j)
εn − v(j), uεn − u, wεn − w and the

regularity of f . As a consequence, it holds that∫ T

0

∫
Ω

Kεn∇Uεn · ∇(v(j)
εn φ)−

∫ T

0

∫
Ω

K0∇Uεn · ∇(v(j)φ)

=

∫ T

0

∫
Ω

(K0 −Kεn)∇u · ∇(v(j)
εn φ)−

∫ T

0

∫
Ω

(K0 −Kεn)∇uεn · ∇(v(j)φ) + o(|ωεn |).
(32)

In conclusion, by a combination of (30) and (32),∫ T

0

∫
Ω

(K0 −Kεn)∇u · ∇(v(j)
εn φ)−

∫ T

0

∫
Ω

(K0 −Kεn)∇uεn · ∇(v(j)φ)

=

∫ T

0

∫
Ω

(Kεn −K0)∇uεn · ∇φv(j) −
∫ T

0

∫
Ω

(Kεn −K0)∇u · ∇φv(j)
εn + o(|ωεn |),
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which immediately entails the thesis.

We are finally ready to prove the main result of this section.

Proof of Theorem 3. Arguing as in [14], we deduce that there exist a Radon measure µ ∈ C(Ω)∗,

a symmetric matrix M∈ L2(Ω, dµ;Rd×d) and a sequence {ωεn} such that

χωεn

|ωεn |
dx→ dµ and

χωεn

|ωεn |
∂v

(j)
εn

∂xi
dx→Mijdµ

in the weak* topology of C(Ω). Moreover, thanks to the regularity estimates for u and the

symmetries of the matrices K0, K1 and M, we have, for every j = 1, . . . , d,

χωεn

|ωεn |
(K0 −K1)ik

∂u

∂xk

∂v
(j)
εn

∂xi
dx→Mji(K0 −K1)ik

∂u

∂xk
dµ, ∀t ∈ (0, T ), (33)

which also implies

χωεn

|ωεn |
(K0 −K1)ik

∂u

∂xk

∂v
(j)
εn

∂xi
dxdt→Mji(K0 −K1)ik

∂u

∂xk
dµdt (34)

in the weak∗ topology of the dual of C(QT ).

On account of the energy estimates (27), straightforward computations show that for every

i, j = 1, . . . , d there exists a constant C, depending on the data and on T but independent of εn,

such that ∣∣∣∣∣
∫ T

0

∫
Ω

χωεn

|ωεn |
(K0 −K1)ik

∂uεn
∂xk

∂v(j)

∂xi
dxdt

∣∣∣∣∣ ≤ C.
In particular, we define the limit measure νj in the weak∗ topology of the dual of C(QT ) as

follows
χωεn

|ωεn |
[(K0 −K1)∇uεn ]i

∂v(j)

∂xi
dxdt→ dνj (35)

Exploiting (35) and (34), and recalling Lemma 3.3, we deduce∫ T

0

∫
Ω

φdνj =

∫ T

0

∫
Ω

Mji(K0 −K1)ik
∂u

∂xk
φdµdt ∀φ ∈ C1(QT ) (36)

and by the density of C1(QT ) in C0(QT ) we derive

dνj =Mji(K0 −K1)ik
∂u

∂xk
dµdt.

Now, setting Uεn = uεn − u and Wεn = wεn − w, and selecting Φ and Ψ as test functions, we

have ∫
Ω

∂tUεnΦ +

∫
Ω

K0∇Uεn · ∇Φ +

∫
Ω

(1− χωεn
)(f(uε, wε)− f(u,w))Φ +

∫
Ω

∂tWεnΨ

+

∫
Ω

(g(uε, wε)− g(u,w))Ψ =

∫
ωεn

(K0 −K1)∇uεn · ∇Φ +

∫
ωεn

f(u,w)Φ.

Furthermore, since (Φ,Ψ) is a solution to (24), it also holds:∫
Ω

∂tΦUεn −
∫

Ω

K0∇Φ · ∇Uεn −
∫

Ω

(fu(u,w)Φ + gu(u,w)Ψ)Uεn +

∫
Ω

∂tΨWεn

−
∫

Ω

(fw(u,w)Φ + gw(u,w)Ψ)Wεn = −
∫
∂Ω

K0∇Φ · νUεn .
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Summing up the last two identities and integrating in time we observe that the terms involving

the time derivatives vanish due to the initial and final conditions on Uεn ,Wεn ,Φ,Ψ. Consider

now the non-linear terms containing f∫ T

0

∫
Ω

(1− χωεn
)(f(uεn , wεn)− f(u,w))Φ−

∫ T

0

∫
Ω

(fu(u,w)Uεn + fw(u,w)Wεn)Φ

=

∫ T

0

∫
Ω

(1− χωεn
)(f(uεn , wεn)− f(u,w)− fu(u,w)Uεn − fw(u,w)Wεn)Φ

+

∫ T

0

∫
ωεn

(fu(u,w)Uεn + fw(u,w)Wεn)Φ.

