
Received 10 January 2023, accepted 9 February 2023, date of publication 13 February 2023, date of current version 16 February 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3244495

Qualitative Clustering of Software Repositories
Based on Software Metrics
YEGOR BUGAYENKO1, KIRILL DANIAKIN 2, MIRKO FARINA 3, ZAMIRA KHOLMATOVA2,
ARTEM KRUGLOV 2, WITOLD PEDRYCZ 4,5,6,7, (Life Fellow, IEEE),
AND GIANCARLO SUCCI8, (Member, IEEE)
1Huawei Technologies, 121614 Moscow, Russia
2Institute of Software Development and Engineering, Innopolis University, 420500 Innopolis, Russia
3Institute of Human and Social Sciences, Innopolis University, 420500 Innopolis, Russia
4Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
5Systems Research Institute, Polish Academy of Sciences, 00-901 Warsaw, Poland
6Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, 34010 Istanbul, Turkey
7Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
8Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy

Corresponding author: Artem Kruglov (a.kruglov@innopolis.ru)

This work was supported by Huawei Technologies under the Theoretically Objective Measurements of Software Development Projects
(TOM).

ABSTRACT Software repositories contain a wealth of information about the aspects related to software
development process. For this reason, many studies analyze software repositories using methods of data
analytics with a focus on clustering. Software repository clustering has been applied in studying software
ecosystems such as GitHub, defect and technical debt prediction, software remodularization. Although some
interesting insights have been reported, the considered studies exhibited some limitations. The limitations
are associated with the use of individual clustering methods and manifesting in the shortcomings of the
obtained results. In this study, to alleviate the existing limitations we engage multiple cluster validity indices
applied to multiple clustering methods and carry out consensus clustering. To our knowledge, this study is
the first to apply the consensus clustering approach to analyze software repositories and one of the few to
apply the consensus clustering to software metrics. Intensive experimental studies are reported for software
repository metrics data consisting of a number of software repositories each described by software metrics.
We revealed seven clusters of software repositories and relate them to developers’ activity. It is advocated
that the proposed clustering environment could be useful for facilitating the decision making process for
business investors and open-source community with the help of the Gartner’s hype cycle.

INDEX TERMS Empirical software engineering, clustering, analysis of software repositories.

I. INTRODUCTION
Software repositories contain a wealth of information about
the aspects related to software development process. There-
fore, a retrospective analysis of such software repositories
can provide valuable insights into the evolution, growth,
qualitative characteristics, and problems of the corresponding
software development projects. The insights gained through
such retrospective analysis can affect the decision-making
process in a project, and improve the quality of the software
system being developed.

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

To conduct such retrospective analysis, Munaiah et al. [1]
proposed to classify software repositories as ‘‘engineered’’
or ‘‘not engineered’’, i.e., they proposed to group the repos-
itories based on the similarity of their attributes. However,
such software ecosystems as GitHub contain more than
290 million repositories and more than 87 million users,
and manually labeling them is a time-consuming process as
shown by Borges and Valente [2] when they focus only on
5000 repositories due to the fact that they had to label the
repositories manually. For this reason, many studies use unsu-
pervised learning techniques such as clustering to determine
the similarity between software repositories and to provide
ground for repository analysis.

14716 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-7834-7993
https://orcid.org/0000-0001-8342-6549
https://orcid.org/0000-0003-2038-1392
https://orcid.org/0000-0002-9335-9930
https://orcid.org/0000-0002-7194-3159


Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

Determining software repository similarity is an essential
building phase in studying the dynamics and the evolution of
such software ecosystems as GitHub [3]. For instance, Borges
and Valente [2] determined similar repositories with cluster-
ing methods to understand the growth patterns of GitHub
repositories’ number of stars, which leads to better under-
standing of how people star the repositories and what this
starring is attributed to.

Considering ensemble methods in machine learning, it is
of interest to consider here a suite of different clustering
methods providing different partitions of data and aggregate
their results into a single consolidated clustering without
accessing the features or methods that determined these par-
titions, i.e., create a consensus clustering. The solution to this
problem was introduced by Strehl and Ghosh [4]. However,
to our knowledge, there is no prior study applying the con-
sensus clustering approach to analyze software repositories.
We also noted that the application of consensus clustering had
received comparatively little attention in the case of software
metrics.

In this work, we aim to overcome the limitations (such as
limited validity) of using a single clustering method with our
main objectives along with key aspects of originality being
the following:

• Thoughtful use of several clustering methods and build-
ing consensus results following consensus clustering as
proposed by Strehl and Ghosh [4]. We discuss it as one
of the key points in this study.

