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Abstract
The transition towards personalized medicine is happening and the new experimental
framework is raising several challenges, from a clinical, ethical, logistical, regulatory,
and statistical perspective. To face these challenges, innovative study designs with
increasing complexity have been proposed. In particular, adaptive enrichment designs
are becoming more attractive for their flexibility. However, these procedures rely on
an increasing number of parameters that are unknown at the planning stage of the
clinical trial, so the study design requires particular care. This review is dedicated
to adaptive enrichment studies with a focus on design aspects. While many papers
deal with methods for the analysis, the sample size determination and the optimal
allocation problem have been overlooked. We discuss the multiple aspects involved
in adaptive enrichment designs that contribute to their advantages and disadvantages.
The decision-making process of whether or not it is worth enriching should be driven
by clinical and ethical considerations as well as scientific and statistical concerns.

Keywords Continuous biomarker · Personalized medicine · Predictive biomarker ·
Stratified medicine · Subgroup identification

1 Introduction

Randomized clinical trials are the gold standard for the evaluation of new drugs.
Traditionally, later-phase trials are designed to enroll a large group of patients with
the intention to treat a broad population. The underlying assumption is that the effect of
the treatment is homogeneous across the diseased patients, indeed these trials are aimed
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at estimating and testing the average treatment effect in the overall population. Then,
eventually, post-hoc subset analyses are performed to discover those who particularly
benefit from the drug.

Unfortunately, in several situations clinical trials carried out on an unselected pop-
ulation may not be suitable. For instance, since anticancer agents are molecularly
targeted therapies, only a subgroup of patients might benefit (Freidlin and Korn 2014).
Thanks to the increasing understanding of disease biology and themechanismof action
of new agents, it is now consolidating the idea that a disease is not generally homoge-
neous. Then, pharmaceutical developers aremoving away from the idea that all patients
can be successfully treated with the same therapy. Moreover, advances in biomedicine
are leading to an increasing knowledge of the reasons for patients’ heterogeneity in
response to treatments, for instance, due to immunological, molecular, cellular, or
genetic differences (Wang et al. 2009; Stallard et al. 2014). Thus, recently, almost all
branches of medicine are moving towards stratified and personalized medicine, but
a special interest is in the oncology area, also for minimizing toxicity (Simon and
Simon 2013; Stallard et al. 2014; Maitournam and Simon 2005). In particular, strat-
ified medicine is aimed at using different treatments for different subgroups of the
patient population; the extreme is personalized medicine, in which patients receive
individually tailored treatment regimes.

Reasons for targeted clinical trials. In general, the motivations for a targeted clinical
trial may be manifold and not mutually exclusive: some patients may be not or poorly
compliant, some patients may introduce too much variability in the study (a hetero-
geneous population may increase variability in the response not drug-related), and
other patients may be inherently unsuitable for the treatment, because unresponsive
or because the treatment causes side effects (Temple 1994; FDA 2019). When those
patients are the minority, they will only have a minor impact on the study, while when
they represent amore consistent fraction of the enrolled population, the study’s success
may be compromised. Excluding those patients usually makes a treatment effect much
easier to demonstrate, if exists. While this approach affects the generalizability of the
study results, i.e. making it impossible to draw inferential conclusions on the whole
population, a larger clinical trial in an unselected population i) can be more expensive,
ii) may expose subjects to treatments that may be ineffective or even harmful and iii)
may decrease the efficiency of the trial (especially if the benefiting subset of patients
is small), iv) may lead to the misleading conclusion that the drug is effective on the
whole population while there still exist subgroups of poor respondents. It is clear
that, in the presence of heterogeneity, the estimated average treatment effect in the
overall population is diluted by those not responding, leading to possible erroneous
conclusions on a treatment that may be truly beneficial for some groups of patients
and/or truly ineffective or dangerous for others. In these cases “we have a scientific
and ethical obligation to identify these subgroups” (Magnusson and Turnbull 2013).

Issues of subgroup analysis. The heterogeneity in the response of patients to therapies
has long been recognized as an issue in clinical development and, traditionally, post-
hoc subgroup analysis has been implemented. However, subgroup analysis can be a
“dangerous exercise” and, to obtain reliable results, the trial sample size must be large
enough (see e.g. Maitournam and Simon 2005; Foster et al. 2011; Lipkovich et al.
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2017 and references therein). A standard approach for subgroup analysis is to test the
treatment by covariate interaction, but when the test is not planned in advance, it may
be seriously underpowered (see also Wang et al. 2007). Besides the inherent possible
concern of subgroup analysis, these methodologies do not provide definitive evidence
of treatment effectiveness on subgroups, so a new confirmatory trial should be carried
out to target the subgroup in which the new treatment seems to be effective.

Biomarkers. In precision medicine, a biomarker (i.e., a biological marker) is defined
as a “characteristic that is objectively measured and evaluated as an indicator of
normal biological processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention” (Atkinson et al. 2001). This is a basic definition but, accord-
ing to the context, specific definitions may exist (Califf 2018). Biomarkers are often
used as a means to classify patients into subgroups. Following a broad classifica-
tion, biomarkers can be prognostic and/or predictive. Prognostic biomarkers are those
associated with the disease outcome, regardless of the treatment received, namely they
identify subpopulations based on the outcome of interest. A biomarker is predictive
when it is associated with drug response, namely when it separates subpopulations
based on the outcome of interest given the received treatment. In practice, from amath-
ematical viewpoint, a biomarker can be treated as a covariate. A review on general
biomarker-guided trials is in Antoniou et al. (2016).

Enrichment strategies. When there is some evidence that the effect of a treatment
may differ in certain subpopulations and biomarkers identifying the potential bene-
fitting subgroups are available, enrichment designs may be useful (Rosenblum and
Van Der Laan 2011; Mandrekar and Sargent 2009b; Maitournam and Simon 2005)
and a successful enrichment maneuver may increase the power of the study with a
reduced sample size and trial’s duration (Freidlin and Simon 2005; Jiang et al. 2007;
Simon 2015; Magnusson and Turnbull 2013). Temple (2010) reviews the concepts of
practical enrichment (to decrease variability), prognostic enrichment (enrolling more
individuals more likely to experience the event of interest/disease-related condition)
and predictive enrichment (accruing more individuals more likely to respond to a drug
treatment). Especially predictive enrichment, i.e. enrichment based on a predictive
biomarker, supports the transition towards personalized medicine (Temple 2010). The
use of enrichment designs has been supported by the Food and Drug Administration
(FDA 2020): “enrichment strategies can increase the ability of a trial to detect an
effect of the investigational drug” and, in a dedicated document (FDA 2019), it is pre-
sented as a strategy to increase the efficiency of the drug development process and to
support precision medicine. According to this document, enrichment is the “prospec-
tive use of any patient characteristic to select a study population in which detection of
a drug effect (if one is, in fact, present) is more likely than it would be in an unselected
population". Similar strategies can be applied for safety assessments.

