
04 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Asperti, A., Del Brutto, M. (2023). MicroRacer: A Didactic Environment for Deep Reinforcement Learning.
Cham : Springer [10.1007/978-3-031-25599-1_18].

Published Version:

MicroRacer: A Didactic Environment for Deep Reinforcement Learning

Published:
DOI: http://doi.org/10.1007/978-3-031-25599-1_18

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/920351 since: 2023-03-13

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-25599-1_18
https://hdl.handle.net/11585/920351

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Asperti, A., Del Brutto, M. (2023). MicroRacer: A Didactic Environment for Deep Reinforcement Learning. In:
Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer
Science, vol 13810. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-25599-

1_18

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-25599-1_18
https://doi.org/10.1007/978-3-031-25599-1_18

MicroRacer: a didactic environment for Deep
Reinforcement Learning

Andrea Asperti and Marco Del Brutto

University of Bologna
Department of Informatics: Science and Engineering (DISI)

Abstract. MicroRacer is a simple, open source environment inspired
by car racing especially meant for the didactics of Deep Reinforcement
Learning. The complexity of the environment has been explicitly cali-
brated to allow users to experiment with many different methods, net-
works and hyperparameters settings without requiring sophisticated soft-
ware or exceedingly long training times. Baseline agents for major learn-
ing algorithms such as DDPG, PPO, SAC, TD3 and DSAC are provided
too, along with a preliminary comparison in terms of training time and
performance.

1 Introduction

Deep Reinforcement Learning (DRL) is the new frontier of Reinforcement Learn-
ing [31,34,32], where Deep Neural Networks are used as function approximators
to address the scalability issues of traditional RL techniques. This allows agents
to make decisions from high-dimensional, unstructured state descriptions with-
out requiring manual engineering of input data. The downside of this approach
is that learning may require very long trainings, depending on the acquisition of
a large number of unbiased observations of the environment; in addition, since
observations are dynamically collected by agents, this leads to the well known
exploitation vs. exploration problem. The need of long training times, combined
with the difficulty of monitoring and debugging the evolution of agents, and
the difficulty to understand and explain the reasons for possible failures of the
learning process, makes DRL a much harder topic than other traditional Deep
Learning tasks.

This is particularly problematic from a didactic point of view. Most exist-
ing environments are either too simple and not particularly stimulating, like
most of the legacy problems of OpenAIGym [8] (cart-pendulum, downhill slope
simulator, . . .), or far too complex, requiring hours of training (even relatively
trivial problems such as those in the Atari family [6,25] may take 12-24 hours
of training on a standard laptop, or Colab [7]). Even if, at the end of training,
you may observe an advantage of a given technique over another, it is difficult to
grasp the pros and cons of the different algorithms, and forecast their behaviour
in different scenarios. The long training times make tuning or ablation studies
very hard and expensive. In addition, complex environments are often given in

2 Andrea Asperti and Marco Del Brutto

the form of a black-box that essentially prevents event-based monitoring of the
evolution of the agent (e.g. observe the action of the agent in response to a
given environment situation). Finally, sophisticated platforms like OpenAIgym
already offer state-of-the-art implementations of many existing algorithms; un-
derstanding the code is complex and time-demanding, frequently obscured by
several modularization layers (good to maintain but not to understand code);
as a consequence students are not really induced to put their hands on the code
and try personal solutions.

For all these reasons, we created a simple environment explicitly meant for
the didactics of DRL. The environment is inspired by car racing, and has a
stimulating competitive nature. Its complexity has been explicitly calibrated to
allow students to experiment with many different methods, networks and hyper-
parameters settings without requiring sophisticated software or exceedingly long
training times. Differently from most existing racing simulation frameworks that
struggle in capturing realism, like Torcs, AWS Deep Racer or Learn-to-race (see
Section 2 for a comparison) we do not care for this aspect: one of the important
points of the discipline is the distinction between model-free vs. model-based ap-
proaches, and we are mostly interested in the former class. From this respect, it
is important to communicate to students that model-free RL techniques are sup-
posed to allow interaction with any environment, evolving according to unknown,
unexpected and possibly unrealistic dynamics to be discovered by acquiring ex-
perience. In the case of MicroRacer, the complexity of the environment can be
tuned in several different ways, changing the difficulty of tracks, adding obstacles
or chicanes, modifying the acceleration or the timestep. Another important point
differentiating MicroRacer from other car-racing environments is that the track
is randomly generated at each episode, and unknown to the agent, preventing
any form of adaptation to a given scenario (so typical of many autonomous driv-
ing competitions). In addition to the environment, we provide simple baseline
implementations of several DRL algorithms, comprising DDPG [22], TD3 [16],
PPO [28], SAC [19] and DSAC [13].