• A careful analysis of clustering results with the use of
multiple cluster validity indices.

Our hypothesis is that it is possible to qualify a software
repository by using its quantitative metrics.

To clearly present the purpose of our work, we reviewed the
motivation that lead researchers to both classify and cluster
software repositories. The motivation of related studies is
attributed to one of the following:

• Facilitating projects’ experience reuse, groups’ collabo-
ration and shared work;

• Facilitating defect and technical debt prediction;
• Recovering a semantic representation of the software
design for different software systems with diverse
domains, structure, and behavior;

• Removing noise from large quantities of software
projects in a resource-efficient way;

• Studying the dynamics and the evolution of such soft-
ware ecosystems as GitHub and reducing the amount
of information that developers need to parse in order
to stay up to date with development activity in their
projects.

The relevance of this study can be mostly attributed to
studying the software ecosystems and identifying important
indicators about development activity in software projects.
In addition, we advocate that the proposed clustering could
be useful to help in decision making to software investors and
the open-source community.

At the experimental end, the contributions of this study are
three-fold:

• We demonstrate that in our experiment repositories are
always attributed to one of the developers’ activity
clusters;

• We describe these clusters;
• We find ‘‘prototype’’ vectors describing the clusters,
which may be compared to software metrics describ-
ing an arbitrary repository of similar size to classify it,
i.e., we can calculate the distance between the arbitrary
repository’s metrics vector and the prototype vectors and
relate the repository to the cluster, whose prototype is the
closest to the repository.

Across the study, we adhere to the standard notation.
The N software repository metrics data are represented as
n-dimensional vectors, say x1, x2, . . . , xN . The number of
clusters is denoted by c. The data were normalized using
min-max normalization, and unless stated otherwise, by the
‘‘software metrics data’’ we mean the normalized software
repository metrics data.

The work is organized as follows: Section II describes
related studies. Section III first provides a brief overview of
the proposed methodology to cluster software repositories
and analyze the results and then details significant parts of the
methodology such as clustering with application of validity
indices, consensus clustering, and aggregation of the results.
Section IV provides the description of the empirical study
we conducted to validate our approach. Section V provides
discussion and Section VI draws the conclusion.

II. RELATED STUDIES
Even though our work is aimed at clustering of soft-
ware repositories based on the corresponding metrics data,
we briefly review the proposals to classify repositories man-
ually and point at their shortcomings to see if the clustering
used in related works corresponds to the proposed manual
classifications and whether it addresses the shortcomings
of manual approaches. We also note which of the manual
classifications our study is related to the most. Only then
we review the work on clustering software repositories and
describe their limitations.

A. EXISTING PROPOSALS TO MANUALLY CLASSIFY
SOFTWARE REPOSITORIES
Munaiah et al. [1] classified repositories as ‘‘engineered’’
or ‘‘not-engineered’’ with the intention of identifying
high-quality GitHub repositories and removing noise (e.g.,
repositories for homework). ‘‘Engineered’’ is a repository
that provides general-purpose utilities to users other than the
owners and is similar to those of Amazon, Apache,Microsoft,
and Mozilla. They manually classified 450 GitHub reposito-
ries based on this definition and two of its aspects: ‘‘organi-
zation’’ and ‘‘utility’’. The main limitation of this approach
is a bias towards industry giants and their repositories under
the assumption that they use the ‘‘sound software engineering
practices’’.

VOLUME 11, 2023 14717



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

Borges and Valente [2] performed the large-scale classi-
fication of application domains on GitHub based on the top
5000 public repositories by the number of stars. The top-3
domains by the number of projects were web libraries and
frameworks, non-web libraries and frameworks, and software
tools – they can be viewed asmeta-projects used to implement
other projects. Borges and Valente [2] hypothesized that the
application domain is useful for understanding the clusters
of GitHub repositories based on number of stars history over
time. However, they noticed that there is no statistical differ-
ence between the number of stars of systems software, appli-
cations, web libraries and frameworks, and documentation,
so under the perspective of clustering using number of stars
evolution, these domains can be grouped into one, resulting
into three-domain repository classification.

Altogether, the limitation of the domain-based classifica-
tion is that several domains can be grouped together into one
or divided into a number of smaller domains, therefore, such
grouping is subjective and it is hard to precisely determine
the number of separate domains in advance.