Trying to trace back the origin of enrichment, probably these kinds of designs
found their origin in oncology. The literature (see e.g. Fedorov and Liu 2007 and
references therein) seems in agreement to award Amery and Dony (1975) as one of the
firsts that used this strategy. In their study, patients non-responding to the treatment
are then excluded in a second study phase. Even if subpopulation enrichment had
been employed in practice, the first papers that more formally discuss the enrichment
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practice have been found in the 1990s (e.g. Hallstrom et al. 1991; Temple 1994; Davis
et al. 1995). Russek-Coen and Simon (1997) considered the gender by treatment
interaction. Most studies neglect such interaction and their aim is to design a study
that takes into account that each gender may experience a different response to the
treatment. In their two-stage design comparing a treatment to a control, after stage 1,
the test for gender by treatment interaction is performed: if non-significant the trial is
stopped and the overall treatment effect is computed, while if the test is significant the
treatment effect is estimated separately for gender (after collecting further data in a
second stage). Despite simple, this scheme has been adapted -with variations- in many
of the enrichment trials up to these days. In the same year, we read in Follmann (1997)
that “if during the course of a fixed sample size trial substantial differences in response
between strata become apparent, it may be tempting to quit randomizing patients from
unresponsive strata and only randomize in the responsive strata. Intuitively, if we can
accurately identify responsive and unresponsive strata midway through the trial, and
subsequently randomize only from the responsive subgroups, then we should have a
more powerful trial. Another reason for dropping a stratum occurs when the treatment
shows substantial harm".

Enrichment design based on biomarkers. The use of biomarkers to drive the design
requires a deep understanding of the relationship between treatments and biomarkers
and it is necessary to test the biomarker validity and utility (see, e.g., Freidlin et al.
2010; Antoniou et al. 2016). The process of developing and validating a biomarker
is complex and requires considerable time and resources. Additionally, the biomarker
role may change within the trial; for instance, it can be a stratification factor at earlier
stages and then it can be used as a tool for inclusion/exclusion criteria (Ondra et al.
2016). Thus, more complex designs are required and this is stimulating research in
several disciplines and discussion among statisticians, clinicians, and trial managers
(see e.g. Antoniou et al. 2019).

Essentially, in enrichment designs, patients are screened for their biomarker profile,
and then only those with or without certain characteristics are included in the trial. The
enrichment can be based on a dichotomous or, in general, on a categorical covariate
(e.g., sex, presence of genetic marker(s), a concomitant illness, mutation status) or a
continuous one (e.g., age, blood pressure) that is often broken down into several cat-
egories (FDA 2019). The simplest scenario is when a binary predictive biomarker (or
a binary classifier based on continuous and/or multiple biomarkers) can be identified
at the planning stage. In this case, it is common to refer to the two ensuing sub-
populations as biomarker-positive (B+) and biomarker-negative (B−) patients. In the
case of substantial evidence that B+ patients benefit from the treatment, a traditional
clinical trial enrolling only B+ may be appropriate and the design and analysis of
the study are straightforward. However, regulatory guidelines for enrichment strate-
gies (FDA 2019) have warned investigators that it is necessary to collect data also
on the B− patients, unless there is sufficient evidence of their unresponsiveness to
the drug. In practice, it is frequently hard/impossible to have such a characterization
of the population before phase III. Multiple sources of uncertainty may be present,
such as incomplete information on the biomarker’s prevalence or related to the type
and strength of the biomarker-response relationship (FDA 2019). In addition, even if
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some knowledge/biological rationale/experimental evidence for candidate biomarkers
is available, it is still unclear which is the best way to use them or how they could
be combined at this stage of clinical development. Moreover, when the candidate
biomarker is measured on a continuous scale, the optimal cutpoint to discriminate
among B+ and B− patients is generally unknown (Jiang et al. 2007; Simon and Simon
2013; Spencer et al. 2016; Frieri et al. 2022). Here, the selection of a patients’ sub-
population corresponds to the setting of a biomarker threshold discriminating B+ and
B−. The decision rule to identify such cutoff changes according to the experimental
setting, but it is reasonable to desire that B+ group should be as large as possible, to
include the largest possible subset of benefitting subjects in future studies.
The objectives of enrichment designs are usually within the following:

• identification of the target population (i.e., B+);
• biomarker validation, namely estimation and testing the effect of the biomarker
on the outcome;

• estimation of treatment effect in the whole population and/or in B+;
• test whether the experimental arm is better than the control in the full population
and/or in B+.

Adaptive enrichment. To avoid an inappropriate enrichment of the population, with
the risk of restricting too weakly or too hardly the enrollment in the study, adaptive
enrichment designs are being increasingly used (FDA 2019). By using the information
accrued on the marker performance during the course of the study, these designs
are aimed at finding the trade-off between restricting the enrollment to increase the
power of detecting a drug effect and being not too restrictive for avoiding a too small
target population. With a smaller sample size, the accuracy of the estimators may
deteriorate and the recruitment period may become prohibitive. The analysis of this
kind of adaptive trial needs to take into account the bias arising from the use of the
same data for both the subpopulation selection and the final analysis. Many authors,
as well as FDA guidelines, pointed out the importance of controlling type I error rate
in enrichment designs: because the modifications in the enrollment criteria depend on
the outcome, standard methods of analysis do not not guarantee the control of type I
errors.

Several additional statistical and logistical issues are added in the presence of a
continuous candidate predictive biomarker. For instance, FDA (2019) mentions the
problem of sample size determination to detect a treatment effect with a given power in
B+ or in the overall population: this can be a difficult issue when there is uncertainty
about the biomarker cutpoint identifying B+ and B− and about the prevalence of
B+ (i.e., the proportion of biomarker-positive patients on the whole population). In
this framework, the choice of the biomarker threshold becomes part of the study’s
objectives.

Further discussion on the appropriateness of the enrichment maneuver and moti-
vating examples can be found, for instance, in Mandrekar and Sargent (2009a) and
Stallard et al. (2014), in the context of real clinical examples.

Notice that the wording “adaptive enrichment” may seem redundant as, intuitively,
the idea of the enrichment is itself an adaptation. However, the reference literature
adopts the terminology “adaptive enrichment design” to refer to a study in which
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modifications of important aspects are allowed during the course of the trial based on
the accrued information (e.g. refinement of the subpopulation, treatment assignments,
study duration, and endpoints). For consistency reasons, we follow this nomenclature.
In contrast, an example of a non-adaptive enrichment design could be a clinical trial
in which only biomarker-positive patients are randomized (maybe based on consider-
ations coming from previous knowledge) while biomarker-negative ones are excluded
from the study (see, e.g., Antoniou et al. (2017)).

Within the paper the term biomarker may be used in a broader sense, intending,
for example, a demographic characteristic or a biological characteristic. We basically
restrict our thoughts to frequentist methodologies, though other strategies have been
adopted. In Sect. 2 we discuss adaptive enrichment designs, while in Sect. 3 we intro-
duce the notation and a general framework for enrichment studies. In Sect. 4 we review
designs with two pre-defined subgroups (Sect. 4.1) and we discuss the case of quanti-
tative biomarkers (Sect. 4.2). Section5 is dedicated to an extensive discussion on open
issues and directions for future research.

