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Abstract: The aim of this study was to assess the impact of in vitro digestion on the antioxidant
activity of three extracts rich in phenols (two purified organic extracts (A20, A21) and one powdered
extract stabilized with maltodextrins (SP)) obtained from olive mill wastewaters (OMWW). The
content and composition of phenols and antioxidant activity was determined before and after in vitro
digestion. The phenol content of the A20 and A21 samples were higher (>75%) than that of the
SP sample before in vitro digestion. After the entire in vitro digestion, 89.3, 76.9, and 50% loss of
phenols was found in A20, A21 and SP, respectively. ABTS•+ and ORAC values decreased during
in vitro digestion of A20 and A21 samples, while they remained almost constant in SP. IC50 increased
during digestion of A20 and A21, evidencing a loss of antioxidant capacity after the intestinal phase;
an opposite IC50 trend was noted in SP, confirming the protective role of maltodextrins. For these
reasons, SP represents a promising formulation to be used in the food field.

Keywords: phenolic extract; olive by-products; in vitro digestion; antioxidant activity; 2,2-diphenyl-1-
picrylhydrazyl (DPPH•); 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS•+); oxygen radical
absorbance capacity (ORAC); high-performance liquid chromatography (HPLC)

1. Introduction

Oxidation is one of the main degradation reactions that occurs in living organisms,
involving numerous enzymatic systems. Molecular oxygen (O2) and its extremely reactive
derivatives (reactive oxygen species, ROS) can induce cellular damage, mainly by targeting
polyunsaturated fatty acids in the cell membrane and DNA [1]. Nevertheless, organisms
count on several antioxidant defense mechanisms to mitigate such damages. The effec-
tiveness of these mechanisms tends to decline with aging [2], so ROS can accumulate and
thus promote the onset of chronic and neurodegenerative diseases, including diabetes and
Alzheimer’s [3,4].

One of the most relevant areas of current research in nutrition and food formulation
is the search for compounds that can reduce the production and/or reactivity of ROS.
This trend, together with the need for improving the sustainability of food production,
has directed both industry and basic research towards the search for natural, traditional
products (or their extracts) with a high antioxidant activity [5,6]. Natural extracts or
essential oils derived from agri-food waste and by-products could be useful to replace
synthetic food antioxidants in food product formulations, due to their high content of
bioactive compounds (i.e., phenolic compounds, carotenoids or terpenes) that possess
antioxidant and antimicrobial effects [7,8].
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In this context, olive mill wastewater (OMWW), which is generated in large amounts
during olive processing to produce virgin olive oils, represents one of the most interesting
and abundant food by-products. The annual world production of wastewater is estimated
to be between 7 and 30 million m3 [9]. OMWW composition varies from both qualitative
and quantitative standpoints depending on the olive cultivar, pedo-climatic conditions,
cultivation practices and the oil separation technique. OMWW has a high content of organic
compounds (sugars, tannins, pectins and phenolic substances) and mineral salts [10]; in par-
ticular, phenolic compounds are one of the main components, varying from 0.6 to 2.0% [9].
Due to its organic composition and high generation rate, OMWW is indeed a highly pol-
luting by-product; the significant amounts of polyphenols contained therein might have
negative effects on ecosystems due to their antibacterial, phytotoxic and antinutritional
properties, as well as due to their resistance to degradation [10].

However, OMWW could be a source of hydrophilic phenols (mostly secoiridoid
derivatives, which are only found in the Oleaceae family) with antioxidant, antibacterial and
anti-inflammatory activity [11,12]. The phenolic fraction can be extracted from OMWW and
purified using diverse methods, such as membrane filtration. Ianni et al. [13] demonstrated
that a three-step membrane filtration (microfiltration + ultrafiltration + reverse osmosis) is
a good technological procedure to extract and purify OMWW phenols, which can be used
for further applications in the food, pharmaceutical or cosmetic fields [12,14,15].

While the phenolic profile of extracts obtained from OMWW has been abundantly char-
acterized, there are no studies available in the literature regarding the in vitro digestion of
pure extracts and their bioavailability, as reported by Reboredo-Rodríguez et al. [16]. In fact,
most scientific investigations have focused on the study of the bioaccessibility of the single
phenolic compounds, such as hydroxytyrosol (3,4-DHPEA) and verbascoside, in the form of
pure standards or extracted from by-products (i.e., OMWW, olive pomace and leaves) [16];
however, to the best of our knowledge, no study has examined the bioaccessibility of
phenolic extracts derived from OMWW containing more than one phenolic compound. In
this work, three extracts rich in phenols obtained from the purification of OMWW were
subjected to in vitro digestion and characterized. The content and composition of phenols
and antioxidant activity was determined before and after in vitro digestion.

2. Materials and Methods
2.1. Phenolic Extract

Three samples of phenolic extracts (spray-dried (SP), A20 and A21) obtained from
the purification of OMWW were supplied by the Department of Agricultural, Food and
Environmental Sciences of the University of Perugia (Perugia, Italy).