Treude et al. [5] aimed at manually identifying ‘‘unusual
events’’ in 200 randomly sampled GitHub projects with at
least 500 commits and at least 100 pull requests or 100 issues
based on projects’ repository metrics. Such unusual events
and the association between events and metrics were deter-
mined via a survey of 140 software developers responsible
for or affected by these unusual events. The repositories were
classified as having unusually large or small values (based on
the ‘‘extreme outlier’’ definition) in these types of events:

• Commit-related events – the most useful metrics to
detect these events according to the survey with
developers are ‘‘the number of lines of code modi-
fied/deleted/added in a commit’’;

• Issue-related events – with useful metrics for detection
being ‘‘days between open and closed’’ and ‘‘number of
comments for label’’;

• Pull request-related events – detected by ‘‘number of
comments’’.

Treude et al. [5] claimed that this classification can ‘‘help
prevent potential problems early on, encourage discussion
where it is needed, and give important pointers to events in a
project’s history to be reviewed’’. According to the findings
of Treude et al. [5], the limitation is that awareness tools based
on commit or source code activity alone are not sufficient to
communicate all the information developers care about in a
project, which means that additional data related to issues and
pull-requests have to be collected and analyzed.

Out of the proposed approaches to classify software
repositories, our study corresponds more to the one by
Treude et al. [5], as we try to identify the metrics that would
characterize software repositories qualitatively and signal
about potential anomalies. To determine a set of metrics that
are useful for anomaly detection, Treude et al. [5] rely on
the opinion of software developers who caused or deal with
these anomalies, however, they found out that developers

‘‘value simple and easily understandable metrics over com-
plex ones’’, though simple and easily understandable metrics
might not be enough to uncover the underlying data patterns.
To address this, we conduct an automatic clustering of the
repositories based on a set of GitHub metrics instead of rely-
ing on the simple ‘‘extreme outlier’’ definition of anomaly,
and then try to identify useful metrics that indicate something
unusual in the resulting clusters of repositories.

B. CLUSTERING SOFTWARE REPOSITORIES
There has been active research on clustering software reposi-
tories and corresponding software projects even if such clus-
tering has not been always connected to the classifications
mentioned in Section II-A. We review the most relevant
work in the field and present our review in the following
paragraphs.

Kawaguchi et al. [6] proposed a tool that automatically
categorizes software systems for identifying similar projects
to facilitate reuse and sharing knowledge among software
projects. As metrics for clustering, they used identifiers
uncovered by latent semantic analysis from source code, and
then they applied cosine similarity and unifiable cluster map
to automatically categorize software repositories. Applied on
41 programs in C in five categories coming from Source-
Forge, their method generated 40 clusters with mostly 2-3
software systems per cluster. The limitation of such clustering
is that it produces too element-specific, not descriptive, and
small clusters.

Jureczko andMadeyski [7] used such clustering algorithms
as hierarchical, K-means, and Kohonen’s neural network to
identify groups of software projects with similar characteris-
tic from the defect prediction point of view. They measured
Chidamber and Kemerer, Bansiy and Davis metrics suites,
lack of cohesion in methods (LCOM3), and McCabe’s cyclo-
matic complexity on 92 versions of 38 proprietary, open-
source and academic projects, and used these metrics for
clustering. The existence of two clusters was proven with
statistical testing: custom-built solutions and text processing
projects by medium sized international team. The limitation
of the proposed clustering method is that it requires the
information about defects to be predicted, therefore, it is hard
to externally validate it.

Borges and Valente [2] studied GitHub repository starring
practices and meaning, characteristics, and dynamic growth
of GitHub stars. They used K-Spectral Centroid algorithm
on top 5000 public GitHub repositories by the number of
stars in order to cluster the repositories and analyze the stars
growth patterns. They identified three clusters that suggest a
linear growth at different speeds and one cluster with a sudden
growth in the number of stars. This classification study has a
limited external validity of the method as authors focus only
on the characteristics of the most starred GitHub projects.

Saied et al. [8] used DBSCAN-based hierarchical clus-
tering on 6638 libraries and 38000 client systems hosted
in repositories from GitHub to group the libraries that are

14718 VOLUME 11, 2023



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

most frequently co-used together by clients in order to relieve
developers from manual analysis. To cluster libraries, they
applied usage vector for each library indicating which client
systems use the library. The obtained usage patterns exhibited
high usage cohesion with an average of 77%. The study has
the limitation in the method’s external validation – due to the
data collection used, there could be duplicates and missed
dependencies, which might mislead the clustering algorithm
and provide biased results.

