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Abstract

Two types of information entropy are studied for the quantum states of a model for the
matter core inside a black hole geometry. A detailed description is first given of the quantum
mechanical picture leading to a spectrum of bound states for a collapsing ball of dust in general
relativity with a non-trivial ground state. Information entropies are then computed, shedding
new light on the stability of the ground state and the spectrum of higher excited states.

1 Introduction

Quantum aspects of gravitational collapse are among the most investigated topics in contemporary
theoretical physics. A quantum theory of gravity is expected to eliminate the singularities predicted
by general relativity, in particular, those associated with incomplete geodesics at the final stage of
the collapse of regular matter into a black hole [1]. Several methods for removing the singularity
in approaches to quantum gravity have been proposed [2–7] and the appearance of a bounce at a
minimum radius is generically obtained in semiclassical models [8–10]. These results suggest that
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the role played by matter in the description of black hole formation (and subsequent evolution [11])
is crucial.

The non-linearity of the Einstein equations makes it impossible to study any realistic model for
the gravitational collapse analytically, and this furthermore renders the problem of its quantum de-
scription intractable in general. For this reason, one can only go back to the study of (over)simplified
models obtained by forcing a strong symmetry and unphysical equation of state for the collapsing
matter. The prototypical example is given by the gravitational collapse of a ball (a perfectly spher-
ical distribution) of dust (matter with no other interaction but gravity) originally investigated by
Oppenheimer and collaborators [12]. A similarly simple case is given by a shell of matter [13] col-
lapsing under its weight or towards a central source. These systems are simple enough to allow for
a canonical analysis [14] of the effective action obtained by restricting the Einstein-Hilbert action
to metrics satisfying the assumed symmetry properties.

Here, we will carefully reconsider the spectrum of quantum states of the matter core inside a
black hole found in Ref. [15] by studying the general relativistic model of gravitational collapse of a
spherically symmetric ball of dust [12,16]. The key idea is to quantise the geodesic equation for the
areal radius of the ball as an effective quantum mechanical description of the dust ball similar to the
usual quantum mechanical description of the hydrogen atom provided by the quantisation of the
electron’s position. This approach straightforwardly leads to the existence of a discrete spectrum of
bound states. 1 More importantly, one finds that the ball in the ground state properly compatible
with general relativity has a quantised and macroscopically large surface area, which resembles
Bekenstein’s area law [22], so that no singularity ever forms. 2 Of course, the areal radius of the
ball is not a fundamental degree of freedom for the matter in the collapsing core, which should
instead be described by quantum excitations of fields in the Standard Model of particle physics.
Although these fundamental degrees of freedom are neglected for the purpose of defining a tractable
mathematical problem, we expect that their existence should be encoded in a suitable entropy that
can be computed from the states of the effective quantum mechanical theory. Obtaining an estimate
of this entropy is precisely the main task of the present work.

Several relevant measures of information entropy have been proposed, mainly in the last decade,
and employed to investigate gravitational systems and quantum field theories in the continuum
limit. Among them, the configurational entropy (CE) [24] and its differential version (DCE) were
shown to play a prominent role, since critical points of the CE and DCE usually correspond to
preferred occupied states. Given the configuration of a spatially-localised field, the CE measures
the amount of information it contains, as if that configuration were a message written in the alpha-
bet represented by momentum space modes, each mode contributing to the message with specific
weighted probabilities. In this description, each physical field configuration presents a distinct
quantifiable signature of information entropy, with associated shape complexity [25]. The DCE
critical points correspond to those momentum space microstates occupied by the physical system
with higher configurational stability, hence pointing to the dominant physical states [26, 27]. In
this context, complex physical systems do not only extremise the corresponding dynamical action
but they also tend to “optimise” the entropic information. Moreover, these information entropies
measure the shape complexity encoded by the probability density of a physical system. The DCE is
an effective mathematical tool for understanding pattern formation, and it has in fact been used in
a wide variety of cases, such as the study of the stability of AdS black holes [28], the Hawking–Page
transition regulated by a critical configurational instability [29], brane-world models [30], neutron

1For similar results for thin shells, see Ref. [17] (see also Refs. [18–21]).
2The geometry sourced by this quantum core was reconstructed in Refs. [23].
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and boson stars [31–35]. The DCE provides a criterion for stability which was employed to compute
the Chandrasekhar limit and critical stability domains for several stellar distributions [36, 37], the
spontaneous emission in hydrogen atoms [38] and to study topological defects [39–42], just to list a
few examples.