The environment was proposed to students of the course of Machine Learn-
ing at the University of Bologna during the past academic year as a possible
project for their examination, and many students accepted the challenge obtain-
ing interesting results and providing valuable feedback. We plan to organize a
championship for the incoming year.

The code is open source, and it is available at the following github repository:
https://github.com/asperti/MicroRacer. Collaboration with other universi-
ties and research groups is more than welcome.

1.1 Structure of the article

We start with a quick review of related applications (Section 2), followed by an
introduction to the MicroRacer environment (Section 3). The baseline learning
models currently integrated into the systems are discussed in Section 4; their
comparative training costs and performances are evaluated in Section 5. Con-

https://github.com/asperti/MicroRacer
https://github.com/asperti/MicroRacer

2. RELATED SOFTWARE 3

cluding remarks and plans for future research and collaborations are given in
Section 6.

2 Related Software

We arrived to the decision of writing a new application as a consequence of our
dissatisfaction, for the didactic of Reinforcement Learning, of all environments
we tested. Several thesis developed under the supervision of the first author
[33,17] have been devoted to study the suitability of these environments for
didactic purposes, essentially leading to negative conclusions. Here, we briefly
review some of these applications, closer to the spirit of MicroRacer. Many more
systems exists, such as [26,18,12], but they have a strong robotic commitment
and a sym2real emphasis that is distracting from the actual topic of DRL, and
quite demanding in terms of computational resources.

2.1 AWS Deep Racer

AWS Deep Racer1 [3] is a cloud based 3D racing simulator developed by Amazon.
It emulates a fully autonomous 1/18th scale race car; a global racing league is
organized each year. Amazon only provides utilities to train agents remotely, and
with very limited configurability: essentially, the user is only able to tune the
system of rewards, that gives a wrong didactic message: manipulating rewards
is a bad and easily biased way of teaching a behaviour. Moreover, at the time
it was tested, the AWS DeepRacer console only supported the proximal policy
optimization (PPO) algorithm [28]; the most recent release should also support
Soft Actor Critic [19].

Due to this limitations, a huge effort has been done by the aws-community
to pull together the different components required for DeepRacer local training
(see e.g. https://github.com/aws-deepracer-community/deepracer-core.

The primary components of DeepRacer are four docker containers:

– Robomaker Container: Responsible for the robotics environment. Based on
ROS + Gazebo as well as the AWS provided ”Bundle”;

– Sagemaker Container: Responsible for training the neural network;

– Reinforcement Learning (RL) Coach: Responsible for preparing and starting
the Sagemaker environment;

– Log-Analysis: Providing a containerized Jupyter Notebook for analyzing the
logfiles generated.

The resulting platform is extremely complex, computationally demanding, dif-
ficult to install and to use. See [33] for a deeper discussion of the limitations of
this environment for the didactics of Reinforcement Learning.

1 https://aws.amazon.com/it/deepracer/

https://aws.amazon.com/it/deepracer/
https://github.com/aws-deepracer-community/deepracer-core
https://github.com/aws-deepracer-community/deepracer-core
https://aws.amazon.com/it/deepracer/

4 Andrea Asperti and Marco Del Brutto

2.2 Torcs

TORCS2 is a portable, multi platform car racing simulation environment, origi-
nally conceived by E.Espié and C.Guionneau. It can be used as an ordinary car
racing game, or a platform for AI research [23,9]. It runs on Linux, FreeBSD,
OpenSolaris and Windows. The source code of TORCS is open source, licensed
under GPL. While supporting a sophisticated and realistic physical model, it
provides a sensibly simpler platform than AWS DeepRacer, and it is a definitely
better choice. It does not support random generation of tracks, but many tracks,
opponents and cars are available.