2 Adaptive enrichment designs

In adaptive enrichment designs, as the trial evolves the accrued information is used
to better characterize the target population and, eventually, to restrict the enrollment
for modifying the population under investigation. This protects against the possibility
of making wrong decisions on the enrollment criteria (or using only a subset of data
for the analysis) with the advantage of potentially having an improvement in power
without increasing the sample size, making these designs appealing to both patients
and sponsors (see e.g. Simon 2015).
The typical adaptive enrichment designs scheme is articulated in the following steps:

1. initial recruitment from the entire population meeting standard broad eligibility
criteria;

2. interim analysis (one or more) to assess efficacy/safety in the entire population
and in one (or more) subgroup(s);

3. design the rest of the trial based on the interim analysis.

Interim analysis could lead to the following actions:

action A): recruitment continues from the entire population (with possible sample
size re-estimation);
action B): recruitment is restricted to one (or more) subgroup (enrichment design);
action C): trial stops for futility or efficacy;
action D): recruitment weighted towards one (or more) subgroup;
action E): stop randomization to one or more treatments and/or start randomizing
subjects to one or more new arms.

These interim decisions may not be mutually exclusive; for example, sample size
re-estimation can be matched with action B or C. Indeed, the sample size is often
calculated at the beginning of the trial based on limited information. Thus, stage size
can be adjusted based on interim data which could provide important information
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(e.g., on the biomarker prevalence). Moreover, in many enrichment designs the total
sample size is fixed: by stopping the recruitment from one or more groups at the
interim analysis, a sample size re-allocation rule is performed as the recruitment will
only involve the remaining patients. Note also that actions D and E involve some
enrichment, but these designs can be thought of as a part of master protocols (see
Sect. 5.3).

Adaptive enrichment designs were introduced when the overall population is parti-
tioned into two subgroups specified in advance andmost of the literature, even recently,
has been focused on this framework (Jennison and Turnbull 2007; Wang et al. 2009;
Rosenblum and Van Der Laan 2011; Rosenblum et al. 2020; Ballarini et al. 2021; Wu
et al. 2022). This basically resembles the case in which there is a single dichotomous
biomarker that identifies B+ and B−. Following the steps 1, 2, 3 above, they are adap-
tive in the sense that the inclusion criteria of patients are modified after the interim
look at the data. A similar setting is when the population is partitioned into more than
two groups, for instance by a polytomous biomarker or by a continuous one broken
down into several predetermined categories.

As regards continuous biomarkers, several cutpoints can be a priori fixed, going
back to the case of predefined subgroups; however, even if the cutoffs can be settled
following a biological rationale, this procedure could clearly lead to several downsides
(see e.g. FDA 2019; Simon 2015). There is relatively limited work providing insights
into how these groups should be identified for continuous biomarkers, but particular
care and attention are required for the threshold determination and validation (Spencer
et al. 2016). Frequently, B+ and B− are identified by data coming from sources other
than clinical evidence: for instance, they could be elicited from animal models or
defined by taking a convenient value as a cutoff (Jiang et al. 2007). However, recently,
a methodological effort has been done to fill this gap. While some works are still
based on categorizing a continuous biomarker by using a set of candidate cutpoints
(e.g. quantiles/percentiles as in Jiang et al. 2007; Spencer et al. 2016; Stallard 2023),
others treat the biomarker directly on a continuous scale (e.g. Diao et al. 2018; Lin
et al. 2021; Frieri et al. 2022). These designs have the efficiency of enrichment without
the need of dealing with predefined subgroups of patients.

3 General framework for enrichment designs

From now on, we restrict our attention to two-stage designs with a single predictive
biomarker. Clearly, the proposed framework could be extended to the case of multiple
stages and multiple biomarkers as well.

3.1 Notation andmodel

Consider a clinical experiment aimed at comparing an experimental treatment (T )

versus a control (C). Let us denote by Y the patient outcome and, without loss of
generality, assume that larger values of the outcomes are preferred. For instance, the
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outcome may be binary, count, time-to-event, etc. Let also denote by X ∈ X a pre-
dictive biomarker and let δ ∈ {T , C} be the treatment indicator. A general approach
consists of modeling E[Y |X , δ], for instance with linear regression. Via the biomarker
X , the full population F can be partitioned into J disjoint subgroups G1, . . . , G j ,
namely F = ⋃J

j=1 G j with
⋂J

j=1 G j = ∅. Possible other subpopulation(s) of inter-
est could be built as appropriate by defining one (or more) subset(s) I of {1, . . . , J }
such that SI = ⋃

j∈I G j . At the end of most of the enrichment designs, the interest
is in the partition F = B+ ∪ B− (with B+ being the subgroup to which the enroll-
ment is restricted in the case of enrichment). The group B+ could be a single G j

or a composite subpopulation. In practice, the set {1, . . . , J } is partitioned into two
disjoint sets, say I ∗ and its complement (I ∗)c so that B+ = SI ∗ and B− = S(I ∗)c .
When X is qualitative, X is a finite (possibly unordered) set while if X is quantitative
then X ⊆ R and the definition of the benefitting subpopulation could be done via a
biomarker threshold x∗, e.g. B+ = SI ∗ = {i ∈ F : Xi ≤ x∗} (note that when X
is quantitative, often the J nested subpopulations

⋃ j
h=1 Gh for j = 1, . . . , J are of

interest).
In particular,

• when X = {x1, . . . , xJ } the population is naturally divided into J subgroups
with G j = {i ∈ F : Xi = x j }. The binary biomarker is a particular case with
X = {x1, x2}, and the twobiomarker levels naturally define the two subpopulations
G1 and G2, that can be directly taken as the B+ and the B− groups.

• When X ⊆ R, one or more cutoffs x∗
1 , . . . x∗

J have to be identified to define
G1 = {i ∈ F : Xi ≤ x∗

1 }, G j = {i ∈ F : x∗
j < Xi ≤ x∗

j+1} j = 1, . . . , J − 1
and G J = {i ∈ F : Xi > x∗

J }.
Let us denote by N the total sample size and by n j and p j = n j/N the size and

the prevalence of subgroup j for j = 1, . . . , J , where clearly
∑J

j=1 n j = N . We

also denote by n(k) stage k sample size, with k = 1, 2, such that n(1) + n(2) = N .
The treatment effect (computed with respect to the control) in the overall population
is denoted by �F . Usually �F = E[Y |T ] − E[Y |C] but it can also be the difference
in hazard functions in T and C or defined on other scales like, e.g., log hazard ratio or
log odds ratio. Analogously, the treatment effect in G j is denoted by� j and�I is the
treatment effect for any other subpopulation SI with I ⊆ {1, . . . , J }. The treatment
effect can be both an absolute or a standardized measure. The hypothesis of interests
at interim analysis or at the end could be H0F : �F = (≤)0 and/or H0 j : � j = (≤)0
or other hypotheses on SI , i.e. H0I : �I = (≤)0. Based on the chosen hypothesis
and the treatment effect measure, we can define the test statistics as functions of the
sample data. In particular, ZF is used to test H0F , Z j for H0 j and Z I for H0I . The
superscript (k) is used to indicate the stage to which the test statistic is referred, with
k = 1, 2.