To produce A20 and A21 phenolic extracts, fresh OMWWs from a mixture of olive
cultivars (harvested in the Umbria region, Italy) were obtained from different harvest years
(2020, with prevalence of Coratina cv.; 2021 with prevalence of Frantoio, Moraiolo and
Dolce Agogia cvs.); the OMWWs were subjected to a 12 h enzymatic hydrolysis at 20 ◦C
and then filtered by a 3-step membrane system (microfiltration + ultrafiltration + reverse
osmosis) [13]. A crude phenolic concentrate (CPC) was thus obtained, which was further
treated as described by Menchetti et al. [17]: 100 mL of CPC were homogenized with 50 mL
of ethyl acetate for 3 min and the organic phase was recovered; this process was repeated
twice. Anhydrous sodium was then added to the entire mixture, which was subsequently
filtered with a fluted filter to remove residual water. Ethyl acetate was removed with
a rotavapor at 35 ◦C; the extract was then redissolved in 5 mL of ethanol, which was
evaporated under nitrogen flow and stored at −20 ◦C.

For the preparation of the SP extract, olives from Moraiolo cultivar that were harvested
in Umbria (Central Italy) were used to obtain fresh OMWWs and the corresponding CPC
as described above. The CPC then had maltodextrin (1:1, d.w.) added as a support, was
spray-dried to obtain a powder formulation and stored at room temperature [18].
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2.2. In Vitro Digestion

The three extracts were subjected to an in vitro digestion process using the procedure
described by Gayoso et al. (2018) [19], modified following the Infogest method [20]. Briefly,
the samples (200 mg for A20 and A21, and 500 mg for SP) were placed in 3 Falcon tubes,
dissolved in distilled water and heated in a water bath at 37 ◦C under stirring. After pH
adjustment to 6.5 with 1 M sodium bicarbonate, oral digestion was initiated by adding
an α-amylase solution. Afterwards, the pH was again adjusted to 2.5 using 3 M HCl, and
1 tube was immediately frozen (−20 ◦C). To simulate gastric digestion, pepsin was then
added to the 2 remaining tubes; after the set reaction time (2 h), pH of 6.5 was obtained
using 1 M sodium bicarbonate and another tube was immediately frozen. The last digestion
phase (intestinal) was launched by adding a mixture of pancreatin solution and bile extract
(1:1, v/v); after 2 h, pH was adjusted to 7.5 using 1 M sodium bicarbonate and the last tube
was placed in the freezer. Table 1 reports the composition of the simulating digestive fluids.

Table 1. Composition of the simulating digestive fluids.

Enzymes Concentration Solvent Added Quantity

Oral phase α-amylase 1.3 mg/mL CaCl2 1 mM 125 µL

Gastric phase Pepsin 160 mg/mL HCl 0.1 M 165 µL

Intestinal phase Pancreatin solution:
bile extract (1:1, v/v)

Pancreatin solution (4 mg/mL);
bile extract (25 mg/mL) NaHCO3 0.1 M 1250 µL

All digestive tubes were maintained at −20 ◦C for no longer than 2 days. The 3 tubes
were thawed (4 ◦C), then centrifuged at 4000× g (A-4-62 Rotor, Model 5810R centrifuge,
Eppendorf, Barcelona, Spain) for 40 min at 4 ◦C, and the supernatant was collected and
lyophilized for further analysis. The supernatant from the first tube represents the bioac-
cessible fraction from oral digestion (OD), whereas those from the second and third tubes
represent the bioaccessible fraction from gastric digestion (OD + GD) and intestinal diges-
tion (ID + OD + GD), respectively. For each type of extract, three independent triplicates of
the digestion process were run.

2.3. Total Polyphenol (TP) Content

The TP content was measured by the Folin–Ciocalteu assay [21]. Briefly, 15 µL of
sample were mixed with distilled water and the Folin–Ciocalteu reagent. After 2 min,
sodium carbonate was added and, after 2 h, the absorbance was measured at 765 nm
using a microplate reader (FLUOstar Omega, BMG Labtech, Ortenberg, Germany). Gallic
acid (GA) was used to build the calibration curve (concentration range: 5–2000 µg/mL)
and the results were expressed as mg GA equivalents (GAE)/100 g dry weight (d.w.)
phenolic extract.

2.4. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH•) Inhibition

Antioxidant activity was monitored using the scavenging effect of radicals on DPPH•

(Sigma-Aldrich Co., St. Louis, MO, USA) [22]. Briefly, samples’ stock solution (A20 and
A21 = 25 µg/mL of methanol; SP = 2.5 mg/mL of water) were diluted, so as to obtain
10 concentration levels for each solution; 150 µL of each diluted solution were mixed
with 150 µL of DPPH• solution (0.04 mg/mL). The progress of the reaction was checked
every 15 min, for a total of 90 min, by using a spectrophotometer (UV PowerWave XS,
BioTek Instruments, Inc., Winooski, VT, USA) at an absorbance wavelength of 517 nm.
To determine the radical scavenging activity (% of inhibition), the following formula
was utilized:

Inhibition (%) = 1 − (Abssample − Absblank/Abscontrol − Absblank) × 100
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where Abssample was the absorbance of the extract sample (diluted sample + DPPH
solution), Absblank was the absorbance of the blank for each sample dilution (diluted
sample + methanol) and Abscontrol was the absorbance of control (sample solvent (methanol
or water) + DPPH solution).