The main aim of this work is to explore the black hole quantum cores of Ref. [15] and to discuss
the important role played by the different types of information entropy in extracting relevant knowl-
edge about the spatial profile of the quantum mechanical system. In this context, the information
entropy and DCE will be shown to shed new light on the properties of the ground state and the
spectrum of higher modes as well. Section 2 is devoted to presenting a refined version of the model
for black hole quantum cores from Ref. [15], with a derivation of the spectrum of bound states. In
Section 3, the Shannon entropy [43] is introduced and the DCE and the information entropy under-
lying the quantum mechanical description of black hole quantum cores are computed and analysed.
Section 4 is dedicated to the concluding remarks.

2 Core quantum spectrum

As we recalled in the Introduction, the Oppenheimer-Snyder model is simple enough to allow for a
rigorous canonical analysis [7]. However, some key features are more easily obtained by following a
simpler approach introduced in Ref. [15], which we here review and improve upon.

Let us consider a perfectly isotropic ball of dust with total ADM mass [44] M and areal radius
R = R(τ), where τ is the proper time measured by a clock comoving with the dust. Dust particles
inside this collapsing ball will follow radial geodesics r = r(τ) in the Schwarzschild space-time
metric 3

ds2 = −
(

1− 2GNM0

r

)
dt2 +

(
1− 2GNM0

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (2.1)

where M0 = M0(r) is the (constant) fraction of ADM mass inside the sphere of radius r = r(τ).
In particular, we can consider the outermost (thin) layer of (average) radius r = R(τ) and mass

µ = εM , where 0 < ε < 1 is the fraction of the ball mass in the chosen layer. The equation
governing the evolution of the radius of this layer is then given by the mass-shell condition for the
massive layer of four-velocity uα = (ṫ, Ṙ, 0, 0), that is

E2
µ

µ2
− Ṙ2 +

2GNM0

R
−
(

1− 2GNM0

R

)
L2
µ

R2 µ2
= 1 , (2.2)

where M0 = (1 − ε)M , and Eµ and Lµ are the conserved momenta conjugated to t = t(τ) and
φ = φ(τ), respectively. For the particular case of radial motion, one must set Lµ = 0 and Eq. (2.2)
reads

H ≡ P 2

2 εM
− ε (1− ε)GNM

2

R
=
εM

2

(
E2
µ

ε2M2
− 1

)
≡ E , (2.3)

where P = µ Ṙ is the momentum conjugated to R = R(τ). Notice that Eq. (2.3) contains the
parameter ε, and all of the results will therefore depend on the distribution of dust between the

3We shall always use units with c = 1 and often write the Planck constant ~ = `pmp and the Newton constant
GN = `p/mp, where `p and mp are the Planck length and mass, respectively.
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outermost layer of mass µ = εM and the inner spherical core of mass M0 = (1 − ε)M . This
represents a first improvement concerning the more qualitative analysis of Ref. [15].