3.2 Interim decisionmaking for enrichment designs

At the interim analysis, the decision-making is based on the collected data: this is a
decision rule that maps stage 1 data into a decision concerning stage 2 enrollment (e.g.
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Rosenblum and Van Der Laan 2011). In the most used framework, this decision rule
consists of identifying the set I ∗ ⊆ {1, . . . , J } that defines the group SI ∗ = B+ to
be enrolled in stage 2. Some identification rules are based on the estimated treatment
effect, others on test statistics, and others are more complicated. Some of the most
used rules in enrichment strategies to identify I ∗ are listed below under a “the larger
the better" scenario.

ID1) Set I ∗ = { j : � j > γ }, namely select all subgroups where the treatment effect is
larger than a minimal clinically significant difference γ (e.g. Freidlin and Simon
2005; Renfro et al 2014; Lin et al. 2021; Frieri et al. 2022).

ID2) Set I ∗ = argmax j∈J � j , i.e., select the subgroup with maximum treatment effect
(e.g. Stallard 2023).

ID3) Set I ∗ = argmax j∈J Z j , namely select the subgroupwhere the chosen test statistic
Z j is maximized.

ID4) Set I ∗ = { j : Z j > c} for a positive threshold c (see e.g. Magnusson and Turnbull
2013 and Kelly et al. 2005).

ID5) Set I ∗ = argmax j∈J n j� j , namely select the subgroup that maximizes the over-
all benefit (Stallard 2023). In the same spirit, another rule consists of taking
I ∗ = argmax j∈J pw

j � j , where w ∈ [0, 1] is a weight; this rule is related to
the Kullback–Leibler information. In practice, the selection is based on a utility
function that provides a trade-off between the size of the subgroup and its treatment
effect (see also Lai et al. 2014; Joshi et al. 2020).

ID6) Set I ∗ based on a conditional power metric defined as the probability of obtaining
a successful outcome at the end of the study given the interim data, e.g., the
probability of rejecting the null hypothesis at the final analysis given the interim
data (see e.g. Wu et al. 2022; Johnston et al. 2022).

ID7) Select the J ∗ best subgroups (with J ∗ pre-specified) in terms of � j or Z j (e.g.
Friede et al. 2020).

Other options involve more complex and less interpretable functions of stage 1 data.
Subgroup selection methods as described in Lipkovich et al. (2017) can be considered
too. The choice of the identification rule can also involve clinical and economical
considerations, as discussed in Sect. 5. All the above-mentioned rules generally depend
on unknown population parameters that have to be estimated with the available data.

We share the opinion that selecting the subpopulation with the highest observed
treatment effect (rule ID2) may be very limiting, especially with a monotonic
treatment-biomarker relationship. While it is true that the interim decision should
be based on a trade-off between the size of the subpopulation and the magnitude of
the treatment effect, attention should be paid to the scale with which the benefitting
subpopulation size is accounted for in rule ID5, as this could lead to too conservative
decisions.
In the case of a binary biomarker, I ∗ = {1} or {2} so B+ coincides with G1 or G2.
In combination with the previous identification rules, the following decision rules
have been considered (with e f f and sa f denoting an efficacy and a safety boundary,
respectively).

R1) If �I ∗ < 0 stop for futility, if �I ∗ ≥ 0 ∩ �F < 0 recruit only B+, while if
�I ∗ ≥ 0 ∩ �F ≥ 0 recruit from F ;
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R2) stop recruiting from B− if Z (1)
(I ∗)c ≤ e f f ≤ 0 or if Z (1)

(I ∗)c ≥ sa f .

Usually, the interimdecision rule is basedon the primaryoutcome.However, especially
in some contexts such as survival analysis, the use of secondary or surrogate endpoints
may be helpful. For instance,Wu et al. (2022) proposed an adaptive enrichment design
that combines the information from the primary and surrogate endpoints at the interim
analysis, also allowing sample size re-estimation. They considered normal outcomes
with predefinedB+ andB− groups and their decisions are based on conditional power.

Finally, notice that when multiple biomarkers are considered with possible inter-
actions among them, the region of X guaranteeing enhanced treatment effect may
be complex and the corresponding subpopulation would be defined by multiple con-
straints. In such a case theremay not exist a single cutpoint to discriminateB+ andB−.

A discussion on possible extensions to multiple biomarkers can be found in Sect. 5.2.

3.3 Analysis at the end of the study

At the end of stage 1, when the enrichment is not performed and the study is continued
on the overall population in stage 2 (action A), the final analysis includes the whole
sample of patients. Whereas, when the enrichment at the second stage occurred by
enrolling B+ subjects (action B), the following possibilities have been employed for
the final analysis: use only stage 2 data (which can be seen as a new study as in Renfro
et al 2014 or Frieri et al. 2022), or combining data from the two stages as, for instance,
in Simon and Simon (2013) or Wang et al. (2007). For this latter case, the key point
is how to combine data from the two stages for a valid inference. The problem arises
since adaptation is based on data-dependent choices and (often) the same data used
for interim decisions, are included in the final analysis.

From an estimation viewpoint, statisticians’ challenge has been to adjust from
possible bias in the estimated treatment effect for the enriched population. Various
methodologies based on bootstrap or cross-validation have been employed (see e.g.
Simon and Simon 2017; Zhang et al. 2017).

Two of the most common methods for combining data from the two stages are
the conditional error function approach (see e.g. Placzek and Friede 2019) and the
combination function approach (see e.g. Bauer and Kohne 1994). A third method of
combining data is to use adaptive likelihood ratio tests with a model that accounts for
the dependencies caused by using stage 1 data for both the enrichment and the final
analysis (see Flournoy and Tarima 2023; Tarima and Flournoy 2022). The authors
proved that for models in one-parameter exponential family, likelihood ratio tests for
natural parameters are uniformly most powerful conditional on the interim decision.
While this latter method does not necessarily requires asymptotics, other methodolo-
gies are based on asymptotic considerations (Rosenblum and Van Der Laan 2011; Lin
et al. 2021). Finally, other approaches usedBayesian techniques or a decision-theoretic
framework (for instance Ondra et al. 2016, 2019; Ballarini et al. 2021).

In addition, especially in a confirmatory setting, the interest lies in testing and, since
patients’ subpopulations are usually multiple, potentially several hypotheses are tested
(at the interim analysis and at the end of the study) and type I error rate may be inflated
and more difficult to compute. Another related issue could be the low power to detect
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a treatment effect in subpopulations with low prevalence. Thus, the authors’ endeavor
has been focused on developing procedures for multiple testing that guarantee the
strong control of the familywise type I error rate (FWER), as a standard requirement
of most clinical trials. When testing J null hypothesis H0 j for j = 1, . . . J , FWER is
the probability of rejecting any true simple hypothesis H0 j and it is controlled in the
strong sense if FWER is lower than a given significance level α (see e.g. Hochberg and
Tamhane 1987). In such a way the type I error for the test of the particular hypothesis
H0 j∗ is not greater than α. Note that, even when a single hypothesis is tested at the end,
this could be because other hypotheses have been dropped after the interim analysis
of the previous stage. Thus, it is necessary to account for this bias: the multiple testing
problem arises from the fact that potentially any hypothesis is tested at the end and
the probability of erroneously rejecting such hypotheses should be controlled.