Observe that by means of the Lagrange’s mean value theorem and the Lipschitz-continuity of

the functions fu, fw with constants Lfu , Lfw we have∫ T

0

∫
Ω

(1− χωεn
) [(fu(uξ1 , wξ1)− fu(u,w))Uεn + (fw(uξ1 , wξ1)− fw(u,w))Wεn ] Φ

≤
∫ T

0

∫
Ω

(1− χωεn
)
[
LfuU

2
εn + LfuUεnWεn + LfwUεnWεn + LfwW

2
εn

]
Φ

≤ c(‖Uεn‖
2
L2(QT ) + ‖Wεn‖

2
L2(QT )) = o(|ωεn |),

whereas ∫ T

0

∫
ωεn

(fu(u,w)Uεn + fw(u,w)Wεn)Φ ≤ c
∫ T

0

∫
Ω

χωεn
(Uεn +Wεn)

≤ c|ωεn |
1
2 (‖Uεn‖L2(QT ) + ‖Wεn‖L2(QT )) = o(|ωεn |).

Analogous estimates can be obtained for the terms containing g. Finally,∫ T

0

∫
∂Ω

K0∇Φ · νUεn = |ωεn |
∫ T

0

∫
Ω

χωεn

|ωεn |
[(K0 −K1)∇uεn · ∇Φ + f(u,w)Φ] + o(|ωεn |)

= |ωεn |
∑
i,j

∫ T

0

∫
Ω

χωεn

|ωεn |
[K0 −K1]ji

∂uεn
∂xi

∂Φ

∂xj

+

∫ T

0

∫
Ω

χωεn

|ωεn |
f(u,w)Φ + o(|ωεn |).

Thanks to the regularity of Φ, and employing the computed weak* limits, we derive∫ T

0

∫
∂Ω

K0∇Φ · ν(uεn − u)

= |ωεn |

∑
i,j,k

∫ T

0

∫
Ω

Mkj [K0 −K1]ki
∂u

∂xi

∂Φ

∂xj
dµ dt+

∫ T

0

∫
Ω

f(u,w)Φdµ dt

+ o(|ωεn |)

= |ωεn |
∫ T

0

∫
Ω

[M(K0 −K1)∇u · ∇Φ + f(u,w)Φ] dµdt+ o(|ωεn |)

which concludes the proof.

4 Reconstruction algorithm: a topology optimization ap-

proach

The asymptotic expansion provided in Theorem 3 allows to describe the perturbation of the

electrical potential on the boundary of the domain due to the presence of a small conductivity

15



inhomogeneity ωε. In order to derive a reconstruction algorithm for problem (15), we introduce

the mismatch functional J

J(ω) =
1

2

∫ T

0

∫
∂Ω

(uε − umeas)2, (37)

where uε = uωε solves the perturbed problem (2) in the presence of an ischemic region ωε. We

now prove that the functional J restricted to the class of inclusions satisfying (3), (16) admits

an asymptotic expansion with respect to the size of the inclusion. Moreover, as it is shown in

Theorem 4, the first-order term of the expansion (which will be denoted as G, the topological

gradient of J) can be computed by solving the unperturbed problem and a suitable adjoint

problem. In particular, we restrict ourselves to inclusions ωε satisfying (3) and of the form

ωε = {z + εB}, (38)

where B is a bounded, smooth set containing the origin.

We have the following

Theorem 4. Consider a family {ωε} satisfying (3) and (38). Then, there exists a matrix M
(which may depend on z, B, K0 and K1) such that, as ε→ 0,

J(ωε) =J(0) + |ωε|
∫ T

0

[M(K0(z)−K1(z))∇u(z, t) · ∇Φ(z, t) + f(u(z, t), w(z, t))Φ(z, t)] dt

+ o(|ωε|),

where (u,w) solves (1) and (Φ,Ψ) is the solution of the adjoint problem:

∂tΦ + div(K0∇Φ)− fu(u,w)Φ− gu(u,w)Ψ = 0 in QT ,

K0∇Φ · ν = u− umeas on ΓT ,

∂tΨ− fw(u,w)Φ− gw(u,w)Ψ = 0 in QT ,

Φ(·, T ) = 0 Ψ(·, T ) = 0 in Ω.