Pickerill et al. [9] clustered 1,786,601 GitHub reposito-
ries into ‘‘engineered’’ and ‘‘not engineered’’, following the
classification by Munaiah et al. [1]. They extracted informa-
tion about repositories’ Git commit, integration, committer,
integrator, and merge frequency, and, using these metrics,
applied K-means clustering algorithm, which resulted in 38%
of the repositories being labeled as ‘‘well-engineered’’. The
main limitation of such clustering is limited external validity,
since the authors validated the clustering only on a small
manually labeled subset of the 1,786,601 repositories, and,
as they noted, there is a possibility that both the ground truth
and clustering are wrong, and their agreement is coincidental.

Rokon et al. [3] claimed that determining repository simi-
larity is an essential building block in studying the dynamics
and the evolution of such software ecosystems as GitHub,
and for this purpose they proposed an embedding of repos-
itory metadata, code, and structure, which they then used to
cluster 1013 GitHub repositories with hierarchical clustering.
This resulted into three clusters of benign, malware, and
RESTAPI related repositories, or 26 sub clusters of the three.
This clustering has limited internal validity as authors used
only one cluster validity index.

Tsoukalas et al. [10] divided 27 software projects from the
technical debt dataset [11] into six clusters of similar projects
with respect to their technical debt aspects using K-means
algorithm and built specific technical debt forecastingmodels
for each cluster using regression algorithms. As metrics for
clustering, they used effort in minutes to fix code smells,
bugs, vulnerability issues and number of lines of code, bugs,
smells, as well as cyclomatic complexity. The results showed
that the prediction errors tend to be statistically significantly
lower in within-cluster technical debt forecasting than in
cross-cluster forecasting. The limitation of this study is that
the authors did not provide the interpretation for the result-
ing six clusters, which limits the external validity of the
clusters.

Xu et al. [12] performed a large-scale empirical study with
40 clustering algorithms on 27 versions of 14 open-source
projects to explore the impacts of clustering-based models on
defect prediction performance. They used code complexity,
process, and network metrics and compared the clustering-
based models to supervised defect prediction models. The
results showed that not all clustering models are worse than
supervised models, however, authors did not provide an anal-
ysis or interpretation of the resulting clusters, which limits the
external validity of such clustering.

Tan et al. [13] focused on hierarchical clustering and
Bunch clustering algorithms for remodularization and pro-
vided information about their suitability according to the fea-
tures of the software repositories such as bugs, code smells,
duplications, number of lines of code, size, and number of
stars. The resulting clusters were described in terms of how
well the proposed clustering algorithms performed according
to the MoJoFM metrics, however no cluster interpretation
was provided. For validation, authors took top 30 GitHub
repositories by the number of stars written in Javawith at least
10 commits, which limited external validity of the resulting
clusters.

The conclusions from the literature review are as follows.
We did not identify a prior study that would analyse open-
source software repositories from the perspective of devel-
opers’ community interest. However we believe that this is
an important aspect since the knowledge about this interest
would help to better understand not only the state of the repos-
itory itself but also of the correspond software development
project. In addition, the proposed studies have limitations in
terms of validity of the clustering results since most of them
use a single clustering technique.

In this work, we try to overcome the limitation of cluster
validity by usingmultiple clustering techniques, cluster valid-
ity indices, and consensus clustering. It is also worth noting
that the application of consensus clustering to the software
metrics case had received rather little attention. We were able
to identify only few of the studies considering the application
of consensus clustering such as those by Coelho et al. [14] and
Puchala et al. [15]. In addition, we were unable to identify
a study that would apply consensus clustering to analyze
software repository metrics. In this study, we also address
that.

III. METHODOLOGY
In order to avoid size or popularity based clustering, we nar-
row down the set of considered software repositories to
approximately the same size and popularity repositories.
Then, we divide this set into subsets and conduct clustering
in each of the subsets, aggregate clustering results across the
subsets, compare them, and make a conclusion about how
consistent our clustering was across the subsets of software
repositories. The division to subsets allows us to validate our
clustering in the same way as if we had multiple datasets and
clustered each of them.

Our methodology of identifying software repository clus-
ters consists of three steps. The first step is data collection and
preparation. We consider N repositories on GitHub. We sep-
arate these N repositories into P < N sets of N

P repositories.
In addition, we predefine the fixed number of consensus clus-
ters c based on the relevant literature and consensus clustering
performance index.

The next step is processing of the repository sets. We pick
the first NP repositories, collect nmetrics from them and apply
the following algorithm:

VOLUME 11, 2023 14719



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

TABLE 1. Clustering algorithms used in the study.

1) We normalize each metric to the [0,1] range.
2) We group repositories into c clusters based on the n

metrics using m clustering algorithms with different values
of parameters that we tune.