The value obtained for each concentration was plotted to obtain IC50 values (concen-
tration in which the 50% of the free radical DPPH is reduced) in each time point.

2.5. 2,2-Azinobis-(3-Ethylbenzothiazoline-6-Sulfonate) (ABTS•+) Inhibition

In a 96-well microplate, 18 µL of sample were mixed with the ABTS•+ solution (ABTS•+

tab + K2S2O8 140 mM + H2O) and, after 6 min, the absorbance was read at 734 nm. To build
the calibration curve, Trolox (T) was used as standard compound (concentration range:
0–1000 µM) and the results were expressed as mM T equivalents (TE)/100 g d.w. phenolic
extract [23].

2.6. Oxygen Radical Absorbance Capacity (ORAC)

The antiradical activity was further tested with the peroxyl radical 2,2′-azobis(2-
amidinopropane) dihydrochloride (AAPH) by using the ORAC method [24]. Briefly, the
sample was mixed with sodium fluorescein and fluorescence was measured at T0 using a
microplate reader (excitation wavelength of 485 nm and emission wavelength of 520 nm).
After adding the AAPH solution, measurements were carried out every 45 s for a total anal-
ysis time of 1 h. A standard curve was built by plotting T concentrations (4–250 µM) against
the average net areas under the curve (AUC) of 3 measurements for each concentration.
Final ORAC values were calculated using the regression equation between T concentrations
and the net AUC and were expressed as mM TE/100 g d.w. phenolic extract.

2.7. High-Performance Liquid Chromatography (HPLC)

Individual polyphenols were determined by using a reversed-phase HPLC (Waters 2695,
Milford, MA, USA), which was equipped with a C18 column (Nova-Pak, 150 × 3.9 mm, 4 µm,
Waters), a 600 E multi-solvent delivery system, a Waters U6K sampler and a Waters 2996
photodiode array detector (DAD) [22]. Briefly, a gradient elution of polyphenols was
performed using a binary solvent system (acetonitrile and acidified distilled water (pH 2
with orthophosphoric acid)) under isothermal conditions (25 ◦C). A detection wavelength
range of 210–550 nm was used. The identification of the single compounds was confirmed
by comparing their retention times and UV-DAD spectra with those of the correspond-
ing standards, as well as with those reported in the literature [25]. The amount of each
compound (expressed as area unit (AU) × 106), was calculated before and after digestion.

2.8. Statistical Analysis

All experiments were run in triplicate. The results were expressed as mean values
and standard deviation (SD). To test the normal distribution of data (p < 0.05) and the
homogeneity of variance (p < 0.05), the Shapiro–Wilk method and the Levene and Bartlett
tests were applied, respectively. A one-way analysis of variance (ANOVA), followed by
Tukey’s honest significance test at a 95% confidence level (p ≤ 0.05), were performed to
separate statistically different means between the non-digested (ND) and digested samples.
To evaluate the correlation between data, Pearson’s correlation analysis (p < 0.05) was
performed. Data were analyzed using XL-STAT (7.5.2 version, Addinsoft, Paris, France).
For DPPH•, IC50 values were obtained by GraphPad Prism v6.01 (GraphPad Software, La
Jolla, CA, USA).

3. Results and Discussion
3.1. Phenolic Content of the Extracts before and after In Vitro Digestion

TP content of the three extracts obtained from OMWW were measured before (ND)
and after in vitro digestion (OD, GD and ID).
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In the present study, the two phenolic extracts were obtained by three-step membrane
filtration and organic solvent extraction (A20 and A21), while the other extract (SP) was
subjected to subsequent spray-drying. Figure 1 shows that both samples A20 and A21
had a significantly higher (p < 0.05) TP content than the SP sample, before and after
in vitro digestion.

Antioxidants 2023, 12, x FOR PEER REVIEW 5 of 13 
 

France). For DPPH•, IC50 values were obtained by GraphPad Prism v6.01 (GraphPad Soft-

ware, La Jolla, CA, USA). 

3. Results and Discussion 

3.1. Phenolic Content of the Extracts before and after In Vitro Digestion 

TP content of the three extracts obtained from OMWW were measured before (ND) 

and after in vitro digestion (OD, GD and ID). 

In the present study, the two phenolic extracts were obtained by three-step mem-

brane filtration and organic solvent extraction (A20 and A21), while the other extract (SP) 

was subjected to subsequent spray-drying. Figure 1 shows that both samples A20 and A21 

had a significantly higher (p < 0.05) TP content than the SP sample, before and after in vitro 

digestion. 

 

 

Figure 1. Effect of in vitro digestion on the phenolic content (expressed as mg GAE/100 g d.w.) of 

the three phenolic extracts. ND: non-digested; OD: oral digestion; GD: gastric digestion; ID: intesti-

nal digestion; SP, spray-dried. Values are means of triplicates ± standard deviation (SD); a,b, statis-

tically different means during digestion (p ≤ 0.05); A–C, statistically different means among samples 

(p ≤ 0.05). 