(39)

Proof. First of all, we note that, since Lemma 3.3 holds under the weaker assumption on the test

functions φ ∈W 1,∞(QT ), then the validity of Theorem 3 can be easily extended when (Φ,Ψ) ∈
(W 1,∞(QT ), C(QT )). We now show that the solution to (39) enjoys this regularity. Infact this

can be ensured by a lifting argument, since the boundary datum u − umeas ∈ C2+α,1+α/2(ΓT ).

Estimates of the W 1,∞(QT ) norm of Φ can be obtained by flattening the boundary and by

reflection arguments, see for example [23, Chapter 7, Theorem 2.2] for a two-dimensional case.

It is straightforward to verify that

J(ωε)− J(0) =

∫ T

0

∫
∂Ω

(uε − u)(u− umeas) +
1

2

∫ T

0

∫
∂Ω

(uε − u)2. (40)

The first term in the right-hand side of (40) involves the boundary condition of the adjoint

problem, and in particular it can be written as
∫ T

0

∫
∂Ω
K0∇Φ ·ν(uε−u). We now apply Theorem

3 in order to conclude that∫ T

0

∫
∂Ω

(uε − u)(u− umeas) = |ωε|
∫ T

0

∫
Ω

[M(K0 −K1)∇u · ∇Φ + f(u,w)Φ] dµ+ o(|ωε|).

According to assumption (38), the limit measure µ is independent of the choice of the subsequence

and is equal to δz, the Dirac measure centered in z. Finally, the second term in the right-hand

side of (40) is o(|ωε|) by means of Lemma 2 below.
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Remark 5. By Assumption 1 and by the homogeneous boundary conditions on uε we can con-

clude, using standard local regularity results on parabolic equations applied in a neighbourhood of

∂Ω, that uε ∈ C2+α,1+α/2(ΓT ).

Lemma 2. Let {ωε} satisfy (3) and (38). Then,∫ T

0

∫
∂Ω

(uε − u)2 = o(|ωε|).

Proof. By the same argument as in the proof of Theorem 4 and by Remark 4.2,∫ T

0

∫
∂Ω

(uε − u)2 = |ωε|
∫ T

0

∫
Ω

[M(K0 −K1)∇u · ∇Θ + f(u,w)Θ] dµ+ o(|ωε|),

where (Θ,Ξ) satisfies

∂tΘ + div(K0∇Θ)− fu(u,w)Θ− gu(u,w)Ξ = 0 in QT ,

K0∇Θ · ν = uε − u on ΓT ,

∂tΞ− fw(u,w)Θ− gw(u,w)Ξ = 0 in QT ,

Θ(·, T ) = 0 Ξ(·, T ) = 0 in Ω,

(41)

and (Θ,Ξ) ∈ (W 1,∞(QT ), C(QT )).

We now focus on proving that for a compact set K such that ωε ⊂ K and satisfying

dist(K, ∂Ω) ≥ d0 one has

‖Θ‖L2(0,T ;H3(K)) ≤ ‖uε − u‖L2(0,T ;H1(Ω)), (42)

and, as a consequence of a Sobolev immersion, (42) implies (here d = 2, 3)

‖Θ‖L2(0,T ;W 1,∞(K)) ≤ ‖uε − u‖L2(0,T ;H1(Ω)) ≤ |ωε|
1
2 .

By a combination of (3) and (38) we can ensure that the support of the measure µ = δz is

contained in K. This would entail that∫ T

0

∫
Ω

[M(K0 −K1)∇u · ∇Θ + f(u,w)Θ] dµ ≤ c|ωε|
1
2 ,

hence
∫ T

0

∫
∂Ω

(uε − u)2 = O(|ωε|3/2) = o(|ωε|).
In order to prove (42), by standard Faedo-Galerkin technique applied to the linear system

(41), one has

‖Θ‖L∞(0,T ;L2(Ω)) + ‖Ξ‖L∞(0,T ;L2(Ω)) + ‖Θ‖L2(0,T ;H1(Ω)) ≤ c‖uε − u‖L2(0,T ;L2(∂Ω)). (43)

Moreover, according to (41), Θ is the solution of the following problem
∂tΘ + div(K0∇Θ)− fu(u,w)Θ = gu(u,w)Ξ in QT ,

K0∇Θ · ν = uε − u on ΓT ,

Θ(·, T ) = 0 in Ω.