3) For each grouping resulting from the previous step,
we calculate three cluster validity indices and obtain at most
three best groupings (in the sense that each groping opti-
mizes a certain validity index) for each algorithm. Refer to
Section III-A for details.

4) We use the consensus clustering approach in order to
build a new ‘‘winner’’ grouping from the best ones (refer to
Section III-C for details).

5) For each group in the winner grouping, we calculate
prototype vector of n metrics that is an average vector in the
group.

We repeat the entire algorithm for the next NP repositories,
and so on. As a result, we get a collection of c sets of prototype
vectors.

The final step of our methodology is aggregation of the
results. We match the calculated cluster prototypes to com-
pare them and the clusters they represent acrossP sets of clus-
tered repositories. For that, we consider the minimum-weight
matching problem inP-partite graph across all c·P prototypes
(for details refer to Section III-D), and, as a result, get c sets of
P matched prototypes. We calculate the discrepancy in every
such set of prototype vectors and, using a similarity measure,
calculate the discrepancy value d for each of the c sets, which
shows us how different the cluster prototypes are across the
P sets of data for each of the c clusters.

A. CLUSTERING DATA
To get the initial groupings of repositories, from which we
will take the ‘‘best’’ ones, we apply multiple algorithms
to avoid being subject to specifics of the math of a single
clustering algorithm. We use partitioning-based K-means as
one of the generic clustering algorithms (it is applied in many
related studies for its simplicity), density-based DBSCAN
as more advanced algorithm that allows to identify clusters
of arbitrary shapes and handle ‘‘noise’’ in the data and is
widely used, and graph-based spectral clustering that can
be sought as an intermediate ‘‘link’’ between the two, since
it is connected to K-means and to DBSCAN as noted by
Dhillon et al. [16] and Schubert et al. [17]. The algorithms,
their parameters that we use to tune them and their output are
presented in Table 1.

To internally validate the clustering, we measure three
cluster validity indices on the clustering results produced by
m clustering algorithms run on the metrics data. We use the
predefined range of values for such parameters as number
of clusters for K-means and Spectral, and ε for DBSCAN.
For measuring the indices, we use the Euclidean distance.
Since multiple validity indices can show different optimal
solutions in terms of the parameter that we tune (e.g., number
of clusters for K-means) for the same algorithm, we consider
one unique solution per validity index, i.e., if two out of three
indices showed the same solution, and the third one showed
a new solution, we would consider the two unique solutions;
if all three showed the same solution or different solutions,
we would consider only one or three unique solutions corre-
spondingly. Due to this reason, on the output of the initial
clustering stage, we have r ≥ m cluster labelings – one
labeling per each unique optimal solution demonstrated by
the validity indices.

B. CLUSTER VALIDITY INDICES
We apply Silhouette, Calinski-Harabasz, and Davies-Bouldin
indices as they are popular in the clustering literature. The
following paragraphs briefly describe them.

For each clustered sample xi of the software repository
metrics data, the silhouette coefficient is calculated using
the mean intra-cluster distance and the mean nearest-cluster
distance (between a sample and the nearest cluster that the
sample is not a part of). Kaufman and Rousseeuw [20] intro-
duced the term silhouette coefficient for the maximum value
of the mean silhouette over the entire dataset for a specific
number of clusters c. To find the optimal clustering result,
we look for the maximum value of the Silhouette index across
the range of considered parameter values and mark a value of
a parameter optimal if it corresponds to the maximum value
of Silhouette.

Calinski-Harabasz index [21] measures the similarity of a
software repository to other repositories in its cluster (cohe-
sion) as compared to other clusters (separation). Cohesion is
estimated based on the distances from the repositories in a
cluster to its cluster centroid and separation is based on the
distance of the cluster centroids from the global centroid.
To identify the optimal clustering result, we look for the
maximum value of Calinski-Harabasz index across the range
of considered parameter values.

Davies-Bouldin index [22] estimates the cohesion based
on the distance from the software repositories in a cluster

14720 VOLUME 11, 2023



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

to its centroid and the separation based on the distance
between cluster centroids. To find the optimal clustering
result, we look for the minimum value of Davies-Bouldin
index across the range of considered parameter values and
mark a value of a parameter optimal if it corresponds to the
minimum value of Davies-Bouldin.

The values of parameters corresponding to the optimal
values of validity indices are saved and then used on the
clustering algorithms to cluster the software repository met-
rics data xi.This clustering then produces the initial optimal
cluster labelings λq coming from the partition matrices pro-
duced by the algorithms, where q = 1, . . . , r , and r is the
number of the observed optimal values of parameters across
all algorithms (one algorithm can produce up to three optimal
cluster labelings, as we use three validity indices).