A gym-compliant python interface to Torcs was recently implemented in
[17], under the supervision of the first author. While this environment can be a
valuable testbench for experts of Deep Reinforcement Learning, its complexity
and especially the difficulty of training agents is an insurmountable obstacle for
neophytes.

2.3 Learn-to-race

Learn-to-Race3 [20,10] is a recent Gym-compliant open-source framework based
on a high-fidelity racing simulator developed by Arrival, able to capture complex
vehicle dynamics and to render 3D photorealistic views.

Learn-to-Race provides customizable, multi-model sensory inputs giving in-
formation about the state of the vehicle (pose, speed, etc.), and comprising
RGB image views with semantic segmentations. A challenge based on Learn-to-
Race is organized by AICrowd (similarly to AWS): https://www.aicrowd.com/
challenges/learn-to-race-autonomous-racing-virtual-challenge.

Learn-to-race is very similar, in its intents and functionalities, to Torcs (es-
pecially to the gym-compliant python interface developed in [17]). It also shares
with TORCS most of the defects: learning the environment and training an agent
requires a commitment far beyond the credits associated with a typical course in
DRL; it can possibly be a subject for a thesis, but cannot be used as a didactic
tool. Moreover, the complexity of the environment and its fancy (but onerous)
observations are distracting students from the actual content of the discipline.

2.4 CarRacing-v0

This is a racing environment available in OpenAI gym. The state consists of a
96x96 pixels top-down view of the track. The action is composed of three contin-
uous values: steering, acceleration and braking. Reward is -0.1 every frame and
+1000/N for every track tile visited, where N is the total number of tiles in track.
Episode finishes when all tiles are visited. The track is randomly generated at
each episode. A few additional indicators at the bottom of the window provide
additional information about the car: speed, four ABS sensors, steering wheel

2 https://sourceforge.net/projects/torcs/
3 https://learn-to-race.org/

https://sourceforge.net/projects/torcs/
https://learn-to-race.org/
https://www.aicrowd.com/challenges/learn-to-race-autonomous-racing-virtual-challenge
https://www.aicrowd.com/challenges/learn-to-race-autonomous-racing-virtual-challenge
https://www.aicrowd.com/challenges/learn-to-race-autonomous-racing-virtual-challenge
https://www.aicrowd.com/challenges/learn-to-race-autonomous-racing-virtual-challenge
https://sourceforge.net/projects/torcs/
https://learn-to-race.org/

3. MICRORACER 5

position, gyroscope. The game is considered solved when an agent consistently
get 900 or more points per episode. As observed in [21], the problem is quite
challenging due to the peculiar notion of state, that requires learning from pix-
els: this shifts the focus of the problem from the learning task to the elaboration
of the observation, adding a pointless and onerous burden. In addition, while it
is a good practice to stick to a gym-compliant interface for the interaction be-
tween the agent and the environment, for the didactic reasons already explained
in the introduction, we prefer to avoid a direct and extensive use of OpenAI
gym libraries (while we definitely encourage students to use these libraries as a
valuable source of documentation).

3 MicroRacer

MicroRacer generates new random circular tracks at each episode. The Random
track is defined by CubicSplines delimiting the inner and outer border; the num-
ber of turns and the width of the track are configurable. From this description,
we derive a dense matrix of points of dimension 1300x1300 providing information
about positions inside the track. This is the actual definition of the track used
by the environment. The basic track can be further complicated by optionally
adding obstacles (similar to cars stopped along the track) and “chicanes”. More
details about the environment can be found in [11].

Table 1: (left) Random track generated with splines; (right) derived boolean map.
The dynamic of the game is entirely based on the map. The map is unknown
to agents, that merely have agent-centric sensor-based observations: speed and
lidar-like view.

6 Andrea Asperti and Marco Del Brutto

3.1 State and actions

MicroRacer does not intend to model realistic car dynamics. The model is explic-
itly meant to be as simple as possible, with the minimal amount of complexity
that still makes learning interesting and challenging. The maximum car accel-
eration, both linear and angular, are configurable. The angular acceleration is
used to constraint the maximum admissible steering angle in terms of the car
speed, forbidding the car to go too fast.