Analogously to what stated in [23, Chapter 4, Theorem 9.1], it holds that

‖Θ‖L2(0,T ;H2(Ω)) ≤ C
(
‖gu(u,w)Ξ‖L2(QT ) + ‖uε − u‖L2(0,T ;H1/2(∂Ω))

)
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and in conclusion, by the regularity of g, u, w and by (43)

‖Θ‖L2(0,T ;H2(Ω)) ≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)). (44)

Similar estimates can be derived also for Ξ since f, g ∈ C3(R2) and u,w ∈ C2,1(QT ). This last

property is guaranteed on u by Theorem 1, whereas it can be extended to w since we consider

w0 ∈ C2(Ω). Now, by computing the solution of the third equation in (41) in closed form, we

can easily verify that

‖Ξ‖L2(0,T ;H2(Ω)) ≤ C‖Θ‖L2(0,T ;H2(Ω)) ≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)). (45)

Consider the change of variable s = T −t and denote by Θ̂(·, s) = Θ(·, T −t), Ξ̂(·, s) = Ξ(·, T −t).
We now focus on the first equation in (41) and compute the second derivatives of each term.

Then, V := ∂2Θ̂
∂xi∂xj

satisfies the following equation in a weak sense:

∂sV − div(K0∇V ) + fuV = R, (46)

where

R = div

(
∂K0

∂xi
∇ ∂Θ̂

∂xj

)
+ div

(
∂K0

∂xj
∇ ∂Θ̂

∂xi

)
+ div

(
∂2K0

∂xi∂xj
∇Θ̂

)
−
(
fuuu

∂u

∂xi

∂u

∂xj
+ fuuw

∂u

∂xi

∂w

∂xj
+ fuu

∂2u

∂xi∂xj
+ fuwu

∂w

∂xi

∂u

∂xj
+ fuww

∂w

∂xi

∂w

∂xj
+ fuw

∂2w

∂xi∂xj

)
Θ̂

−
(
fuu

∂u

∂xi
+ fuw

∂w

∂xi

)
∂Θ̂

∂xj
−
(
fuu

∂u

∂xj
+ fuw

∂w

∂xj

)
∂Θ̂

∂xi

−
(
guuu

∂u

∂xi

∂u

∂xj
+ guuw

∂u

∂xi

∂w

∂xj
+ guu

∂2u

∂xi∂xj
+ guwu

∂w

∂xi

∂u

∂xj
+ guww

∂w

∂xi

∂w

∂xj
+ guw

∂2w

∂xi∂xj

)
Ξ̂

−
(
guu

∂u

∂xi
+ guw

∂w

∂xi

)
∂Ξ̂

∂xj
−
(
guu

∂u

∂xj
+ guw

∂w

∂xj

)
∂Ξ̂

∂xi
− gu

∂2Ξ̂

∂xi∂xj
.

Let Ω1 be an open subset of Ω, such that ωε ⊂ K ⊂ Ω1 ⊂⊂ Ω. By interior regularity results it

holds that (Θ̂, Ξ̂) is smooth on Ω1 × [0, T ], which entails by the initial conditions that

∂2Θ̂

∂xi∂xj
(x, 0) = 0, ∀x ∈ Ω1. (47)

According to the smoothness of f, g, u, w and to the H2 bounds (44) and (45), we get

‖R‖L2(0,T ;H−1(Ω1)) ≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)). (48)

In fact, all the terms in R except the first three belong to L2(QT ), with norm bounded by

‖Θ‖L2(0,T ;H2(Ω)) or by ‖Ξ‖L2(0,T ;H2(Ω)). Set H := div
(
∂K0

∂xi
∇ ∂Θ̂
∂xj

)
, then, for any v ∈ H1

0 (Ω1),

|〈H, v〉?| =

∣∣∣∣∣
∫

Ω1

∂K0

∂xi
∇ ∂Θ̂

∂xj
· ∇v

∣∣∣∣∣ ≤ C∥∥∥Θ̂
∥∥∥
H2(Ω)

‖v‖H1(Ω1).

where 〈·, ·〉? indicates the duality pairing between the involved spaces. Integrating in time the

last relation we finally get

‖H‖L2(0,T ;H−1(Ω1)) ≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)).
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With similar arguments we can estimate also the second and third term in the definition of the

function R leading finally to (48).