Having established the equation of motion governing the collapse, we apply the canonical quan-
tization prescription

P 7→ P̂ = −i ~ ∂R , (2.4)

which allows us to write Eq. (2.3) as the time-independent Schrödinger equation

Ĥ Ψn̄ =

[
− ~2

2 εM

(
d2

dR2
+

2

R

d

dR

)
− ε (1− ε)GNM

2

R

]
Ψn̄ = En̄ Ψn . (2.5)

The above equation is formally the same as the one for the s-states of the hydrogen atom, 4 so that
the solutions are given by the Hamiltonian eigenfunctions

Ψn̄(R) =

√
ε6 (1− ε)3M9

π `3pm
9
p n̄

5
exp

(
−ε

2 (1− ε)M3R

n̄m3
p `p

)
L1
n̄−1

(
2 ε2 (1− ε)M3R

n̄m3
p `p

)
, (2.6)

where L1
n̄−1 are Laguerre polynomials and n̄ = 1, 2 . . ., corresponding to the eigenvalues

En̄ = −ε
3 (1− ε)2M5

2m4
p n̄

2
. (2.7)

Note that the normalisation is defined in the scalar product which makes the Hamiltonian Ĥ Her-
mitian when acting on the above spectrum, that is

〈 n̄ | n̄′ 〉 = 4π

∫ ∞
0

R2 Ψ∗n̄(R) Ψn̄′(R) dR = δn̄n̄′ . (2.8)

The expectation value of the areal radius on these eigenstates is thus given by

R̄n̄ ≡ 〈n̄| R̂ |n̄〉 =
3m3

p `p n̄
2

2 ε2 (1− ε)M3
. (2.9)

As was noted in Ref. [15], so far the quantum picture is the same that one would have in New-
tonian physics, with the ground state n̄ = 1 having a width R̄1 ∼ `p (mp/M)3 and energy
E1 ∼ −M (M/mp)4. This state is practically indistinguishable from a point-like singularity for
any macroscopic black hole of mass M � mp.

In fact, the only general relativistic feature that the model retains is given by the form of
E = E(Eµ) in Eq. (2.3). By then assuming that the conserved Eµ remains well-defined for the
allowed quantum states, we obtain

0 ≤
E2
µ

ε2M2
= 1− ε2 (1− ε)2

n2

(
M

mp

)4

, (2.10)

4Perfect isotropy implies that the angular momentum quantum numbers l = m = 0. The case of a (slowly and
rigidly) rotating ball is left for future development.
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which yields the lower bound for the principal quantum number 5

n̄ ≥ NM ≡ ε (1− ε)
(
M

mp

)2

. (2.11)

Saturating the inequality (2.11) corresponds to the fundamental state of the outer layer, which
results in a huge number of states (with n̄ < NM ) that remain inaccessible for the collapsing ball.
Among these states, there is also the one discussed above with R̄n̄=1 ∼ 0, which means that the
singularity is then precluded, as one expects from semiclassical models [8, 9]. More precisely, since
the only information that one can extract from the wave equation, and confront with a classical
quantity, is the areal radius 〈 R̂ 〉, one does not identify the potential singularity with a principal
quantum number n̄, rather than using the value of R corresponding to that n̄. All quantum states
can access R = 0 a priori, however, since the lower bound for n̄ is much bigger than the one
corresponding to R ∼ R̄1 ∼ 0, the probability that the shell of dust is found in the singularity is
practically zero for M � mp.

We recall that there are no reasons for a ball of dust evolving solely under the gravitational
force, to stop contracting classically. Quantum mechanics instead shows that, in order to have
a well-defined energy spectrum, the proper ground state compatible with general relativity has a
width

R̄NM
=

3

4
(1− ε)RH , (2.12)

where RH = 2GNM is the classical Schwarzschild radius of the ball. Since 0 < ε < 1, one can
conclude that R̄NM

< RH and a finite number of states (2.6) with

n̄ = NM + n (2.13)

and n = 0, 1, . . . will exist inside the horizon.
In the above analysis, the parameter ε remains undetermined. One of the goals of this work is

to determine a preferred value from entropic considerations. Before we do that, we notice that the
uncertainty in the areal radius is given by

∆Rn̄
R̄n̄

≡

√
〈n̄| R̂2 |n̄〉 − R̄2

n

R̄n
=

√
n̄2 + 2

3 n̄
, (2.14)

which asymptotes to a minimum of 1/3 for n̄ → ∞. We thus expect that NM � 1 for the ground
state and consequently ε (1 − ε) ∼ 1. For instance, for M = M� ' 1030 kg, one finds NM ∼ 1076,
which makes it impossible to handle the wavefuntion (2.6), either analytically or numerically. We
shall therefore limit our investigation to values of M small enough to allow for simple numerical
calculations and extrapolate to larger values of M .