One of the most used procedures to control FWER in the enrichment context is
the closed testing procedure by Marcus et al. (1976). Let HK = ∩ j∈KH0 j be the
intersection hypothesis with K ⊆ {1, . . . , J }. Then hypothesis H0 j can be rejected
if and only if HK is rejected at level α for all the subsets K that contain j . Reviews
on testing treatment effect in subgroups as a multiple testing problem can be found in
Jennison and Turnbull (2007); Stallard et al. (2014).

Finally, as noted by several authors (e.g. Stallard 2023) with nested subpopulations
the test statistics are correlated.However, in this case, the analysis of data is comparable
to the analysis of a group sequential trial, so similar methods can be used (see also
Sect. 5.1).

4 Adaptive enrichment designs based on a single biomarker

Unless otherwise stated, all the designs presented in this section follow the steps of
the typical adaptive enrichment design presented in Sect. 2.

4.1 The case of two predefined subgroups

This section is dedicated to reviewing some enrichment designs in which B+ and B−
groups are known before the study starts. This experimental scenario may correspond
to an enrichment based on a dichotomous marker or on a higher dimensional classifier
known in advance, e.g. developed based on scientific knowledge and previous studies.

Wang et al. (2007) were one of the firsts introducing adaptive enrichment designs.
Without assuming a particular parametric model, rule R2 was applied to decide at the
interim analysis whether continue recruiting F or just recruit B+ at stage 2 (action A
or B). At the end of stage 2, the hypothesis of interest is H0F (or H0I ∗ ) and the test
statistic is a weighted average of Z (1)

F and Z (2)
F (or Z (1)

I ∗ and Z (2)
I ∗ , respectively). Then

the stage-wise p-values are computed and combined with a combination approach for
the final test. The sample size is planned according to a non-adaptive approach, thus
N is set to detect a minimum significant treatment effect in F . Thus, N is fixed and
it is not influenced by the interim decision and early stopping is not considered in
their design (neither for efficacy nor for futility). In a later paper (Wang et al. 2009),
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the authors deal with an adaptive enrichment design that accommodates sample size
changes based on a conditional power metric computed at the interim analysis.

Rosenblum and Van Der Laan (2011) considered a very general data-generating
distribution with limited support and finite variance and suggested a design in which
actions A or B are taken according to ID3-ID4. Still equal sample sizes for T and C ,
as well as for G1 and G2 are set and N is pre-specified. Their interest is in testing
H0F , H01 and H02 and, at the end of the trial, the appropriate null hypothesis (on
the basis of the interim decision) is tested with a weighted combination of the test
statistic computed at stage 1 and stage 2. The rejection rule is based on a threshold
for this final test statistic that guarantees strong control of the asymptotic FWER at
a given significance level (found as a solution of a numerical optimization problem).
Surprisingly, under some assumptions, such a threshold is given by a standard normal
cumulative distribution function and it coincides with the threshold used in a standard
single-stage fixed design (namely, asymptotically, there is no type I error inflation).
See also Stallard et al. (2014) for a further discussion and comparisons.

A different kind of approach can be found in Liu et al. (2010) and Yang et al.
(2015). The enrollment is first restricted to B+ patients and then, if the interim data
show promising results (in terms of magnitude of the estimated treatment effect or
power), some B− patients are enrolled to then assess the overall treatment effect.

Recently, Rosenblum et al. (2020) proposed a design in which at interim analysis
the possible actions are A, B, or D. Their design is based on minimizing the total
expected sample size under constraints on power and type I error rate. Due to the non-
convexity of their optimization problem, it is computationally unfeasible to be solved
directly and they address it by a sparse linear program, assuming equal allocation to
T and C . The final analysis involves multiple testing procedures.

4.2 Enrichment designs with a quantitative biomarker

Here the objective is to find a single threshold discriminating betweenB+ andB−. The
assumptionofmost papers is that the biomarker-response relationship ismonotonically
increasing (decreasing). In this case, the effect of the treatment is expected to increase
as the levels of the biomarker grow, then B+ is the subpopulation having biomarker
greater than a threshold x∗. As noted by many authors, the treatment effect may
not be monotone, leading to a more complex definition of B+. For example, when
the biomarker-response relationship is U-shaped it would be probably convenient to
select two thresholds to discriminate between B+ and B− (with a similar situation if
the curve has a reversed U shape).

4.2.1 Enriching from candidate cutpoints

The first proposal aimed at both subgroup identification and testing the treatment effect
is the Adaptive Signature Design by Freidlin and Simon (2005), later generalized by
Jiang et al. (2007). Under time-to-event outcomes modeled by proportional hazards,
Jiang et al. (2007) proposed two procedures intending to i) select the biomarker cutoff
among a set of candidate thresholds and ii) assess whether T is better than C in F
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or B+ at the end of the study. These are not enrichment designs (they don’t include a
stage for enrichment) but are the first attempts to incorporate biomarker information
with unknown discriminant into the study design. Sample size considerations are also
included.

Later, Magnusson and Turnbull (2013) proposed a group sequential enrich-
ment design with subgroup identification in K stages for normal outcomes. They
consider J nested subpopulations and set K lower bounds and upper bounds
(lk, uk), k = 1, . . . , K for stopping rules. After stage 1 the decision rule is aimed at
dropping subpopulations of non-responsive patients: the enrollment is stopped from
G j for all the j s.t. Z (1)

j ≤ l1. The remaining indexes, say I ∗, define the subpopulation
SI ∗ to enroll in the K −1 subsequent stages. If Z (1)

I ∗ ≥ u1 the trial stops with rejection
of H0I ∗ and B+ = SI ∗ . Otherwise, the trial is taken to the second stage (or stopped
for futility). In the subsequent stages patients from SI ∗ are enrolled and, at each stage
k, if the test statistic exceeds uk then H0I ∗ is rejected and B+ = SI ∗ , while if the test
statistic is lower than lk , the trial is stopped for futility; otherwise the trial proceeds to
stage k + 1. Here, the authors assume the decision rule R2 based on ID4 and trial ter-
mination is guaranteed since the authors set lK = uK . Their methodology is focused
on identifying lk and uk for k = 1, . . . K such that FWER is controlled in the strong
sense at a given significance level. They also deal with the problem of correcting bias
in point estimation via bootstrap. A possible limitation of this approach is that the
subpopulation is not further adjusted after stage 1 (and each interim decision is based
only on data from the previous stage).

A similar setting is considered inLai et al. (2014) andLai et al. (2019),whoproposed
a three-stage group sequential designwith subgroup identification. After the first stage,
if H0F is rejected then the trial stops for efficacy (action C) and B+ = F . Otherwise,
the trial evolves to stage 2 by accruing patients fromF (if the test statistics meet some
futility boundaries) or from subgroup SI ∗ , associated with the largest value of the
generalized likelihood ratio statistic (this corresponds to select the subgroup with the
largest estimated Kullback–Leibler divergence, i.e., ID5). Then H0F or H0I ∗ is tested
and, with similar considerations to the ones made at the first interim analysis, the trial
is taken or not to stage 3. In such final stage the trial is continued on F or SI ∗ . Again,
the aim is to find the efficacy/futility boundaries to which the test statistics have to be
compared in order to guarantee FWER with a closing testing principle.