As can be noted from Figure 1, the TP content of the A20 and A21 samples was seven 

times higher than that of the SP sample before in vitro digestion, which was probably due 

to the preparation process of the extracts. In fact, A20 and A21 are purified viscous organic 

extracts, while SP is a powdered extract stabilized with maltodextrins that protect phe-

nols. The TP values found in the present study were much higher (up to four times) than 

the one reported for an OMWW phenolic extract from Tunisian olives from cv. Chemlali 

[26]. This difference could be due to the extraction method used to obtain the phenolic 

extract. In fact, Ladhari et al. [26] performed a direct solvent extraction using methanol 

without a pre-concentration step, while in the present study a sequence of membrane fil-

tration processes was carried out, followed by extraction with ethyl acetate. 

During the in vitro digestion, it can be noted that the TP content of the A20 and A21 

samples significantly varied, while it remained almost constant for the SP sample, with a 

significant, slight decrease during OD and GD. A20 and A21 displayed non-significant 

increasing and decreasing trends, respectively, in the OD and GD; such changes could be 

attributed to the action of the digestive enzymes as well as to the alkaline pH during the 

in vitro digestion process. After the entire in vitro digestion (ID), the TP content of both 

A20 and A21 samples showed a statistically significant three-fold decrease with respect to 

the corresponding ND samples. This overall trend was probably due to the preparation 

process of the extracts; in fact, A20 and A21 are purified viscous organic extracts, while 

Figure 1. Effect of in vitro digestion on the phenolic content (expressed as mg GAE/100 g d.w.)
of the three phenolic extracts. ND: non-digested; OD: oral digestion; GD: gastric digestion; ID:
intestinal digestion; SP, spray-dried. Values are means of triplicates ± standard deviation (SD); a,b,
statistically different means during digestion (p ≤ 0.05); A–C, statistically different means among
samples (p ≤ 0.05).

As can be noted from Figure 1, the TP content of the A20 and A21 samples was seven
times higher than that of the SP sample before in vitro digestion, which was probably due
to the preparation process of the extracts. In fact, A20 and A21 are purified viscous organic
extracts, while SP is a powdered extract stabilized with maltodextrins that protect phenols.
The TP values found in the present study were much higher (up to four times) than the
one reported for an OMWW phenolic extract from Tunisian olives from cv. Chemlali [26].
This difference could be due to the extraction method used to obtain the phenolic extract.
In fact, Ladhari et al. [26] performed a direct solvent extraction using methanol without
a pre-concentration step, while in the present study a sequence of membrane filtration
processes was carried out, followed by extraction with ethyl acetate.

During the in vitro digestion, it can be noted that the TP content of the A20 and A21
samples significantly varied, while it remained almost constant for the SP sample, with
a significant, slight decrease during OD and GD. A20 and A21 displayed non-significant
increasing and decreasing trends, respectively, in the OD and GD; such changes could be
attributed to the action of the digestive enzymes as well as to the alkaline pH during the
in vitro digestion process. After the entire in vitro digestion (ID), the TP content of both
A20 and A21 samples showed a statistically significant three-fold decrease with respect to
the corresponding ND samples. This overall trend was probably due to the preparation
process of the extracts; in fact, A20 and A21 are purified viscous organic extracts, while
SP is a powdered extract stabilized with maltodextrins that protects phenols during the
digestion. The use of polymers such as lecithins and maltodextrins is a common practice to
stabilize and protect bioactive compounds, such as phenols, to allow them to exert their
antioxidant action in food and during digestion [27]. Thanks to maltodextrins, in fact, the
SP sample could be stored under vacuum at room temperature, unlike the A20 and A21
extracts, which must be stored at −20 ◦C.
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Taticchi et al. [28] tested the protective effect of a phenolic extract (PE) from OMWW,
stabilized with maltodextrins in a 1:1 ratio, on carotenoids and other phytonutrients during
a home-cooking procedure to prepare tomato sauce; the authors proved that, during the
different cooking steps, 60.1% of total phenols were retained by the tomato sauce. The
antioxidant activity exerted by PE during the preparation and cooking of the tomato sauce
was able to preserve a significantly high content of carotenoids (α- and β-carotene and
E- + Z-lycopene) in the final sauce.

In another study, Barbieri et al. [18] demonstrated that the same PE (OMWW extract +
maltodextrins in a 1:1 ratio) was successfully retained during storage (>56%) and grilling
(>20%) of raw and grilled beef hamburgers, leading to an improvement of their overall
oxidative stability and sensory quality, with a positive effect especially on the intensity of
the red color (raw product) during storage.

Miraglia et al. [29] also confirmed a good retention (69.3%) of the same OMWW PE in
cooked pink shrimps, which helps maintaining the overall chemical and microbial quality
of the seafood product during storage.

3.2. Phenolic Composition of the Extracts before and after In Vitro Digestion

Table 2 shows the phenolic compounds identified in the extracts by using HPLC-DAD.
Five main phenolic compounds were identified: hydroxytyrosol (3,4-DHPEA), oleacein
(3,4-DHPEA-EDA), oleocanthal (p-HPEA-EDA), tyrosol (p-HPEA) and verbascoside (VB).

Table 2. Effect of in vitro on the phenolic content (expressed as AU × 106) of 3 phenolic extracts.