Consider now a test function ζ ∈ C∞C (Ω1), 0 ≤ ζ ≤ 1, such that ζ = 1 in K. According to

(46), by simple computations we verify that Ṽ = V ζ satisfies

∂sṼ − div(K0∇Ṽ ) + fuṼ = R̃, (49)

being R̃ = ζR− 2div(V K0∇ζ) + V div(K0∇ζ). It holds that div(V K0∇ζ) ∈ L2(0, T ;H−1(Ω1)),

and

‖div(V K0∇ζ)‖L2(0,T,H−1) ≤ C‖V ‖L2(QT ).

Hence we observe that∥∥∥R̃∥∥∥
L2(0,T,H−1(Ω1))

≤ C(‖V ‖L2(QT ) + ‖R‖L2(0,T,H−1(Ω1))) ≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)). (50)

By standard Faedo-Galerkin argument (see, e.g., [19, Chap. 18, Par. 3, Theorem 3], we verify

that ∥∥∥Ṽ ∥∥∥
L2(0,T ;H1

0 (Ω1))
≤ C

∥∥∥R̃∥∥∥
L2(0,T,H−1(Ω1))

. (51)

Finally, by the definition of ζ, combining (51) and (50) we conclude that

‖V ‖L2(0,T ;H1(K)) ≤
∥∥∥Ṽ ∥∥∥

L2(0,T ;H1
0 (Ω1))

≤ C‖uε − u‖L2(0,T ;H1/2(∂Ω)).

The thesis is now proved thanks to the trace inequality and the energy estimates.

Theorem 4 gives a representation formula for the topological gradient G, the first order term

in the expansion of the mismatch functional J . In analogy to [9, 7], we propose a one-step

reconstruction Algorithm 1 for the identification of small inclusions satisfying (38).

Algorithm 1 Reconstruction of a small-size inclusion

Require: umeas(x, t) ∀x ∈ ∂Ω, t ∈ (0, T ).

Ensure: approximated centre of the inclusion, z̄

• compute (u,w) by solving (1);

• compute (Φ,Ψ) by solving (39);

• determine the topological gradient G of J according to Theorem 4;

• find z̄ s.t. G(z̄) ≤ G(z) ∀ z ∈ Ω.

Remark 6. The polarization tensorM can be computed in an explicit form, e.g., when the shape

B of the inclusion is a disk, even though it is not straightforward in the current anisotropic case.

Since M depends on K0 and K1 and on the shape of the set B, which we assume to be a disk, it

varies according to the space variable z. In order to compute M(z) =M(K0(z),K1(z), B), we

first use [6, Lemma 4.30] to transform K0 and K1 in diagonal matrices. By a rescaling of the

spatial variables, we can reduce to the case in which one of the two diagonalized tensors is the

identity, which allows to apply [6, Proposition 4.31]. We remark that the anisotropic rescaling

entails that the original circle B is transformed in an ellipse of known semiaxes.
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5 Numerical results

In this section we describe the implementation of Algorithm 1 and report some numerical re-

sults in order to show its effectiveness. In particular, we set our experiments in a two-dimensional

idealized geometry, representing a horizontal section of the ventricles. The application of our

algorithm on a three-dimensional geometry would be possible, as a natural extension of the

numerical results reported in [7]. Nevertheless, the current model would require to simulate

electrical recording from the full heartbeat (as opposed to the simplified model in [7], which was

accurate only for the first depolarization phase), and this would imply a significant computa-

tional effort on three-dimensional geometries. This will be the object of future studies, employing

advanced numerical analysis techniques in order to tackle the computational complexity (e.g.,

the adaptive algorithm proposed in [33]).

We rely on synthetic data, i.e., we solve the monodomain system in presence of a prescribed

ischemic region and then use the value of the solution on the boundary (or a portion of it) as an

input for the reconstruction algorithm. In order to prevent inverse crimes, we employ different

numerical settings for the synthetic data generation and for the solution of the unperturbed and

adjoint problems, required for the reconstruction algorithm. In particular, we adopt a much

more refined discretization, both in space and in time, for the simulation of the synthetic data.

In the following experiments we assume to measure the voltage only on a portion of the

heart surface. As outlined in Section 1, measurements of the voltage can be acquired on the

inner surface of a ventricle by intracavitary measurements, or, alternatively, we might be able to

compute a map of the electrical potential on the epicardium starting from ECG data. This does

not affect the reconstruction procedure described in Algorithm 1, apart from the definition of the

adjoint problem (39), which now prescribes oblique boundary conditions involving umeas− u on

the portion of the boundary where the measurements are acquired, and homogeneous Neumann

conditions elsewhere.