C. CONSENSUS CLUSTERING
Consensus clustering (also called cluster ensembles) provides
improved quality of solution and robust clustering as com-
pared to using a single clustering method [23]. The main
idea of the consensus clustering approach is to transform the
set of individual cluster labelings 3 = {λq|q ∈ 1, . . . , r}
(refer to Section III-A) into a single consensus labeling λ that
separates the software repository metrics data into clusters of
software repositories using the consensus function:

0 : 3 → λ. (1)

In this study, we focus on the graph and hypergraph based
as well as non-negative matrix factorization based consen-
sus clustering methods as they are the most popular among
the studies related to consensus clustering and are easy to
understand and implement [24]. We use the consensus clus-
tering methods (each provides a different consensus function)
proposed by Strehl and Ghosh [4], Fern and Brodley [25],
and Li et al. [26], namely Cluster-based similarity parti-
tioning algorithm, Hypergraph-partitioning algorithm, Meta-
clustering algorithm, Hybrid bipartite graph formulation, and
Nonnegative matrix factorization, to avoid being subject to
the specifics of one consensus function’s math, and choose
the one that maximizes the average mutual information:

λ = argmax
λ̂

1
r

r∑
q=1

φ(λ̂, λq), (2)

where φ(λ̂, λq) is the normalizedmutual information between
labelings λ̂, λq and is defined as proposed by Strehl and
Ghosh [4]. The following paragraphs describe the consensus
clustering algorithms used.

The idea of Cluster-based similarity partitioning algorithm
is to create a square matrix S, where each element sij denotes
the fraction of clusterings in which two software repository
metrics vectors xi, xj are in the same cluster. Next, the sim-
ilarity matrix is used to redo the clustering of the repository
metrics vectors using a similarity-based clustering algorithm,
e.g., partitioning of the induced similarity graph (vertex =
repository, edge weight = similarity).

In Hypergraph-partitioning algorithm, the consensus clus-
tering problem is formulated as partitioning the hypergraph
by cutting a minimal number of hyperedges. All hyperedges
are considered to have the same weight, and all vertices
are equally weighted. The algorithm looks for a hyperedge
separator that partitions the hypergraph into c unconnected
components of approximately the same size.

Meta-clustering algorithm is based on clustering clusters
of software repositories. Each cluster is represented by a
hyperedge. The idea is to group and collapse related hyper-
edges and assign each repository metrics vector xi to the
collapsed hyperedge in which it participates most strongly.
The hyperedges that are considered related for the purpose
of collapsing are determined by a graph-based clustering of
hyperedges. Each cluster of hyperedges is referred to as a
meta-cluster. Collapsing reduces the number of hyperedges
from

∑r
q=1 cq to c.

Hybrid bipartite graph formulation constructs a graph,
where vertices represent software repository clusters or the
repositorymetrics vectors xi. In this graph, cluster vertices are
only connected to repository vertices and vice versa, forming
a bipartite graph. The algorithm partitions the cluster vertices
and the repository vertices of the bipartite graph simultane-
ously. The partition of the repositories is then outputted as
the final clustering.

Nonnegative matrix factorization defines the consensus
clustering as the median partition problem, fixing the follow-
ing distance as a measure of likeness between partitions:

l(λ, λ′) =

N∑
i,j=1

lij(λ, λ′), (3)

where lij(λ, λ′) = 1 if xi and xj belong to the same cluster
in one partition λ and belong to different clusters in the
other partition λ′, otherwise lij(λ, λ′) = 0. The consensus
partition is defined by the median partition problem using l
as a dissimilarity measure between partitions.

We use the average normalized mutual information to
assess the quality of obtained consensus clustering – we
take the consensus that has the largest value of the mutual
information and, therefore, the highest quality of obtained
clustering.

D. MATCHING CLUSTER PROTOTYPES AND DISCREPANCY
CALCULATION
At the final step of methodology described in the beginning
of Section III, wematch the prototypes solving the minimum-
weight matching problem in P-partite graph G = (V ,E),
where vertices V = {v1, v2, . . . } are prototypes produced
for P sets of clustered repositories, edges E = {e1, e2, . . . }
represent and are weighted by the Euclidean distance between
prototypes of different repository sets, and each p-th partition
represents the set of c prototypes for the p-th repository set;
p = 1, . . . ,P.
We need to find a set of P vertices for each of the c clusters.