In the oncology area, Renfro et al (2014) considered survival outcomes and a
continuous biomarker with a monotonic increasing relationship with the outcome. At
the interim analysis, a set of candidate thresholds is considered and, for each cut-
point, a Cox proportional hazard model is fitted taking the progression-free survival
as the outcome. The threshold for which the strongest treatment-by-biomarker effect
is observed is used to find I ∗. If the trial is not stopped for futility, stage 2 is performed
and, at the end, if the enrichment occurred the final test onSI ∗ is limited to stage 2 data,
otherwise the two stages’ data are considered together. The allocation probabilities are
2/3 to T and 1/3 to C and n(1) is computed to have a minimum power for the treatment
by biomarker interaction test.
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An approach inspired by group sequential trials is in Graf et al. (2019), which
considered nested subpopulations arising from several candidate cutpoints of a con-
tinuous biomarker and they tested the resulting nested hypothesis. This framework
corresponds to a classical group sequential trial in which, at each interim analysis, a
null hypothesis is tested. In such a case the test statistic is compared to adjusted critical
boundaries that account for the correlation among the test statistics and guarantee con-
trol of the FWER. Such critical boundaries can be employed in the enrichment design
but rely on the assumption of homoscedasticity across each subgroup. Via simulations,
the authors discussed possible FWER inflation when this assumption does not hold,
also proposing possible alternative tests.

With time-to-event endpoints, Kimani et al. (2020) were interested in estimation
at the end of the study, when interim actions are B or C. The total population con-
sists of subgroups determined by J candidate threshold a priori settled. They derive
asymptotically unbiased estimators for the log-hazard ratio and interval estimators at
the final analysis (with data from both stages) that are appropriate for some interim
selection rules.

Stallard (2023), under the monotonicity assumption proposed a design with the
objective of assessing whether T is superior to C in B+, combining the data from
both stages. From a continuous biomarker, some candidate thresholds are settled after
observing stage 1 data. Then, the subpopulations are taken as nested and, following
action B at the interim, I ∗ can be defined by rules ID2, ID3 or ID5. At stage 2 the
recruitment is restricted to SI ∗ = B+ and, at the end H0I ∗ : �I ∗ ≤ 0 is tested. Stage
1 p-values allowing for correction due to subgroup selection are computed based on
multivariate normal distributions (or on Brownian motion approximation). Then, data
from the two stages are combined using a combination test and the stagewise p-values
are combined as proposed by Bauer and Kohne (1994). The discussion papers on Stal-
lard (2023)’s contain several insights and suggestions, as well as possible alternative
methods. For instance, the Tarima and Flournoy (2022) strategy does not require the
monotonicity assumption (see also Flournoy and Tarima 2023).

Again in the framework of nested subpopulations, Placzek and Friede (2022) con-
sidered homoscedastic normal outcomes for T and C with the goal of testing H0F and
H0I for all the nested sets I . In order to control FWER in the strong sense, the closed
testing procedure is used, while the conditional error function is adopted to combine
data from both stages. For interim analysis, the authors use ID4 and incorporated a
blinded sample size recalculation with equal allocations to T and C . Based on their
simulations, the optimal time for interim analysis is around 40%-50% of N in order
to maximize the power of the conditional error function approach (see also Placzek
and Friede (2019)).

Recently, Johnston et al. (2022) introduced a designwith survival outcomes and four
predictive biomarkers that are converted to categorical values by means of quartiles.
The interim analysis is planned after 40% of the expected number of events occurred,
regardless of other considerations (i.e., n(1) is fixed). At an interim stop, an event count
re-estimation (to increase the number of events in the trial for guaranteeing power) and
subgroup identification methods are performed. They consider various identification
algorithms (like recursive partitioning and penalized regression methods) based on
rules ID2 and ID3, obtaining a target populationB+. Then, based on an approximation
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of the conditional power metric with the log-rank statistics, the possible decisions are:
continue the trial inF (action A), continue the trial in B+ (action B), or stop the study
(action C). For the final analysis, combination tests and closed testing procedures are
employed.

4.2.2 Enriching from estimated cutpoints

Simon and Simon (2013) proposed adaptive enrichment designs in which inclu-
sion/exclusion criteria are sequentially updated based on previous data. They consid-
ered more than one biomarker whose information is combined via a binary classifier.
The decision rule can be based on a binary classifier or on the cutpoint that maximizes
the log-likelihood function. The main problemwith this design is that, at the end of the
study, the single null global hypothesis of whether exists a benefitting subpopulation
is tested by combining data from all the stages via a weighted average of stage-wise
test statistics. Thus, if rejected, we can state that there exists a benefitting subset of
patients, but it is unknown how to identify B+ (Simon 2015; Simon and Simon 2017;
Johnston et al. 2022). The indicated subpopulation may be the one defined by the
enrollment criterion of the final stage of the trial, but a formal test on the treatment
effect on B+ is missing. Later, Simon and Simon (2017) considered bootstrap meth-
ods to correct the bias in the estimation of the treatment effect in B+ defined by their
last stage eligibility and explored the conditions under which, when the overall null
hypothesis is rejected, a significant treatment effect in B+ can be claimed.

In the context of early-stage clinical trials (like phase II oncological trials), Spencer
et al. (2016) presented a biomarker-adaptive threshold design for a single-arm trial
with the objective of determining whether a subpopulation with a clinically relevant
response rate exists. With a continuous biomarker and under monotonicity, for the
enrichment strategy, the threshold is selected from a set of candidate cutpoints, but it
is then estimated on a continuous range. In addition, stopping for futility is possible if
no threshold is found. In the interim analysis, the biomarker threshold is selected fol-
lowing several steps based on a beta-binomial prediction model and predicted power.
At the end of the study, data are combined to test the hypothesis that the response
rate in B+ is greater than a clinically significant value. No design considerations are
provided and n(1) and n(2) are fixed in advance.

Zhang et al. (2017) focused on the estimation problem for binary outcomes. With
a fixed sample size, they use cross-validation and bootstrap to adjust the bias in the
estimator of treatment effect in B+.

With time-to-event endpoints described by a Cox regression model, Diao et al.
(2018) presented an adaptive enrichment design with fixed N . The design considers a
single continuous biomarker with a monotonic relationship with the outcome. How-
ever, for threshold determination, they propose to use a grid search method. To select
the cutoff, two decision rules are considered: one is based on minimizing the regres-
sion coefficient of the model and the other is based on maximizing the absolute value
of the treatment by biomarker interaction effect (as in Renfro et al 2014). In the end,
they test the null hypothesis that there is no difference between the hazard functions
in T and C . Note that, by this approach, benefitting patients might also be in the B−
group.
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Lin et al. (2021) adopted a bivariate normal model for the pair (Y , X) in a single-
arm trial (the treatment effect is computed with respect to a historical control). At
an interim decision, the biomarker threshold to discriminate between B+ and B−
is estimated directly on a continuous scale with rule ID1. In their framework, the
correlation outcome-biomarker is an explicit gauge of the predictive nature of the
biomarker. At the end of the study, the interest is in testing the treatment effect in B+
and whether the correlation equals 0 or it is positive. By letting n(2) tend to infinity
they derive the asymptotic distribution of the maximum likelihood estimators of the
treatment effect and the correlation. The target population for future use is identified
by the maximum likelihood estimator of the threshold at the end of the study.