5.1 Finite Element approximation

In order to numerically approximate the solution of the monodomain model, we rely on a

Galerkin Finite Element scheme, introducing a tessellation of the domain consisting of triangular

elements. In particular, we adopt two different meshes for the solution of the unperturbed (and

adjoint) problem and for the generation of the synthetic measurements, the latter being more

refined especially close to the boundary of the prescribed ischemic region.

Moreover, in order to reproduce the anisotropic behavior of the conductivity coefficients

K0 and K1, we consider the presence of fibers within the domain. We adopt a procedure

analogous to the one reported in [31] for the generation of the fiber directions, resorting on the

solution of a Laplace problem with suitable boundary conditions. Once the direction of the fibers

~ef (x) = ~e1(x) is defined within Ω, as well as the transmural vector field ~en(x) = ~e2(x) (obtained

by a clockwise rotation of 90◦ of ~ef (x)), the definition of the conductivity tensors is

K0(x) = k0,1 ~ef (x)⊗ ~ef (x) + k0,2 ~en(x)⊗ ~en(x), K1(x) = k1,1 ~ef (x)⊗ ~ef (x) + k1,2 ~en(x)⊗ ~en(x).

The numerical mesh for the solution of the background problem and the directions of the fibers

are reported in Figure 1. As already mentioned in the introduction, the best choice of the

conductivity tensor K0 to be employed in the numerical simulations of the monodomain model
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(a) Mesh (b) Fibers orientation

Figure 1: Setup of the numerical test cases

k0,1 k0,2 k1,1 k1,2 A a ε

1.200 0.2538 0.2308 0.0062 8 0.15 0.05

Table 1: Values of the main parameters

is given by the harmonic mean of the intracellular and extracellular conductivity tensors Di and

De appearing in the bidomain model that can be expressed by

K0 = De(De +Di)
−1Di. (52)

Exploiting the fact that De and Di have the same eigenvectors (again defined by the fiber and

transmural directions), we can therefore compute the eigenvalues of K0 (and analogously of K1)

as the harmonic mean of the ones of Di and De as reported, e.g., in [16, Table 8.1]. The values

of the main parameters involved in the numerical simulations are reported in Table 1.

The numerical solution of the background problem (1) relies on a Newton-Galerkin scheme.

The spatial discretization is performed thanks to the P1-finite element space, i.e., the space of

the continuous functions over Ω which are linear polynomials when restricted on each element of

the mesh. The temporal discretization is done via an implicit Euler scheme. This leads to solve a

nonlinear problem at each timestep, which is performed via a Newton iterative algorithm. More

details on the solver can be found in [33], where a thorough convergence analysis is performed.

5.2 Reconstruction of small inclusions

We study the effectiveness of the reconstruction algorithm in identifying the position of

small ischemic regions within the cardiac tissue. For, we employ synthetic measurements of the

perturbed boundary voltage in presence of ischemias located in different sections of the cardiac

tissue: in the left ventricle, in the septum, or in the right ventricle. In each simulation, we

consider circular ischemic regions of radius ranging from 1mm to 2mm. In Figure 2 we report

the contour plot of the topological gradient G in four different cases, and superimpose a black line

representing the boundary of the ischemia that we aim to reconstruct. From an analysis of Figure

2 we can deduce that the topological gradient always attains its negative minimum value close

to the real position of the ischemia, and the accuracy of the localization may vary according to

the position of the ischemia. We achieve significant results also in the case of multiple inclusions.
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(a) Small inclusion in the septum

from epicardiac measurements

(b) Small inclusion in the Left Ventricle

from left-endocariac measurements

(c) Small inclusion in the Right Ventricle

from right-endocariac measurements

(d) Two small inclusions

from epicardiac measurements

Figure 2: Reconstruction of small inclusions

When more than one ischemic region is present, the topological gradient shows a local minimum

close to each region. As depicted in the captions, some experiments employ the knowledge of the

voltage on the epicardium and some on one endocardiac surface. The reconstruction appears

fairly accurate in both cases. We remark that the algorithm is always effective when using

epicardiac measurements, but fails in detecting ischemic regions located in a ventricle whenever

the measurements are acquired on the inner surface of the other one. Nevetheless, even in those

cases the technique avoids false positive detection, i.e., the topological gradient does not show

significant local minima in wrong locations.