The state information available to actors is composed by:

– a lidar-like vision of the track from the car’s frontal perspective. This is an
array of 19 values, expressing the distance of the car from the track’s borders
along uniformly spaced angles in the range -30°,+30°.

– the car scalar velocity.

The actor (the car) has no global knowledge of the track, and no information
about its absolute or relative position/direction w.r.t. the track4.

The actor is supposed to answer with two actions, both in the range [-1,1]:

– acceleration/deceleration

– turning angle.

Maximum values for acceleration and turning angles can be configured. In addi-
tion, a simple law depending on a tolerated angular acceleration (configurable)
limit the turning angle at high speeds. This is not meant to achieve a realis-
tic behaviour, but merely to force agents to learn to accelerate and decelerate
according to the configuration.

The lidar signal is computed by a simple iterative function written in cython
[4] for the sake of efficiency.

3.2 Rewards

Differently from other software applications for autonomous driving, shaping re-
wards from a wide range of data relative to the distance of the car from borders,
deviation from the midline, and so on, [15,14,3] MicroRacer induces the use of a
simple, almost intrinsic [30], rewarding mechanism. Since the objective is to run
as fast as possible, it is natural to use speed as the only reward. The cumulative
reward is thus the integral of speed, namely the expected (discounted) total dis-
tance covered by the car. A negative reward is given in case of termination with
failure (too slow, or out of borders). Users are free to shape different rewarding
mechanisms, but the limited state information is explicitly meant to discourage
this pursuit. It is important for students to realize that ad-hoc rewards may eas-
ily introduce biases in the learning process, inducing agents to behave according
to possibly sub-optimal strategies.

4 Our actors exploit a simplified observation of the state discussed in Section 5

4. LEARNING MODELS 7

3.3 Environment interface

To use the environment, it is necessary to instantiate the Racer class in tracks .py.
On initialization, it is possible to turn off obstacles, chicanes, turn and low-speed
constraints. The Racer class has two main methods, implementing a OpenAI
compliant interface with the environment:

reset () −> state
this method generates a new track and resets the racer position at the start-
ing point. It returns the initial state.

step(action) −> state, reward, done
this method takes an action composed by [acceleration , turn] and lets the
racer perform a step in the environment according to the action. It returns
the new state, the reward for the action taken and a boolean done that is
true if the episode has ended.

3.4 Competitive Race

In order to graphically visualize a run it is necessary to use the function:

newrun (actors , o b s t a c l e s=True , t u r n l im i t=True ,
ch i cane s=True , l ow speed te rminat i on=True)

defined in tracks .py. It takes as input a list of actors (Keras models), simulating
a race between them. At present, the different agents are not supposed to in-
terfere with each other: each car is running separately and we merely superpose
their trajectories.

3.5 Dependencies

The project just requires basic libraries: tensorflow, matplotlib, scipy.interpolate
(for Cubic Splines) numpy, and cython. A requirements file is available so you
can easily install all the dependencies just using the following command ”pip
install -r requirements.txt”.

4 Learning models

In this section, we list the learning algorithms for which a base code is currently
provided, namely DDPG, TD3, PPO, SAC and DSAC. The code is meant to
offer to students a starting point for further development, extending the code and
implementing variants. All implementations take advantage of target networks
[24] to stabilize training.

8 Andrea Asperti and Marco Del Brutto

4.1 Deep Deterministic Policy Gradient (DDPG)

DDPG [29,22] is an off-policy algorithm that extends deep Q-learning to contin-
uous action spaces, jointly learning a Q-function and a policy. It uses off-policy
data and the Bellman equation to learn the Q-function, and uses the Q-function
to learn the policy. The optimal action-value function Q∗(s, a), and the optimal
policy π∗(s) should satisfy the equation

Q∗(s, a) = Es∼P r(s, a) + γQ(s′, π∗(s′))

that allows direct training of the Q-function from transitions (s, a, s′, r, T), sim-
ilarly to DQN [24]; in turn, the optimal policy is trained by maximazing, over
all possible states, the expected reward

Q(s, π∗(s))

4.2 Twin Delayed DDPG (TD3)

This is a variant of DDPG meant to overcome some shortcomings of this algo-
rithm mostly related to a possible over-estimation of the Q-function [16]. Specif-
ically, TD3 exploits the following tricks:

1. Clipped Double-Q Learning. Similarly to double Q-learning, two “twin” Q-
functions are learned in parallel, and the smaller of the two Q-values is used
in the r.h.s. of the Bellman equation for computing gradients;

2. “Delayed” Policy Updates. The policy (and its target network) is updated
less frequently than the Q-function;

3. Target Policy Smoothing. Noise is added to the target action inside the
Belmman equation, essentially smoothing out Q with respect to changes in
action.