Under the bivariate normal model and the monotonicity assumption, Frieri et al.
(2022) used rule ID1 for comparing T and C and B+ is identified with a threshold
estimated on a continuous scale. In their design, stage 1 is specifically designed to
estimate the threshold, while stage 2 is like a phase III confirmatory trial only on
B+. This approach allows us to link the predictive strength of the biomarker to sam-
ple size considerations. Adopting equal allocation, first n(2) is computed to ensure a
target power for the final analysis and then n(1) is chosen to efficiently estimate the
biomarker cutoff at the interim analysis (imposing a bound on the mean squared error
of the estimate). Before stage 2 starts, n(2) is re-estimated based on stage 1 data. They
question whether enrichment is worthwhile when there are not enough resources for
the threshold estimation at stage 1, including various simulation studies.

5 Discussion

5.1 Relatedmethods: subgroup identification/treatment selection

There is a large body of literature on subgroup identification and subgroup selection,
which is often not integrated with the enrichment design literature. Potentially, many
subgroup selectionmethods could be incorporated into adaptive enrichment designs to
drive the decision rule at interim analysis and to identify the subpopulation of interest
for the subsequent stages. However, subgroup selection rules are usually complex
and rely on many biomarkers/covariates: this might make the interim decision hard
to interpret, with increasing difficulties in drawing design considerations. In addition,
as recently addressed by Cai et al. (2022), many identification methods are aimed
at finding the subgroup with the highest treatment effect, which could be in contrast
to the spirit of enrichment designs. The reference paper reviewing some of the most
common subgroup identification methods is the tutorial by Lipkovich et al. (2017).
It is also worth noticing that often similar methodologies for subgroup selection are
used for treatment selection since the problem of identifying a responsive subgroup
of patients has analogies with the problem of selecting a treatment among multiple
candidates (see e.g. Jennison and Turnbull 2007; Stallard et al. 2014; Wassmer and
Dragalin 2015; Friede et al. 2020). Indeed, some authors adapted methodologies for
treatment selection to determine subpopulations of patients (see e.g. Magnusson and
Turnbull 2013). However, again, while it is obviously desirable to choose the best
treatment it is often not appropriate to select only the “best" subpopulation.
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5.2 Multiple biomarkers

As more predictive biomarkers are involved in subgroup identification, likely, the
target population could be more precisely identified, but, at the same time, more com-
plicated eligibility criteria have to be involved. Sometimes variable/model selection
methodologies or methods to identify a reliable binary classifier can be helpful. Joshi
et al. (2020) considered a three-stage design with multiple continuous biomarkers and
continuous responses. They use equal allocation to T and C and, at the first interim
analysis, the best subgroup is chosen by adopting ID5 with w = 0.75 and the recruit-
ment of the second stage is restricted to the ensuing subpopulation. In the second
interim analysis, stage 1–2 data are used to refine the subpopulation, now identified
by ID5 with w = 0.5: this is the eligible population for stage 3. At the end of the trial,
a weighted average of the stage-wise test statistic is used to test the treatment effect.
Their strategy is similar to the one in Simon and Simon (2013) and thus suffers from
the same drawbacks.

5.3 Multiple treatments

In the presence of more than two arms, the enrichment problem becomes something
different. The main objective becomes to learn which patient subgroup benefits from
which of the treatments under comparison. In this case, there is some overlap between
enrichment design and master protocols. These procedures are commonly classified
in the following categories (e.g. Woodcock and LaVange 2017).

• Platform trials: multiple treatments and possiblymultiple subpopulations. Usually,
a common control group is taken for comparison. They are very flexible, allowing
for dropping ineffective arms or adding new ones during the trial.

• Umbrella trials: multiple treatments for a single disease. Based on predictive
biomarker values, patients are enrolled in different cohorts.

• Basket trials: a single targeted therapy is evaluated on multiple diseases. For
instance, a single drug targeting a particular molecular pathway or mutation is
tested on different kinds of tumors to find out those for whom the drug is more
effective.

For instance, Steingrimsson et al. (2021) introduced an adaptive enrichment design
comparing two treatments to a common control in B+ and B− a priori known. This is
an example of a platform trial where six treatment-by-groups are studied to find which
one leads to the better outcome. The authors pointed out that it would be interesting
to extend their proposal to methods that can accommodate a continuous biomarker
and adaptively find the cutoff based on the accumulating data during the trial. For a
Bayesian adaptive enrichment umbrella trial see the paper by Ballarini et al. (2021).

5.4 Design considerations

Sample size. In many enrichment papers sample size is fixed in advance and planning
considerations are restricted to sample size recalculations for the second stage. In
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other papers, the total sample size is computed to detect a certain treatment effect
in the overall population. Important parameters that affect sample size are the B+
prevalence and the variance of the outcome in this group (see e.g. Frieri et al. 2022;
Placzek and Friede 2022). Also the time at which interim analysis has to be planned
(i.e., n(1)) is a critical issue (Rosenblum and Van Der Laan 2011; Renfro et al 2014;
Lin et al. 2021). A later interim analysis would take advantage of more information for
interim decisions and would share similar characteristics to a potential non-adaptive
clinical trial. Instead, if an earlier interim analysis enables more flexibility due to more
space for adaptation in the rest of the trial, the risk is to jeopardize the whole study by
basing the interim decision on inadequate data (see e.g. Wu et al. 2022). The question
that bounded many authors of enrichment designs is how to make a reliable interim
decision. Unfortunately, very little work has been done to specifically determine the
sample sizes (n(1) and n(2)) according to optimal considerations in adaptive enrichment
designs.

Optimal allocation. Themajority of the papers on adaptive enrichment designs we
found, adopt balanced allocation to T and C . Especially when patient heterogeneity is
taken into account and covariate information is available at the design stage, compara-
ble groups in terms of important prognostic covariates would be desirable. In addition,
in the presence of predictive biomarkers, other objectives related to the enrichment
problem may be of interest: for instance, maximizing the inferential precision in the
estimation of the threshold of a continuous biomarker or maximizing the power of
the test at the final analysis. Then some work should be done to derive allocation pro-
portions that fulfill these objectives. Few exceptions are mentioned in the following.
With a single dichotomous predictive biomarker, Zhu et al. (2013) proposed adaptive
allocation to maximize the power of the test on the treatment-biomarker interaction
in a linear model. Zhao et al. (2022) recently proposed a design that balances over
prognostic covariates and assigns more patients to the best treatment based on the
predictive covariates. They have some continuous covariates that are discretized, but
the direct implementation on a continuous scale can be extended, for instance, with the
recent results by Baldi Antognini et al. (2022). It would be desirable to adjust covari-
ate adaptive randomization procedures to fit the enrichment design framework, with
the objective of balancing the assignments also across important covariates. However,
whether this is the optimal strategy or not is currently unknown and likely dependent
on the specific trial objectives and final analysis (e.g., balanced allocation may not be
optimal under heteroscedasticity). We feel this topic is worth investigation in future
research. In addition, it would be interesting to adapt Covariate-Adjusted Response
Adaptive procedures to study adaptive sequential enrichment designs inwhichmultiple
treatments and multiple patients subgroups are involved and, based on the responses,
the allocation probabilities to each treatment change by assigning more patients to
the best treatment for each subgroup (including the possibility of dropping ineffective
arms within each subgroup as in platform trials).
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5.5 Is it worth enriching?