5.3 Reconstruction from noisy measurements

We now focus on the performance of the algorithm in presence of noisy measurements, in

order to assess the stability of the algorithm with respect to small perturbations of the boundary

data of the form

ũmeas(x, t) = umeas(x, t) + ρη(x, t), (53)
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where η(x, t) is a standard Gaussian random variable for each point x and instant t, and ρ ∈ [0, 1]

is the noise level. In Figure 3 we report the contour plot of the topological gradient computed

(a) Measurements without noise (b) Noise level: 5%

(c) Noise level: 10% (d) Noise level: 15%

Figure 3: Reconstruction in presence of noisy epicardiac measurements

with noiseless measurements and compare it with the ones obtained with growing levels of noise.

The algorithm shows to be stable even under significantly corrupted measurements: up to the

level ρ = 0.15, the negative region in correspondence to the exact position is clearly identifiable.

5.4 Reconstruction of large inclusions

We eventually remark that the proposed algorithm produces significant results also when

applied to measurements associated to large ischemic regions. The identification of larger regions

could be performed by means of iterative reconstruction algorithms, as the one proposed in [10]

for a semilinear elliptic problem. Nevertheless, as it is shown in Figure 4, the information coming

from the topological gradient could be a suitable initial guess for such iterative algorithms.

6 Conclusions

In this paper, we have studied the identification of small ischemic regions in the cardiac tissue,

represented by discontinuous alterations in the conductivity and in the nonlinear reaction term
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(a) Reconstruction of a large ischemia

from epicardiac measurements

(b) Reconstruction of a large ischemia

from right-endocardiac measurements

Figure 4: Reconstruction of large ischemic regions

of the monodomain model, taking advantage of the measurement of the voltage on the boundary

of the heart. We have extended the existing results regarding the well-posedness of the direct

problem and derived a rigorous asymptotic expansion of the perturbed boundary voltage, which

allows to formulate an effective reconstruction algorithm based on topological optimization.

We foresee several significant extensions of the presented analysis, both from an analytical

and a numerical viewpoint. The coupling of the monodomain model of the heart with a passive

conductor model for the surrounding torso (see [11]) would enable us to make use of ECG data

for reconstruction purposes, possibly comparing the results with the ones obtained in [24],[39]

with a stationary version of the bidomain model.

The effectiveness of the reconstruction algorithm should also be tested in a three-dimensional

setting; in such a context, due to the high computational cost of the numerical simulation, a

Reduced Order Modeling approach could be considered, as recently analysed in [27].

Finally, the detection of arbitrarily large ischemic regions can be tackled, exploiting an analo-

gous strategy as the one adopted in [9] (possibly reducing the computational effort by employing

an adaptive solver of the monodomain system, as proposed in [33]).
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Matematica, la Probabilità e le loro applicazioni (GNAMPA) of the Istituto Nazionale di Alta

Matematica (INdAM). The numerical simulations presented in this work have been performed

thanks to the MATLAB library redbKIT, [25].

References

[1] R. Aliev and A. Panfilov, A simple two-variable model of cardiac excitation, Chaos,

Solitons & Fractals, 7 (1996), pp. 293–301.

24



[2] H. Amann, Invariant sets and existence theorems for semilinear parabolic and elliptic sys-

tems, Journal of Mathematical Analysis and Applications, 65 (1978), pp. 432–467.

[3] H. Ammari, J. Garnier, V. Jugnon, and H. Kang, Stability and resolution analysis

for a topological derivative based imaging functional, SIAM Journal on Control and Opti-

mization, 50 (2012), pp. 48–76.

[4] H. Ammari, E. Iakovleva, H. Kang, and K. Kim, Direct algorithms for thermal imag-

ing of small inclusions, Multiscale Modeling & Simulation, 4 (2005), pp. 1116–1136.

[5] H. Ammari and H. Kang, Reconstruction of small inhomogeneities from boundary mea-

surements, Lectures Notes in Mathematics Series, Volume 1846, Springer, 2004.

[6] H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to In-

verse Problems and Effective Medium Theory, Applied Mathematical Sciences, Springer

New York, 2007.

[7] E. Beretta, C. Cavaterra, M. C. Cerutti, A. Manzoni, and L. Ratti, An inverse

problem for a semilinear parabolic equation arising from cardiac electrophysiology, Inverse

Problems, 33 (2017), p. 105008.

[8] E. Beretta, M. Cerutti, A. Manzoni, and D. Pierotti, An asymptotic formula for

boundary potential perturbations in a semilinear elliptic equation related to cardiac electro-

physiology, Math. Mod. and Meth. in Appl. S., 26(04) (2016), pp. 645–670.