3,4-DHPEA p-HPEA 3,4-DHPEA-EDA p-HPEA-EDA VB Total
Phenols

A
20

ND 12.56 ± 0.38 b,B 3.81 ± 0.21 b,A 72.40 ± 0.48 a,A 9.50 ± 0.19 a,A 2.52 ± 0.06 a,A 100.81 ± 7.35 a,A

OD 17.89 ± 0.83 a,B 7.32 ± 0.40 a,A 46.35 ± 0.47 b,A 7.25 ± 0.20 b,A 1.39 ± 0.22 c,A 80.22 ± 11.10 b,A

GD 5.69 ± 0.26 c,B 2.47 ± 0.39 c,A 49.20 ± 0.57 b,A 6.97 ± 0.24 c,A 1.95 ± 0.05 b,A 66.31 ± 8.18 c,A

ID 5.50 ± 0.13 c,C n.d. d,C 3.89 ± 0.07 c,B n.d. d,B n.d. d,C 9.39 ± 1.59 d,B

A
21

ND 14.76 ± 1.78 b,A 2.16 ± 0.07 a,B 53.15 ± 5.64 a,B 3.58 ± 0.11 a,B 0.63 ± 0.03 a,C 74.29 ± 7.76 a,B

OD 31.10 ± 1.15 a,A 2.41 ± 0.12 a,B 33.60 ± 1.36 b,B 2.30 ± 0.13 b,B 0.50 ± 0.01 b,C 69.64 ± 7.68 b,B

GD 8.87 ± 0.41 d,A 0.88 ± 0.02 b,B 12.32 ± 1.11 c,B 1.04 ± 0.02 c,B 0.37 ± 0.01 c,C 23.50 ± 1.48 c,B

ID 9.15 ± 0.16 c,A 0.96 ± 0.02 b,A 6.22 ± 0.74 d,A 0.73 ± 0.01 d,A 0.05 ± 0.00 d,B 17.14 ± 1.92 d,A

SP

ND 6.64 ± 0.67 c,C 0.20 ± 0.01 c,C 10.77 ± 0.06 a,C n.d. C 1.10 ± 28.99 a,B 18.37 ± 6.84 a,C

OD 7.18 ± 0.50 b,C 0.21 ± 0.06 c,C n.d. c,C n.d. C 0.91 ± 15.69 b,B 8.31 ± 0.51 d,C

GD 5.18 ± 0.01 d,B 0.30 ± 0.01 b,C 3.93 ± 0.01 b,C n.d. C 0.82 ± 12.19 c,B 10.25 ± 0.97 b,C

ID 8.03 ± 0.07 a,B 0.40 ± 0.07 a,B n.d. c,C n.d. B 0.78 ± 14.88 d,A 9.22 ± 0.70 c,B

3,4-DHPEA, hydroxytyrosol; 3,4-DHPEA-EDA, oleacein; p-HPEA, tyrosol; p-HPEA-EDA, oleocanthal; GD, gastric
digestion; ID, intestinal digestion; ND, non-digested; n.d., not detected; OD, oral digestion; SP, spray-dried; VB,
verbascoside. Values are means of triplicates ± standard deviation (SD). a–d, statistically different means during
digestion (p ≤ 0.05); A–C, statistically different means among samples at each digestion step (p ≤ 0.05).

The composition and concentration of phenolic compounds in virgin olive oil (VOO)
and its by-products depend on several factors: pedo-climatic, agronomic (irrigation, fertil-
ization, harvesting and ripeness) and technological (post-harvest storage and extraction
system). In addition, the different olive cultivars provide distinctive qualitative-quantitative
phenolic profiles to VOO and its by-products [16].

Table 2 reports that samples A20 and A21 had a higher total phenol content than the SP
sample, especially before undergoing in vitro digestion. Like in the TP content determined
by the Folin–Ciocolteau method, this was probably due to the different extract preparation
(purified viscous organic extracts vs. powdered extract stabilized with maltodextrins).

After the in vitro digestion process, the phenolic content significantly decreased in all
samples. In the SP sample, a 50% decrease of the phenolic content was observed, while a
massive loss of phenols was found in samples A20 and A21 (89.3% and 76.9%, respectively).
Although samples A20 and A21 had the highest content of phenols after in vitro digestion,
maltodextrin encapsulation still proved to better protect the phenolic compounds in the
SP sample. Regarding the content of the single phenols, the most abundant phenol in all
extracts was 3,4-DHPEA-EDA, followed by 3,4-DHPEA. However, not all phenols were
found in the extracts; in fact, p-HPEA-EDA was not detected in the SP sample.
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On the other hand, it seems that the pH influenced the behavior of each phenolic
compound during the various phases of digestion. For instance, in OD at pH 6.5, 3,4
DHPEA-EDA was not detected in the SP sample, nor were decreases detected in both
samples A20 and A21, with a consequent increase of the 3,4 DHPEA. During GD, however,
the pH drops to 2.5, leading to a decrease of 3,4 DHPEA and an increase of 3,4 DHPEA-EDA
for the SP sample, while their content decreased in A21. In the course of ID, the pH rises to
6.5, which causes a decrease of 3,4 DHPEA-EDA and 3,4 DHPEA in all samples. A similar
behavior was found for p-HPEA and p-HPEA-EDA in samples A20 and A21; in the SP
sample, p-HPEA-EDA was not present, while p-HPEA values during digestion remained
almost constant, with only a slight increase during the GD and ID phases. Regarding
VB, in all analyzed samples it tended to decrease during digestion, until its complete
disappearance in sample A20 during ID.