To solve this problem, we consider all possible combinations

VOLUME 11, 2023 14721



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

of vertices (prototype vectors) from different partitions (P
repository sets) and calculate the cost for each combination as
the sum of all pairwise distances between prototypes in that
combination. The formula for the cost of one combination of
i-th prototype of the first repository set, k-th prototype of the
second set, . . . , h-th prototype of the (P − 1)-th set, and j-th
prototype of the P-th set is the following:

Cik . . . hj︸ ︷︷ ︸
P

= (1ik + · · · + 1ih + 1ij)

+ (· · · + 1kh + 1kj) + · · · + (1hj), (4)

where 1ik is the Euclidean distance between i-th prototype
of the corresponding first set and k-th prototype of the cor-
responding second set. So, we reformulate the problem as
the P-index linear assignment problem [27], where Xik...j is
the solution to the problem and equals 1 if a combination
of prototypes (vertices) i, k, . . . , j is matching with the mini-
mumweight, otherwise the value is 0. Therefore, we have the
following problem:

min
c∑
i=1

c∑
k=1

· · ·

c∑
j=1︸ ︷︷ ︸

P

Cik...jXik...j (5)

subject to:
c∑
i=1

c∑
k=1

. . .Xik...j = 1 for all j ∈ {1, . . . , c},

. . .
c∑
i=1

· · ·

c∑
j=1

Xik...j = 1 for all k ∈ {1, . . . , c},

c∑
k=1

· · ·

c∑
j=1

Xik...j = 1 for all i ∈ {1, . . . , c},

Xik...j ∈ {0, 1} for all {i, k, . . . , j} ∈ {1, . . . , c}P, where
{1, . . . , c}P are disjoint sets of corresponding prototypes of P
repository sets. To solve this problem, we use mixed integer
linear programming [28].

To make a conclusion about how similar the clusters are
across P sets of repositories, we calculate the pairwise dis-
crepancy value d for every set ci; i = 1, . . . , c; consisting
of P matched prototypes vectors. For that, we use cosine
distance, since it is based on cosine similarity and we want
to measure how similar (or dissimilar) the prototype vectors
are. However, to avoid the cosine’s distance sensitivity to the
mean, we use the adjusted cosine distance:

dkt = 1 −

∑n
i=1(µik − µ̄k )(µit − µ̄t )√∑n

i=1(µik − µ̄k )2
√∑n

i=1(µit − µ̄t )2
, (6)

where µik are the elements and µ̄k is the mean of the
prototype vector µk , and dkt measures the adjusted cosine
distance between a pair of matched prototypes µk and µt
and is bounded in range [0, 2]. After measuring the pairwise

discrepancy dkt for a set ci of prototype vectors, we get a
single discrepancy value for this set:

dci = max
µk ,µt∈ci

dkt . (7)

In the end, we will have c discrepancy values dci , each
corresponding to one of the c clusters. To make sure that we
have a meaningful discrepancy values, we repeat the whole
algorithm described in Section III on the random data of the
same size N × n and compare the results with the values
achieved in the real data.

IV. EXPERIMENTAL STUDIES
A. DATA COLLECTION AND PREPARATION
The experimental study was conducted on N = 1659 GitHub
project repositories with n = 28 metrics. This number of
metrics was aggregated from the time series of metrics related
to commits (lines added, lines deleted, lines changed, files
changed, number of commits) and issues (number of opened
and closed), taking their values on the latest date of time
series, and additionally aggregating (summing) them across
the three time periods: one month prior to the latest date, two
week prior, and the whole history recorded in the time series.
Time series were collected for each of the 1659 repositories.
The latest date in the time series was the fifth of May 2022.

The criteria for repository search were the following: num-
ber of stars being in range (100, 200), number of forks –
in range (50, 150), size being less than 2100 kilobytes. The
number of repository subsets is P = 7, which gives us the
same number of 237 repositories in each subset and provides
us with an acceptable ratio of the number of repositories to
the number of software metrics.

Following the example of Munaiah et al. [1] and
Pickerill et al. [9], we initially took the number of clusters
c = 2.

B. PROCESSING OF THE REPOSITORY SETS
First, we normalized values of metrics in each repository set
using min-max normalization. In each set of repositories we
have identified optimal groupings using the three clustering
algorithms and the three validity indices. As a metric for
all of the algorithms and validity indices we used Euclidean
distance. For DBSCAN, we took the minimum number of
samples 5 [19].