4.3 Proximal Policy Optimization (PPO)

A typical problem of policy-gradient techniques is that they are very sensitive
to training settings: since long trajectories are into account, modifications to the
policy are amplified, possibly leading to very different behaviours and numerical
instabilities. Proximal Policy Optimization (PPO) [28] simply relies on ad-hoc
clipping in the objective function to ensure that the deviation from the previous
policy is relatively small.

4.4 Soft Actor-Critic (SAC)

Basically, this is a variant of DDPG and TD3, incorporating ideas of Entropy-
regularized Reinforcement Learning [19]. The policy is trained to maximize a
trade-off between expected return and entropy, a measure of randomness of the
policy. Entropy is related to the exploration-exploitation trade-off: increasing en-
tropy results in more exploration, that may prevent the policy from prematurely
converging to a bad local optimum; in addition, it add a noise component to the
policy producing an effect similar to Target Policy Smoothing of T3D. It also
exploits the clipped double-Q trick, to prevent fast deviations.

5. BASELINES BENCHMARKS 9

4.5 DSAC

Distributional Soft Actor-Critic (DSAC) is an off-policy actor-critic algorithm
developed by Jingliang et al[13] that is essentially a variant of SAC where the
clipped double-Q learning is substituted by a distributional action-value function
[5]. The idea is that learning a distribution, instead of a single value, can help to
mitigate Q-function overestimation. Furthermore, DSAC uses a single network
for the action-value estimation, with a gain in efficiency.

5 Baselines benchmarks

In this section we compare our baselines implementations in the case of an en-
vironment with a time step of 0.04 ms, and comprising obstacles, chicanes, low
speed termination and turn limitations.

The different learning models are those mentioned in section 4. In the case
of DDPG we also considered a variant, called DDPG2 making use of parameter
space noise [27] for the actor’s weights. This noise is meant to improve explo-
ration and it can be used as a surrogate for action noise.

All models work with a simplified observation of the environment state, where
the full lidar signal is replaced by 4 values: the angle (relative to the car) of the
lidar max distance, the value of this distance and the values of the distances
for the two adjacent positions. In mathematical terms, if ℓ is the vector of lidar
signals, m = argmax(ℓ) and αm = angle(m) is the corresponding direction, the
ovservation is composed by

αm, ℓ(m− 1), ℓ(m), ℓ(m+ 1)

The DDPG actor’s neural network makes use of two towers. One of them
calculates the direction, while the other calculates the acceleration. Each of them
is composed of two hidden layers of 32 units, with relu activation. The output
layer uses a tanh activation for each action. At the same time, the critic network
uses two layers, one of 16 units and one of 32, for the state input and one layer of
32 units for the action input. The outputs of these layers are then concatenated
and go through another two hidden layers composed of 64 units. All of them
make use of relu activation.

In DDPG2, the actor has two hidden layers with 64 units and relu activation
and one output with tanh activation . Meanwhile, the critic is the same as in
DDPG.

In TD3, the actor is the same as DDPG2. The critic has two hidden layer
with 64 units and relu activation.

In SAC, the actor has two hidden layer with 64 units each and relu activation
and output a µ and a σ of a normal distribution for each action. The critic is
equal to TD3.

In DSAC, the actor is the same as SAC. The critic has the same structure
as the actor.

10 Andrea Asperti and Marco Del Brutto

In PPO both the actor and the critic have two hidden layers of 64 units with
tanh activation, but the actor has also tanh activation on the output layer.

All learning methods have been trained with a discount factor γ = 0.99,
using Adam as optimizer. All methods except PPO share the following hyper-
parameters:

- Actor and Critic Learning Rate 0.001

- Buffer Size 50000

- Batch Size 64

- Target Update Rate τ 0.005

Additional methods-specific hyperparameters are listed in Table 2.