3 Configurational Entropy

The CE is a measure of the amount of information carried by physical solutions to the equations of
motion of a given theory [24]. A way to come up with it is by considering the original formulation

5A similar quantisation for the mass M was found long ago in Refs. [45, 46] by studying stable configurations of
boson stars. As we recalled in the Introduction, Eq. (2.11) is also reminiscent of Bekenstein’s area law [22].
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of information entropy by Shannon [43]: information is measured by the minimum number of bits
needed to convert symbols into a coded form, in such a way that the highest transmission rate of
messages, consisting of an array of the given symbols, can be communicated through a channel.
Shannon then defined a measure of information by the expression

SSh = −
∑
ci∈C

pci log pci , (3.1)

where the sum is taken over the set C = {ci; i = 1, . . . , N} of symbols with a distribution pi = p(ci)
determining their occurrence. The amount of information carried by each symbol was determined
by Shannon as I(ci) = − log2 pi, so that

〈 I 〉 =
∑
ci∈C

p(ci) I(ci) = −
∑
ci∈C

p(ci) log2 p(ci) = SSh . (3.2)

In fact, log2N is the number of bits to describe N symbols and the entropy is the highest possible
for a uniform distribution with p(ci) = 1/N , that is 〈 I 〉 = log2N . 6

Shannon entropy can be straightforwardly connected with the Gibbs entropy SG, which gener-
alises the Boltzmann entropy SB to thermodynamic systems described by microstates that do not
necessarily have equal probabilities, that is

SG = −kB

∑
a

pa ln pa , (3.3)

where kB is the Boltzmann constant and pa stands for the probability of occurrence of each micro-
scopic configuration a of the system. Besides the overall constant kB, which is needed to give the
entropy its natural thermodynamical units, one finds SG ∼ SSh if one can identify pa = p(ci) for
a given thermodynamical system. Moreover, when pa = p for all microstates in the given system,
SG = SB = kB ln(W ), where W is the number of equiprobable microstates.

The CE is a form of Shannon entropy for static macroscopic systems computed by assuming
that the underlying microstates a in SG are defined by plane or standing waves of wavenumber ~k
in flat momentum space, that is

a~k = ei
~k·~x . (3.4)

In order to compute the probability p(~k) of occurrence of each microstate a~k, one can therefore
start by taking the Fourier transform ρ(~k) of the probability density ρ(~x) of a given macroscopic
system in position space. The probability p(~k) is then defined by a suitable normalisation such that∑

~k
p(~k) = 1. We also recall that the power spectrum

∑
~k
|ρ(~k)|2ei~k·~x is the Fourier transform of

the 2-point correlation function and encodes the shape complexity of the probability density.
To introduce the DCE for the spherically symmetric wavefunctions in Eq. (2.6), we start from

the probability density

ρ(R) = 4π R2 |Ψn(R)|2 , (3.5)
6Note that SSh is dimensionless and the base of the logarithm in Eq. (3.1) is a matter of choice. The binary base

2 measures the information entropy in bits (or Sh for Shannon), but one can also employ the natural logarithm to
measure the information entropy in the natural units called nat, with 1nat=(1/ ln 2) Sh.