[9] E. Beretta, A. Manzoni, and L. Ratti, A reconstruction algorithm based on topological

gradient for an inverse problem related to a semilinear elliptic boundary value problem,

Inverse Problems, 33 (2017), p. 035010.

[10] E. Beretta, L. Ratti, and M. Verani, Detection of conductivity inclusions in a semilin-

ear elliptic problem arising from cardiac electrophysiology, Communications in Mathematical

Sciences, 16 (2018), pp. 1975–2002.

[11] M. Boulakia, S. Cazeau, M. A. Fernández, J.-F. Gerbeau, and N. Zemzemi,

Mathematical modeling of electrocardiograms: a numerical study, Annals of biomedical en-

gineering, 38 (2010), pp. 1071–1097.

[12] M. Boulakia, E. Schenone, and J.-F. Gerbeau, Reduced-order modeling for cardiac

electrophysiology. application to parameter identification, International Journal for Numer-

ical Methods in Biomedical Engineering, 28 (2012), pp. 727–744.

[13] Y. Bourgault, Y. Coudiere, and C. Pierre, Existence and uniqueness of the solution

for the bidomain model used in cardiac electrophysiology, Nonlinear Anal Real World Appl,

10 (2009), pp. 458–482.

[14] Y. Capdeboscq and M. Vogelius, A general representation formula for boundary voltage

perturbations caused by internal conductivity inhomogeneities of low volume fraction, Math.

Modelling and Num. Analysis, 37 (2003), pp. 159–173.

[15] D. J. Cedio-Fengya, S. Moskow, and M. S. Vogelius, Identification of conductivity

imperfections of small diameter by boundary measurements. continuous dependence and

computational reconstruction, Inverse Problems, 14 (2008), p. 553–595.

25



[16] P. Colli Franzone, L. Pavarino, and S. Scacchi, Mathematical Cardiac Electrophys-

iology, vol. 13 of MS&A, Springer, 2014.

[17] Y. Coudière, Y. Bourgault, and M. Rioux, Optimal monodomain approximations of

the bidomain equations used in cardiac electrophysiology, Mathematical Models and Methods

in Applied Sciences, 24 (2014), pp. 1115–1140.

[18] Y. Coudière and C. Pierre, Stability and convergence of a finite volume method for two

systems of reaction-diffusion equations in electro-cardiology, Nonlinear analysis: real world

applications, 7 (2006), pp. 916–935.

[19] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science

and Technology: Volume 5 Evolution Problems I, Springer Science & Business Media, 2012.

[20] Y. Giga and N. Kajiwara, On a resolvent estimate for bidomain operators and its ap-

plications, Journal of Mathematical Analysis and Applications, 459 (2018), pp. 528–555.

[21] D. Henry, Geometric theory of semilinear parabolic equations, vol. 840, Springer, 2006.

[22] K. Kunisch and M. Wagner, Optimal control of the bidomain system (iv): corrected

proofs of the stability and regularity theorems, arXiv preprint arXiv:1409.6904, (2014).

[23] O. Ladyzenskaja, V. Solonnikov, and N. Ural’ceva, Linear and Quasi-linear Equa-

tions of Parabolic Type, AMS Transl. Monographs, 1968.

[24] M. Lysaker, B. F. Nielsen, and A. Tveito, On the use of the resting potential and

level set methods for identifying ischemic heart disease: An inverse problem, J. Comput.

Phys., 220 (2007), pp. 772–790.

[25] F. Negri, redbKIT Version 2.2. http://redbkit.github.io/redbKIT/, 2016. Copyright

(c) 2015-2017, Ecole Polytechnique Fédérale de Lausanne (EPFL) All rights reserved.

[26] L. Nirenberg, On elliptic partial differential equations, in Il principio di minimo e sue

applicazioni alle equazioni funzionali, Springer, 2011, pp. 1–48.

[27] S. Pagani, A. Manzoni, and A. Quarteroni, Numerical approximation of parametrized

problems in cardiac electrophysiology by a local reduced basis method, Computer Methods in

Applied Mechanics and Engineering, 340 (2018), pp. 530–558.

[28] C. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, 1992.

[29] M. Potse, R. Coronel, S. Falcao, A.-R. LeBlanc, and A. Vinet, The effect of lesion

size and tissue remodeling on st deviation in partial-thickness ischemia, Heart Rhythm, 4

(2007), pp. 200–206.
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