The biochemistry underlying the digestibility of phenolic compounds is quite complex;
in fact, as evidenced by a recent review [30], more research is required to understand how
the various phenolic classes work and are biotransformed in the human body, and how
this biotransformation impacts their bioactivity and bioavailability. In addition to pH, it
has been shown that the enzymes used during the various phases of the in vitro digestion
also influence the behavior of the various molecules and their destruction/formation [16].

Other studies found that polyphenols, after digestion, increased the population of Lac-
tobacillus spp., Enterococcus spp. and Bifidobacterium spp. while it decreased the population
of bacteria that are occasionally linked to dysbiosis (i.e., Clostridium histolyticum, Clostridium
perfringens, Clostridium difficile and others) [30]. These results highlight the potential of
phenolic compounds as microbiota modulators and their application in the development
of novel foods.

3.3. Antioxidant Activity of the Extracts before and after In Vitro Digestion

The antioxidant activity of SP, A20 and A21 extract was measured using three assays
that deal with different radicals: ABTS•+, AAPH and DPPH•.

Figure 2 shows the radical scavenging ability against ABTS•+ of the three extracts
before and after the different steps of in vitro digestion. ABTS•+ values of samples A20 and
A21 were 9.8 and 19.5 times higher, respectively, than those of the SP sample before in vitro
digestion. The ABTS•+ values found in the present study are similar to those reported
by Dauber et al. [31] for phenolic extracts obtained from OMWW of different cultivars
(Arbequina and Coratina) by CO2 supercritical fluid extraction with ethanol as a co-solvent.

As shown in Figure 2, in the A20 and A21 samples, ABTS•+ value tends to decrease
during in vitro digestion, reaching a final 2.63- and 4.79-fold decrease with respect to those
found in the corresponding ND samples. An opposite trend, however, was found for the
SP sample, as the ABTS+• value at the end of the digestion process was 1.75 times higher
than the one found for the ND sample. In this case, the protective role of maltodextrin
towards phenols in SP samples is also evident, as is the effect of ID conditions on phenols’
release from the solid matrix.

It can be noted that the trends of ABTS•+ in the three extracts during in vitro digestion
are similar to those found for TP (Figure 1), thus confirming the importance of phenols’
presence and content to detect their ABTS•+ scavenging activity [31].

Figure 3 reports the radical scavenging ability against AAPH radical of the three
extracts before and during the in vitro digestion, which showed the same trends as ABTS+•

(Figure 2). In brief, the ORAC values of A20 and A21 samples were 7.3 and 24.8 times
higher, respectively, than those of the SP sample before in vitro digestion. Our ORAC values
are comparable to those reported by Dauber et al. [31] for phenolic extracts produced
from OMWW of different cultivars (Arbequina and Coratina) by using diverse extraction
methods. After in vitro digestion, a 2.62- and 7.43-fold reduction of the ORAC value was
found in samples A20 and A21 after ID, respectively, with respect to the corresponding ND
samples; a 1.32-fold decrease of SP sample was also observed.
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Figure 2. Effect of in vitro digestion on ABTS•+ inhibition (expressed as mM TE/100 g d.w.) of the
three phenolic extracts. ND: non-digested; OD: oral digestion; GD: gastric digestion; ID: intestinal
digestion; SP, spray-dried. Values are means of triplicates ± standard deviation (SD); a–d, statistically
different means during digestion (p ≤ 0.05); A–C, statistically different means among samples
(p ≤ 0.05).
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Figure 3. Effect of in vitro digestion on 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)
radical (expressed as mM TE/100 g d.w.) of the three phenolic extracts. ND: non-digested; OD:
oral digestion; GD: gastric digestion; ID: intestinal digestion; SP, spray-dried. Values are means of
triplicates ± standard deviation (SD); a–c, statistically different means during digestion (p ≤ 0.05);
A–C, statistically different means among samples (p ≤ 0.05).

Regarding the DPPH test, values are expressed as IC50, which is the concentration of
phenolic extract necessary to inhibit oxidation by 50%; this means that the more anti-radical
capacity it has, the smaller the amount of extract is required to reduce oxidation by 50%.

As shown in Table 3, the value of IC50 in the A20 sample varied between 2.11 and
36.47 µg TE/mg during the in vitro digestion, while it ranged between 5.64 and 22.47 µg
TE/mg in the A21 sample. In both extracts, IC50 tended to increase up to the GD phase, but
they seem to lose their antioxidant capacity at the ID phase; this was more evident for A21.
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Table 3. Effect of in vitro digestion on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition of the three
phenolic extracts, calculated as IC50.