Hyperparameter Value

TD3, DDPG
Exploration Noise N (0, 0.1)

TD3
Target Update Frequency 2
Target Noise Clip 0.5

SAC, DSAC
Target Entropy -A

DSAC
Target Update Frequency 2
Minimum critic sigma 1
Critic difference boundary 10

Hyperparameter Value

DDPG2
Parameter Noise Std Dev 0.2

PPO
Actor/Critic Learning Rate 0.0003
Mini-batch Size 64
Epochs 10
GAE lambda 0.95
Policy clip 0.25
Target entropy 0.01
Target KL 0.01

Table 2: Hyperparameters used in the various methods.

5.1 Results

Training times have been computed as an avarage of ten different trainings, each
one conssisting of 50000 training steps. In the case of PPO, that unlike all the
other methods, starts collecting a complete trajectory before executing a training
step on it, we trained the agent for a fixed number of episodes (600).

The training times collected are relative to the execution on two different
machines: a laptop equipped with an NVIDIA GeForce GTX 1060 GPU, Intel
Core i7-8750H CPU and 16GB 2400MHz RAM, and a wokstation equipped with
an Asus GeForceDUALGTX1060-O6G GPU and a Intel Core i7-7700K CPU and
64GB 2400 MHz RAM..

As can be observed in Table 3, the methods that train an higher number of
Neural Networks require higher training times.

5. BASELINES BENCHMARKS 11

Machine DDPG DDPG2 TD3 SAC DSAC PPO
M1 30m 44m 38m 19m 24m 27m
M2 14m 24m 23m 11m 12m 20m

Table 3: Average training time (5 runs) required to perform 50000 training it-
erations (600 episodes for PPO) for each different method. Times are relative
to two different machines: M1 is a laptop equipped with an NVIDIA GeForce
GTX 1060 GPU, Intel Core i7-8750H CPU and 16GB 2400MHz RAM, M2 is a
workstation equipped with an Asus GeForceDUALGTX1060-O6G GPU and a
Intel Core i7-7700K CPU and 64GB 2400 MHz RAM.

Fig. 1: Training curves of all methods except PPO. The solid lines correspond to
the mean and the shaded regions correspond to 95% confidence interval over 10
trainings.

As can be seen in Figure 1, the training process has large fluctuations, also
due to frequent occurrences of catastrophic forgetting (more on it below). TD3
and SAC are the most stable methods, usually requiring less observations and
training steps to improve. The other methods learns at a slower pace and seem
to be more prone to catastrophic forgetting. However, they are occasionally able
to produce reasonably performant agents.

After each training, 100 evaluation episodes has been run to collect the real
performance of each trained agents. The average of these results over 10 different

12 Andrea Asperti and Marco Del Brutto

trainings and the best results obtained for each method can be seen in Table 4.
As it can be noticed, a higher number of completed episodes usually corresponds
to slower speeds. This may indicate difficulties in the process of learning the right
acceleration action. Similarly to the training curves, TD3 and SAC seem to have
the best performances even in evaluation, as expected.

Method DDPG DDPG2 TD3 SAC DSAC PPO
Average completed episodes 38 18 54 69 37 37
Average episodic reward 2.48 0.80 3.52 4.61 2.84 2.05
Average speed 0.34 0.30 0.26 0.29 0.34 0.23
Max completed episodes 90 39 80 79 75 62

Table 4: Average and maximum of 100 evaluation episodes executed after each
training over 5 trainings of 50000 iterations (600 episodes for PPO).

In Figure 2 we show a few examples of catastrophic forgetting, that is the ten-
dency of a learning model to completely and abruptly forget previously learned
information during its training. The phenomenon is still largely misunderstood,
so having a relatively simple and highly configurable environment where we can
frequently observe its occurrence seems to provide a very interesting and promis-
ing framework for future investigations.

Fig. 2: Examples of catastrophic forgetting during training of DDPG (left) and
DSAC (right).