6



with n ≥ 0 defined in Eq. (2.13). The spectral Fourier transform of Eq. (3.5), in spherical coordi-
nates, can be written as

ρ(k) =
1

k1/2

∫ ∞
0

R3/2 ρ(R) J1/2(k R) dR , (3.6)

where J1/2 denotes the Bessel function of order 1/2. In the numerical calculations, an equivalent
Hankel transform is implemented, which is proportional to the radially symmetric spherical Fourier
transform by a factor of (2π)3/2. In the computations that follow, the function ρ(k) is therefore
given by the Hankel transform of the probability density (3.5) associated with our wavefunctions.

From Eq. (3.6), one can immediately define the so-called information entropy as the continuous
version of the Shannon entropy in Eq. (3.1), which reads

SSh = −
∫ ∞

0
ρ(k) ln [ρ(k)] dk . (3.7)

The continuum limit can be problematic, and alternative expressions for the entropy have thus been
conjectured.

Gleiser and Sowinski introduced the DCE by first defining the modal fraction [26, 27] as a
measure for the relative weight of a given mode in the probability distribution. In our case, the
modal fraction is explicitly given by

λ̃(k) =
|ρ(k)|2∫∞

0 |ρ(k′)|2 dk′
(3.8)

which measures the weight of each wave mode contributing to the total power spectrum. 7 The
DCE measures the number of bits that are necessary to describe localised physical configurations,
whose underlying information has the best compression and maximal channel capacity. It can be
defined as the functional

SDCE[λ̃] = −
∫ ∞

0
λ̂(k) ln

[
λ̂(k)

]
dk , (3.9)

with 8

λ̂(k) =
λ̃(k)

λ̃MAX

, (3.10)

where λ̃MAX is the peak of the momentum distribution λ̃ = λ̃(k). The DCE can therefore be used to
estimate the dynamical degree of order regulating the spectral density (3.6) and the configurational
stability of the black hole quantum core will be determined by the critical points of the DCE. The
higher the DCE, the more delocalised the density, the higher the uncertainty, and the smaller the
accuracy in predicting the spatial localisation of the system. One might also speculate that there
is a relationship between the DCE and the effect of tracing out degrees of freedom in the present
context.

We first computed numerically the Fourier transform (3.6) and the modal fraction (3.8) for the
ground state with n = 0. The resulting DCE is displayed in Fig. 1, where we include the information
entropy for comparison, and all quantities are expressed in units of `p and mp (equivalent to setting
~ = GN = 1). The left panel of Fig. 1 shows that the information entropy SSh is a monotonic

7Indeed, the DCE attains its maximum value for a uniform power spectrum.
8This last step is introduced to ensures that λ̂(k) ≤ 1 for all values of k > 0.
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Figure 1: Information entropy (3.7) (left panel) and DCE (right panel) for ground states (n = 0)
of different mass M and fixed ε. Note the different scales on the vertical axes (mass and entropies
in Planck units).

increasing function of the mass M , for each fixed value of the parameter ε, and a monotonic
decreasing function of ε, for a fixed value of M . A similar profile holds for SDCE, as shown in
the right panel. In absolute values, comparing the two panels of Fig. 1 makes explicit the subtle
distinction between the information entropy (3.7) and the DCE (3.9). Although both entropies have
similar qualitative behaviour, their values are different for the same M and ε. We recall that the
outermost thin layer has (average) radius R and mass µ = εM , with 0 < ε < 1, so that ε is the
fraction of the ball mass in the chosen layer. From Fig. 1, we can then conclude that the higher the
amount of dust in the outer layer, the lower both the information entropy and the DCE.

We next computed the information entropy and the DCE for the first few excited states with
n > 0. The results for M = 6, 8 and 10 are shown in Figs. 2, along with the entropies of the
corresponding ground states, for ε = 0.5. (The branching out from the ground states is similar for
other values of ε.) We remark that all of the values of the entropy are plotted as discrete points,
since the Laguerre polynomials in the wavefunction (2.6) must be of integer order (the spectrum of
allowed states is discrete). We also notice that the plots show a range of very small values of the
mass M , in units of the Planck mass, because the order of the Laguerre polynomials growing with
M2 makes it numerically impossible to reach masses of astrophysical relevance.