There are still many interesting open questions regarding how to optimally use the
adaptive enrichment framework in clinical development (see e.g. Simon and Simon
2017; Stallard 2023; Frieri et al. 2022). We summarize the typical issues and con-
cerns of the use of enrichment designs, that could contribute to possible wrong study
conclusions.

• Design issues. See Sect. 5.4.
• Analysis issues. See Sect. 3.3. The main issue arises when the same data are used
to select patients’ subgroups and to make the final inference.

• Accuracy in the identification of the target population. Most of the experimen-
tal scenarios of enrichment designs assume thatB+ orB− are prefixed or correctly
determined by the biomarker level/value. This is clearly related to the knowledge
and understanding of the biomarker-response relationship. Moreover, in practice,
the biomarker assay may have a non-negligible rate of false negative and/or false
positive (Wang et al. 2007; Freidlin and Korn 2014). For instance, Maitournam
and Simon (2005) discussed the impact of biomarker misclassification on trial effi-
ciency. Another critical issue arises when the biomarker is not binary. In particular,
how should we select the cutoff? Or when there are several candidate biomarkers,
how do we select one or how do we combine them? When this decision has to
be made? Note that when a continuous biomarker is dichotomized, the treatment
effect and the size of the target population are functions of the biomarker’s cutoff
defining the subpopulation. Thus, the uncertainty on the appropriate biomarker
threshold may induce increasing complexity/variability in the decision-making
(see e.g. Simon 2015; Frieri et al. 2022).

• Uncertainty in the recruitment rate. There is often a high uncertainty in the
prevalence of biomarkers at the design stage, which makes it difficult to plan
the recruitment, and that might increase the study length. Biomarker prevalence
is often empirically estimated from a screening stage, but this estimate may be
problematic when the study size is small or if the true prevalence is small. Indeed,
many enrichment designs claim a gain in terms of sample size; however, it has to be
considered that by restricting the eligible population, especially if the biomarker-
positive prevalence is low, the amount of time to enroll the required number of
patients may drastically increase. Then a large number of patients might have
to be screened in order to find enough biomarker-positive patients and the study
duration could be even longer than a standard clinical trial design (see e.g. Stal-
lard et al. 2014; Freidlin and Korn 2014; Simon and Simon 2017). For instance,
Simon and Maitournam (2004) compared an enrichment and a traditional trial in
an experimental scenario in which preliminary data support the efficacy of the
treatment only in a subpopulation. Their comparison is based on the number of
patients screened for the enrichment trial and the number of patients randomized
for the traditional one.

• Length of the study. Another time-related aspect is related to the time to observe
the outcome (Wang et al. 2007; Steingrimsson et al. 2021; Wu et al. 2022), espe-
cially for those therapeutic areas in which the primary endpoint could take longer
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to be observed (e.g. overall survival, progression-free survival). However, this is
a common problem of adaptive designs. In these cases, it could be convenient to
identify (if exists) a short-term surrogate endpoint which is a good proxy of the
primary endpoint to be used in place of this for the interim analysis. Note that,
despite surrogate endpoints may be observed quicker, due to possible misclassifi-
cation, the design efficiency may be affected. Other related issues can be found in
Uozumi et al. (2019). They discussed patients’ recruitment methods in which the
enrollment is not stopped at interim, which may help in shortening the total trial
period.

• Size of the subpopulation for intended use. If the treatment is effective only in a
very small subpopulation, economic reasons could lead to not finding it worthwhile
to continue the clinical development within this group of patients. On the other
hand, if the target population is almost as large as the whole population (and
the treatment is not expected to be harmful to the excluded patients), it may not
be worth bearing the costs of screening to identify the subpopulation from an
economic viewpoint. These considerations might also depend on the gravity/rarity
of the disease.

• Ethical issues. From the patient’s perspective it should be considered that the
biomarker screening may be invasive (it often happens in oncology), or may have
a high failure rate, and it may increase the time to receive the therapy (Antoniou
et al. 2019).

• Cost and funding issues. The scientific and logistic complexity of enrichment
designs could increase the cost. First, the financial cost of evaluating the biomarker
needs to be taken into account, especially when the number of patients that can
be enrolled into the trial is small versus the number of those that have to be
screened (Stallard et al. 2014; Thall 2021). Moreover, it has to be considered
that the screening cost increases as the definition of eligibility criteria becomes
more specific (e.g., because multiple biomarkers are used for interim decisions). In
practice, on the one hand, founders could be more enthusiastic to support a clinical
study with higher flexibility and chance of success, on the other hand, it has to be
acknowledged that there is high uncertainty when trying to predict the total cost
of a trial (Antoniou et al. 2019). Other sources of the increasing costs may be due
to a higher administrative burden and support coming from the collaboration of
different expertise.

• Communication issues. It is essential to provide accurate and effective informa-
tion about the enrichment trial to all the relevant stakeholders to make them aware
of the characteristics, potential advantages and disadvantages of these studies
(Antoniou et al. 2019).

• Implementation issues. To facilitate the application of these innovative designs,
a user-friendly computer program/commercial software should be made available
to practitioners for the implementation and evaluation of adaptive enrichment
designs, although some R packages have been developed recently (Friede et al.
2020).
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5.6 Concluding remarks

Enrichment designs are typically used in phase II and/or phase III clinical trials. For
example, the first stage may be phase II, in which the biomarkers are selected based
on the responses to the treatment, and the accrual is then restricted in the second stage
(i.e., phase III). Other interesting circumstances may be when seamless phase II/III
trials can be used or when patient groups are subsequently excluded when there is
greater evidence that they do not benefit from the treatment.

As is evident from this review, most of the authors have worked on developing
methods for combining the data from two or more stages. Such an approach is obvi-
ously more attractive as it can be claimed at being more efficient. However, others still
support the idea that a separate confirmatory trial to specifically target the biomarker-
positive subpopulation is required. Indeed, phase III studies are the conclusive stage of
clinical development, so they should be designed to assess definitive evidence on the
treatment effectiveness (see e.g. Wang et al. 2009; Freidlin and Korn 2014). In addi-
tion, Mehta and Gao (2011) pointed out that two separate clinical studies for stages 1
and 2 could be more attractive from the trial sponsor’s viewpoint.

More work needs to be done to develop an optimal strategy to update the enrollment
criteria of adaptive enrichment trials. This is still a “very open question” (Simon 2015)
and “there is a need for more rigorous methodology and improved approaches for
biomarker threshold selection...when naturally continuous or combined biomarkers
or signatures are utilized” as it is pointed out in the review by Renfro et al. (2016).
Often, due to the limited amount of theoretical properties and closed form solutions,
simulation studies have played a relevant role in assessing the operating characteristic
of adaptive enrichment designs (Friede et al. 2020), making more complicated the
planning of the study. Adaptive enrichment designs in which no predefined subgroups
have to be settled are more flexible: the biomarker can be both selected and validated
in the same trial. However, these studies should be carefully planned to maximize their
efficiency by including sample size considerations and an appropriate randomization
procedure.
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