6 Conclusions

In this article, we introduced the MicroRacer environment, offering a simple
educational platform for the didactic of Reinforcement Learning. Similarly to
our previous environment based on the old and prestigious Rogue game [2,1], we
try to spare the useless burden of relying on two-dimensional state observations

6. CONCLUSIONS 13

requiring expensive image-preprocessing, using instead more direct and synthetic
state information. Moreover, differently from Rogue, that was based on a discrete
action-space, MicroRacer is meant to investigate RL-algorithms with continuous
actions.

On the contrary of most existing car-racing systems, MicroRacer does not
make any attempt to implement realistic dynamics: autonomous driving is just
a simple pretext to create a pleasant and competitive setting. This drastic sim-
plification allows us to obtain an environment that, although far from trivial,
still has acceptable training times (between 10 and 60 minutes depending on the
learning methods and the underlying machine).

The environment was already experimented by students of the course of Ma-
chine Learning at the University of Bologna during the past academic year, that
provided valuable feedback. In view of the welcome reception, we plan to organize
a championship for the incoming year. The code is open source, and it is avail-
able at the following github repository: https://github.com/asperti/MicroRacer.
We look forward for possible collaborations with other Universities and research
institutions.

References

1. Andrea Asperti, Daniele Cortesi, Carlo De Pieri, Gianmaria Pedrini, and Francesco
Sovrano. Crawling in rogue’s dungeons with deep reinforcement techniques. IEEE
Trans. Games, 12(2):177–186, 2020.

2. Andrea Asperti, Daniele Cortesi, and Francesco Sovrano. Crawling in rogue’s
dungeons with (partitioned) A3C. In Machine Learning, Optimization, and Data
Science - 4th International Conference, LOD 2018, Volterra, Italy, September 13-
16, 2018, Revised Selected Papers, volume 11331 of Lecture Notes in Computer
Science, pages 264–275. Springer, 2018.

3. Bharathan Balaji, Sunil Mallya, Sahika Genc, Saurabh Gupta, Leo Dirac, Vineet
Khare, Gourav Roy, Tao Sun, Yunzhe Tao, Brian Townsend, Eddie Calleja, Sunil
Muralidhara, and Dhanasekar Karuppasamy. Deepracer: Educational autonomous
racing platform for experimentation with sim2real reinforcement learning. CoRR,
abs/1911.01562, 2019.

4. Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. Cython: The best of both worlds. Computing in Science &
Engineering, 13(2):31–39, 2011.

5. Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement
Learning. MIT Press, 2022. http://www.distributional-rl.org.

6. Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. J. Artif. Intell.
Res. (JAIR), 47:253–279, 2013.

7. Ekaba Bisong. Google Colaboratory, pages 59–64. Apress, Berkeley, CA, 2019.
8. Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540,
2016.

9. Luigi Cardamone, Daniele Loiacono, Pier Luca Lanzi, and Alessandro Pietro
Bardelli. Searching for the optimal racing line using genetic algorithms. In Pro-
ceedings of the 2010 IEEE Conference on Computational Intelligence and Games,
pages 388–394, 2010.

http://www.distributional-rl.org

14 Andrea Asperti and Marco Del Brutto

10. Bingqing Chen, Jonathan Francis, Jean Oh, Eric Nyberg, and Sylvia L. Herbert.
Safe autonomous racing via approximate reachability on ego-vision, 2021.

11. Marco Del Brutto. Microracer: Development of a didactic environment for deep
reinforcement learning. Master’s thesis, University of Bologna, School of Science,
Session III 2021-22.

12. Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and Vladlen
Koltun. CARLA: an open urban driving simulator. In 1st Annual Conference on
Robot Learning, CoRL 2017, Mountain View, California, USA, November 13-15,
2017, Proceedings, pages 1–16. PMLR, 2017.

13. Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and
Bo Cheng. Distributional soft actor-critic: Off-policy reinforcement learning for
addressing value estimation errors. IEEE Transactions on Neural Networks and
Learning Systems, pages 1–15, 2021.

14. Benjamin Evans, Herman A. Engelbrecht, and Hendrik W. Jordaan. Learning
the subsystem of local planning for autonomous racing. In 20th International
Conference on Advanced Robotics, ICAR 2021, Ljubljana, Slovenia, December 6-
10, 2021, pages 601–606. IEEE, 2021.