The main result clearly shown in Figs. 2 is that excited states have higher information entropy
and DCE than the respective ground state. Both kinds of entropy steeply increase, which supports
the fact that excited states are unstable and will naturally decay into the ground state. It is a
general rule of the continuous limit of the Shannon entropy that states with higher information
entropy are less stable and can eventually be less predominant from the phenomenological point
of view. Moreover, excited quantum states have similarities with the ground state in Fig. 1, since
higher values of ε correspond to lower SSh and SDCE, for each fixed value of n̄.

It is also interesting to look at the relation between the entropy and the fraction ε of mass in
the outermost layer for fixed values of the total mass M . For this purpose, it is computationally
more convenient to employ the rescaling of parameters described in Appendix A, and some results
are then displayed in Fig. 3. It is clear that both Shannon’s entropy and the DCE decrease as
the outermost layer contains relatively more mass. This is in agreement with the idea that the

8
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Figure 2: Information entropy (left panel) and DCE (right panel) for ground (n = 0) and excited
(n > 0) states with ε = 0.5 (mass and entropies in Planck units).
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Figure 3: Information entropy (left panel) and DCE (right panel) for the ground states (n = 0)
with varying ε at fixed mass (mass and entropies in Planck units).

(information) entropy measures our ignorance of the microstates of the system: the larger ε, the
less mass is in the interior and the less information is missed by just considering the state of the
outermost layer.

Finally, we look back at the ground state entropies and argue whether Shannon’s information
entropy and the DCE in Fig. 1 follow specific scaling laws. In fact, we can reproduce quite accurately
the numerically computed values with several interpolating curves, among which logarithmic ones
show the best fit, given by

S = α ln

(
M

mp

)
+ β , (3.11)

where the fitting parameters for each curve are displayed in Table 1. The fitting curves and their
extrapolation to larger values of M are displayed in Fig. 4. The coefficients of determination 9 for

9We recall that R2 ' 1 for a good agreement between data and the model.
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Figure 4: Fitting curves for the information entropy (left panel) and DCE (right panel) for the
ground states (n = 0, mass and entropies in Planck units).

ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7 ε = 0.9

SSh α = 0.707 α = 0.616 α = 0.554 α = 0.488 α = 0.382

SSh β = 1.209 β = 1.260 β = 1.187 β = 1.044 β = 1.044

SDCE α = 3.190 α = 1.438 α = 0.874 α = 0.837 α = 0.621

SDCE β = −3.8717 β = −0.085 β = 0.385 β = −0.297 β = −0.297

Table 1: Fitting parameters for information entropy and DCE in the ground states (n = 0).

the fitting model (3.11) with the parameters in Table 1 are all given by R2 ≈ 0.99 for the information
entropy and R2 = 0.98±0.01 for the DCE. From Fig. 4, it looks like SDCE ∼M for ε = 0.1, and for
such small values of ε the R2 test returns similar values for both fits. However, for larger values of
ε, the linear regressions yields a worse R2 ≈ 0.95. This suggests that the apparent linear behaviour
of the DCE for small ε is just the approximation of a logarithm small M (as we already mentioned,
computing the entropies for large M is computationally very intense). The stability of the R2 test
for all the curves is a strong indication that Eq. (3.11) is a good approximation for our results.

Since the mass M is proportional to the volume of the matter core, the above scaling relations
are compatible with the interpretation that the number of microscopic degrees of freedom counted
by the exponential of the entropy grows with the volume of the ball to some power 0 < α < 1.
This is indeed the expected behaviour for matter and should be contrasted with the Bekenstein
area law [22], according to which the number of gravitons involved in the geometry sourced by this
core [23] scales like the horizon area, which is instead proportional toM2 in Planck units. Moreover,
our results corroborate the fact that the DCE is an estimator for the number of bits one needs to
reconstruct the quantum-mechanical field configuration from the wave modes in momentum space.
The matter entropies computed in this work, therefore, remain sub-dominant with respect to the
gravitational contribution for a (quantum) black hole.
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4 Concluding remarks and discussion