15 30 45 60 75 90

Min

A
20

ND 2.64 ± 0.21 c,C 2.14 ± 0.16 d,C 2.41 ± 0.23 c,C 2.25 ± 0.23 d,C 2.18 ± 0.23 c,C 2.11 ± 0.22 c,C

OD 17.75 ± 1.64 b,C 17.67 ± 2.14 c,B 19.14 ± 2.95 b,B 17.09 ± 2.95 c,B 15.41 ± 1.55 b,B 15.17 ± 1.03 b,B

GD 22.47 ± 0.87 a,C 21.47 ± 0.80 b,B 21.27 ± 1.20 b,B 21.33 ± 1.20 b,B 21.23 ± 1.41 a,B 21.40 ± 1.43 a,B

ID 0 d,B 36.74 ± 0.00 a,B 31.52 ± 1.70 a,B 27.81 ± 1.70 a,B 0 d,B 0 d,B

A
21

ND 7.36 ± 0.54 b,B 6.91 ± 0.40 c,B 6.56 ± 0.29 c,B 6.21 ± 0.26 c,B 5.93 ± 0.28 c,B 5.64 ± 0.29 c,B

OD 25.35 ± 2.14 a,B 15.53 ± 1.73 b,B 15.47 ± 2.09 b,C 14.17 ± 1.29 bC, 14.43 ± 1.65 b,C 13.70 ± 0.96 b,C

GD 22.47 ± 1.57 a,C 21.47 ± 0.85 a,B 21.27 ± 1.27 a,B 21.33 ± 1.25 a,B 21.23 ± 1.26 a,B 21.40 ± 1.38 a,B

ID 0 c,B 0 d,C 0 d,C 0 d,C 0 d,B 0 d,B

SP

ND 169.08 ± 20.31 a,A 156.06 ± 15.91
a,A 151.85 ± 13.08 a,A 147.62 ± 10.71 a,A 159.11 ± 10.29 a,A 159.59 ± 12.05

a,A

OD 102.24 ± 14.99 c,A 96.90 ± 15.85 c,A 95.73 ± 16.74 c,A 94.48 ± 16.89 c,A 96.66 ± 16.95 c,A 99.39 ± 15.70 c,A

GD 143.29 ± 10.12 b,A 131.03 ± 8.24 b,A 128.86 ± 7.87 b,A 131.68 ± 7.35 b,A 133.94 ± 7.71 b,A 134.77 ± 7.06 b,A

ID 53.36 ± 1.69 d,A 49.48 ± 1.70 d,A 49.87 ± 2.01 d,A 52.52 ± 2.11 d,A 53.99 ± 2.78 d,A 75.34 ± 12.14 d,A

GD, gastric digestion; ID, intestinal digestion; ND, non-digested; OD, oral digestion; SP, spray-dried. Values are
means of triplicates ± standard deviation (SD); a–d, statistically different means during digestion (p ≤ 0.05); A–C,
statistically different means among samples (p ≤ 0.05).

On the other hand, the IC50 value of the SP sample varied from 147.62 to 49.87 µg
TE/mg, with an increasing antioxidant capacity during in vitro digestion. In this case, a
larger amount of ND extract is required to exert its antioxidant activity as compared to the
one needed after in vitro digestion.

This behavior could be due to the protection provided to the phenolic extract by the
encapsulation with maltodextrins; in fact, once the SP extract is subjected to in vitro diges-
tion, the various enzymatic treatments at different pH conditions lead to the digestion of
maltodextrins and the release of the phenolic fraction, the latter thus able to exert its antiox-
idant action even at a lower amount of SP sample. According to Burgos-Edwards et al. [32],
the use of simulated digestion has a different impact on the antioxidant activity of phenolic
extracts, which depends on the assay being used. In fact, the different methods used for the
determination of phenols might not be able to reveal the structural changes in polyphenols
and their associated activity [33]. Moreover, it should be pointed out that polyphenols and
other antioxidant compounds could be metabolized by gut microbiota [34]. Consequently,
all these results should be carefully interpreted and confirmed by future studies that involve
intestinal fermentation in in vitro models to assess the metabolizing capacity of the gut
microbiota, as well as the modulating effects on the microbiota itself [35].

3.4. Pearson’s Correlation Matrix

To evaluate the correlations between the different parameters analyzed, a Pearson
correlation (p < 0.05) was performed. From the Pearson correlation matrix (Table 4), it
is possible to observe how TP (content of phenols determined by the Folin–Ciocolteau
assay) is positively correlated with some of the single phenols (p-HPEA, 3,4-DHPEA-
EDA, p-HPEA-EDA), total phenols (determined by HPLC-DAD), ABTS•+ and AAPH;
however, it is negatively correlated with the IC50 parameter. The latter negative correlation
can be attributed to the fact that the types of extracts tested here display two different
behaviors during the digestive process; in fact, as reported in Table 3, the quantities of
extract necessary to detect antioxidant activity increase during digestion for samples A20
and A21, while they decrease for SP.

Regarding the single phenolic compounds, it is possible to note how p-HPEA is
positively correlated with 3,4-DHPEA-EDA and p-HPEA-EDA, as well as with ABTS+•. It is
known that p-HPEA-EDA is subjected to time-dependent hydrolysis under acid conditions
in the stomach, which leads to an increase of free p-HPEA; in fact, after only 30 min of GD,
higher amounts of p-HPEA may be present for absorption in the jejunum and ileum [36].
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Table 4. Pearson’s correlation matrix among total and single phenols and antioxidant activity of the
extracts before and after in vitro digestion.