15. Benjamin Evans, Herman A. Engelbrecht, and Hendrik W. Jordaan. Reward sig-
nal design for autonomous racing. In 20th International Conference on Advanced
Robotics, ICAR 2021, Ljubljana, Slovenia, December 6-10, 2021, pages 455–460.
IEEE, 2021.

16. Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approx-
imation error in actor-critic methods. In Jennifer G. Dy and Andreas Krause,
editors, Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 1582–1591. PMLR, 2018.

17. Gianluca Galletti. Deep reinforcement learning nell’ambiente pytorcs. Master’s
thesis, University of Bologna, school of Science, Session III 2021.

18. Brian Goldfain, Paul Drews, Changxi You, Matthew Barulic, Orlin Velev, Pana-
giotis Tsiotras, and James M. Rehg. Autorally: An open platform for aggressive
autonomous driving. IEEE Control Systems Magazine, 39(1):26–55, 2019.

19. Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 1856–1865. PMLR, 2018.

20. James Herman, Jonathan Francis, Siddha Ganju, Bingqing Chen, Anirudh Koul,
Abhinav Gupta, Alexey Skabelkin, Ivan Zhukov, Max Kumskoy, and Eric Nyberg.
Learn-to-race: A multimodal control environment for autonomous racing. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages
9793–9802, 2021.

21. Changmao Li. Challenging on car racing problem from openai gym. CoRR,
abs/1911.04868, 2019.

22. Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In Yoshua Bengio and Yann LeCun, editors, 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

23. Daniele Loiacono, Pier Luca Lanzi, Julian Togelius, Enrique Onieva, David A
Pelta, Martin V Butz, Thies D Lönneker, Luigi Cardamone, Diego Perez, Yago

6. CONCLUSIONS 15

Sáez, et al. The 2009 simulated car racing championship. IEEE Transactions on
Computational Intelligence and AI in Games, 2(2):131–147, 2010.

24. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

25. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–
533, 2015.

26. Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone, Michal
Cáp, Yu Fan Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, Daniel Hoehener,
Shih-Yuan Liu, Michael Novitzky, Igor Franzoni Okuyama, Jason Pazis, Guy Ros-
man, Valerio Varricchio, Hsueh-Cheng Wang, Dmitry S. Yershov, Hang Zhao,
Michael Benjamin, Christopher Carr, Maria T. Zuber, Sertac Karaman, Emilio
Frazzoli, Domitilla Del Vecchio, Daniela Rus, Jonathan P. How, John J. Leonard,
and Andrea Censi. Duckietown: An open, inexpensive and flexible platform for
autonomy education and research. In 2017 IEEE International Conference on
Robotics and Automation, ICRA 2017, Singapore, Singapore, May 29 - June 3,
2017, pages 1497–1504, 2017.

27. Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y.
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Pa-
rameter space noise for exploration. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

28. John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

29. David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-
tin A. Riedmiller. Deterministic policy gradient algorithms. In Proceedings of the
31th International Conference on Machine Learning, ICML 2014, Beijing, China,
21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages
387–395. JMLR.org, 2014.

30. Satinder P. Singh, Andrew G. Barto, and Nuttapong Chentanez. Intrinsically
motivated reinforcement learning. In Advances in Neural Information Processing
Systems 17 [Neural Information Processing Systems, NIPS 2004, December 13-18,
2004, Vancouver, British Columbia, Canada], pages 1281–1288, 2004.

31. Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

32. Kyriakos G. Vamvoudakis, Yan Wan, Frank L. Lewis, and Derya Cansever (eds).
Handbook of Reinforcement Learning and Control. Springer International Publish-
ing, 2021.

33. Sara Vorabbi. Analisi dell’ambiente aws deepracer per la sperimentazione di tec-
niche di reinforcement learning. Master’s thesis, University of Bologna, school of
Science, Session II 2021.

34. Haonan Wang, Ning Liu, Yiyun Zhang, Dawei Feng, Feng Huang, Dong Sheng Li,
and Yiming Zhang. Deep reinforcement learning: a survey. Frontiers Inf. Technol.
Electron. Eng., 21(12):1726–1744, 2020.

	Copertina_postprint_IRIS_UNIBO
	LOD_2022_Camera-Ready_2300
	MicroRacer: a didactic environment for Deep Reinforcement Learning