We have investigated the entropy for a matter core inside black holes obtained from the quantum
mechanical description of the gravitational collapse of a ball of dust of mass M introduced in
Ref. [15]. Improving on that model, we have explicitly considered the wavefunction for the average
radius R of the outermost layer of dust with mass µ = εM , for 0 < ε < 1, which is again shown
to belong to a discrete spectrum similar to the one for the hydrogen atom. Like in Ref. [15], the
ground state quantum number NM is found to be proportional to M2 in Planck units. For black
holes of astrophysical size, such ground states are therefore described by Laguerre polynomials of a
huge order, which makes their analysis very difficult, both analytically and numerically.

In particular, two different types of information entropy were employed to probe this scenario,
namely the DCE and the continuous limit of Shannon’s entropy, both of which can only be computed
numerically and for relatively small principal quantum numbers n̄ = NM +n. The results obtained
for both entropies are qualitatively similar, showing a (much) higher information entropy for excited
states (with n > 0) when compared to the ground state (with n = 0). A higher value of the
(Shannon’s) entropy usually signals a larger instability. Our results are therefore compatible with
the classical dynamics of a ball of dust, which is necessarily going to collapse and shrink under its
own weight without loss of energy encoded by the ADM massM . One can then look at the sequence,
from top to bottom, of black dots in Figs. 2 as representing the time evolution of the areal radius
R(τ) = R̄n̄ with decreasing values of n̄ = NM + n in correspondence with increasing proper time
τ . The existence of a ground state halts this process at a finite macroscopic size R̄ = R̄NM

, after
which the ball can only shrink further by losing energy M , so that NM decreases (hence jumping
from a blue dot to the one on its left). It is interesting to note that this behaviour is qualitatively
very different from the hydrogen atom. In fact, an electron bound to the nucleus will “shrink”
to smaller quantum states necessarily by emitting energy in the form of radiation. The dust ball
instead collapses without emitting (gravitational) energy, because of the strict spherical symmetry,
until it reaches a minimum (quantum) size. 10

Furthermore, we found that both kinds of entropy for the ground state show a logarithmic
dependence on Mα, with 0 < α < 1, which can be extrapolated to arbitrarily large values of M .
This behaviour is consistent with the notion that the number of matter microstates is proportional
to the total mass (hence volume), albeit to a non-trivial power. As gravitational degrees of freedom
are instead expected to satisfy Bekenstein’s area law, the matter entropy we computed should be
(largely) overcome by the gravitational entropy for black holes.

Finally, looking at the entropy for different values of the fraction ε, we have found that both the
information entropy and the DCE are smaller for larger fractions of dust in the outermost layer.
Since larger values of the entropy should correspond to more unstable configurations, this result
seems to favour the accumulation of matter in the outermost layer, due to quantum pressure. The
actual density profile of the final core, however, will have to be further investigated by considering
refined models of the collapsing ball with more layers.

10For a more realistic (less symmetrical and with pressure) model one expects that the collapse is instead always
associated with the emission of energy.
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A Mass rescaling

The quantisation law (2.11) makes it impractical to determine values of the mass M corresponding
to integers n̄ for generic values of ε. For studying the effect of varying ε on the entropies, it is
therefore more convenient to rescale the mass as

M =
mp M̃√
ε (1− ε)

, (A.1)

so that Eq. (2.13) is given by n̄ = M̃2 + n and the wavefunctions (2.6) read

Ψn̄(R) =

√
ε3/2 M̃9

π n̄5 (1− ε)3/2
exp

(
− ε1/2 M̃3R

n̄ (1− ε)1/2 `p

)
L1
n̄−1

(
2 ε1/2 M̃3R

n̄ (1− ε)1/2 `p

)
. (A.2)
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