TP 3,4-
DHPEA

p-
HPEA

3,4-
DHPEA-
EDA

p-
HPEA-
EDA

VB Total
Phenols ABTS•+ AAPH

IC50
15

Min

IC50
30

Min

IC50
45

Min

IC50
60

Min

IC50
75

Min

IC50
90
Min

TP -
3,4-

DHPEA 0.503 -

p-HPEA 0.777 * 0.521 -
3,4-

DHPEA-
EDA

0.843 * 0.437 * 0.745 * -

p-HPEA-
EDA 0.809 * 0.294 0.827 * 0.935 * -

VB 0.433 −0.019 0.525 0.703 * 0.808 * -
Total

Phenols 0.863 * 0.595 * 0.813 * 0.980 * 0.915 * 0.645 * -

ABTS•+ 0.910 * 0.462 0.645 * 0.797 * 0.663 * 0.243 0.794 * -
AAPH 0.666 * 0.370 0.380 0.645 * 0.413 0.051 0.618 * 0.910 * -
IC50 15

min −0.613 * −0.344 −0.427 −0.476 −0.481 0.040 −0.497 −0.624 * −0.485 -

IC50 30
min −0.685 * −0.436 −0.492 −0.546 −0.539 −0.029 −0.580 * −0.680 * −0.528 0.979 * -

IC50 45
min −0.678 * −0.429 −0.479 −0.540 −0.531 −0.016 −0.572 −0.676 * −0.528 0.984 * 1.000* -

IC50 60
min −0.682 * −0.435 −0.485 −0.544 −0.533 −0.013 −0.576 * −0.679 * −0.530 0.986 * 0.998 * 0.999

* -

IC50 75
min −0.627 * −0.387 −0.438 −0.488 −0.484 0.046 −0.516 −0.633 * −0.492 0.999 * 0.981 * 0.986

*
0.989

* -

IC50 90
min −0.654 * −0.400 −0.457 −0.517 −0.505 0.039 −0.544 −0.660 * −0.514 0.990 * 0.972 * 0.977

*
0.982

*
0.994

* -

* indicates significant correlation between parameters (p < 0.05). AAPH, 2,2’-azobis(2-amidinopropane) dihy-
drochloride; 3,4-DHPEA, hydroxytyrosol; 3,4-DHPEA-EDA, oleacein; p-HPEA, tyrosol; p-HPEA-EDA, oleocanthal;
TP, total polyphenol content; VB, verbascoside.

On the other hand, 3,4-DHPEA-EDA is positively correlated with 3,4-DHPEA, p-HPEA-
EDA, ABTS+• and AAPH. p-HPEA-EDA, instead, proved to be positively correlated with
ABTS+•. The behavior and correlations of 3,4-DHPEA-EDA and 3,4-DHPEA can be ascribed
to the fact that, following ingestion of 3,4-DHPEA-EDA-rich olive oil or olive by-product
extracts, 3,4-DHPEA-EDA is hydrolyzed into 3,4-DHPEA and elenolic acid during digestion
and further biotransformed [36]. In fact, according to the data in Table 2, 3,4-DHPEA-EDA
is primarily hydrolyzed during gastrointestinal digestion, thus yielding 3,4-DHPEA, whose
high antioxidant efficiency is attributed to its o-dihydroxyphenyl moiety [36].

Finally, it is possible to observe that, in addition to being positively correlated with
all the single phenols, the total phenols (determined by HPLC-DAD) are also directly
correlated with ABTS•+ and AAPH, thus confirming that it is the set of phenolic compounds,
and not only the single compound, that possesses an antioxidant capacity. As observed for
TP, the HPLC’s total phenols are negatively correlated with IC50.

4. Conclusions

This study demonstrated that OMWW could be a good source of phenolic compounds,
from which phenol-rich extracts with good antioxidant capacity can be obtained. From
the chemical characterization of extracts, it emerged that, before in vitro digestion, the
phenol content of the A20 and A21 samples was higher than that of the SP sample. After
the digestion process, a 50% decrease of the phenolic content in the SP sample was ob-
served, while a massive loss of phenols was found in samples A20 and A21 (89.3% and
76.9%, respectively).

Concerning extracts’ antioxidant activity, ABTS•+ and ORAC values decreased during
in vitro digestion, except for SP, where the ABTS•+ in the digested sample was 1.75 times
higher than in the non-digested one. IC50 increased during digestion of the A20 and A21
samples, evincing a loss of antioxidant capacity after the intestinal phase; an opposite IC50
trend was noted in SP, confirming the protective role of maltodextrins.

Finally, this work showed that, despite the severe loss of phenols, samples A20 and A21
still had the highest content of phenols after undergoing in vitro digestion. The spray-dried
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formulation with maltodextrins (SP) proved, in any case, to better protect the phenolic
compounds, managing to maintain its antioxidant capacity even after being digested, thus
representing a promising OMWW phenolic extract to be used in the food field. Both types
of OMWW phenolic extracts depict valid alternatives for the formulation of clean label
products, which could be helpful for further valorizing this olive processing by-product
and encouraging circularity in the olive oil industry. However, considering the role of gut
microbiota on bioactives’ biotransformation and the possible modulating effect of phenols
on microbiota, it will be important in the future to evaluate the interaction between these
phenol-rich by-product extracts and the microbiota, in order to unravel the interaction
mechanisms between them and their impact on phenols’ bioactivity and bioavailability.
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