The consensus clustering algorithms, and their achieved
values of the objective function for each of the P repository
sets are presented in Table 2. The highest value of the perfor-
mance index is underlined for each of the repository sets. The
algorithms that correspond to the underlined values were used
to get a single consensus clustering in each corresponding set
of repositories. After calculating a single clustering for each
of the repository sets, we calculated the prototypes according
to our methodology. They were normalized for better visual-
ization and are presented in Figure 2.

14722 VOLUME 11, 2023



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

FIGURE 1. Preliminary cluster prototypes.

TABLE 2. Values of objective function on two clusters for different consensus clustering algorithms. The highest value of the objective function is
underlined for each of the repository sets.

C. AGGREGATION OF THE RESULTS
We matched the prototypes from different sets of P clustered
repositories using mixed integer programming solver ‘‘Coin-
or branch and cut’’ [29]. We received the following discrep-
ancy values for the two sets of prototypes c1 and c2:

dc1 ≈ 0.461; dc2 ≈ 1.414.

We repeated the whole process for randomly generated data
and got the following discrepancy values:

d randc1 ≈ 1.237; d randc2 ≈ 1.194.

We have aggregated the matched cluster prototypes from
different repository sets by taking the mean of the matched
prototypes for each cluster – the result is presented in Figure 1
(where the prototypes are normalized between each others
for better visualization) – the metrics on the radar plots are
numbered following the next order: issues, then commits
metrics – full history (1-7 on the radar plots), past month
(8-14), past two weeks (15-21), the latest date (22-28). Com-
pared to the results generated on randomdata, the discrepancy
for c1 shows relatively consistent results in terms of cosine
distance between the cluster prototypes. After inspecting the
resultingmatched cluster prototypes, we conclude that cluster
c1 represents repositories with low activity, probably aban-
doned by the developers. However, for the c2, the discrepancy
value shows low consistency across prototypes as shown by
high maximum value of cosine distance between matching
prototypes dc2 . We believe this indicates the presence of more
than one subcluster inside the cluster c2, and for this reason

we repeat the clustering, however, this time without the divi-
sion to P subsets as in c2 we have only 133 repositories.

D. DIVISION OF THE SECOND CLUSTER TO SUBCLUSTERS
We take the number of clusters and consensus function
that maximize the average normalized mutual information
(ANMI). We have achieved the best consensus function with
the meta-clustering algorithm and the number of clusters c =

6 according to the value of ANMI of approximately 1.223.
The normalized (for ease of analysis and better visualization)
consensus cluster prototypes are presented in Figure 2 – the
metrics are numbered following the same order as in Figure 1.
The majority of the 133 ‘‘active’’ repositories were assigned
to the cluster c21, and the rest five clusters contained either
one repository (clusters c26, c25, c23), two (cluster c24),
or three (cluster c22).

For the sake of repository analysis, we inspect the cluster
prototypes and mark the metrics as ‘‘high’’ or ‘‘low’’ if they
correspond to the value of 1 or 0 on Figure 2 correspond-
ingly for each cluster. However, we cannot objectively make
a conclusion on a value of a metric in the range (0, 1),
therefore, here we only mark the metrics having values of
either 0 or 1. Cluster c21 prototype represents a repository
with low values of total created and total (aggregated across
the whole history in the dataset) closed issues, total added and
removed commits per day, total files changed with commits
per day, and all metrics aggregated for the rest of the time
periods (month, two weeks, and the latest date). Cluster c22
prototype has low values of all metrics at the latest date.

VOLUME 11, 2023 14723



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

FIGURE 2. Prototypes for subclusters of c2.

Cluster c23 prototype has high values of open and closed
issues for the past month and a low value of closed issues
on the latest date. Cluster c24 prototype has high values of
total created and closed issues, overall number of commits
and files changed, number of closed issues for past month,
closed issues for the past two weeks and low values of
metrics on the latest date. Cluster c25 has high values of
the metrics on the latest date, and low values of overall
number of commits and removed lines. Cluster c26 has high
values of lines changed for all periods and commits for
past two weeks, and low values of the metrics on the latest
date.

To validate our clustering, we manually labeled the
‘‘active’’ 133 repositories according to our identified clusters
using expert judgement. Then we took the manually labeled
(according to the subclusters c21 – c26) 133 repositories (from
the cluster c2) and automatically labeled 1526 repositories
(from the cluster c1) and reconstructed the initial dataset
with 1659 repositories, however now with labels. We used
these labels to conduct the cross-validation using random
forest classifier (since it lowers risk of overfitting) [30] and
to estimate the accuracy of the classification. The achieved
mean accuracy with shuffling and splitting 10 times and train
to test ratio being 70/30 is 0.92 with standard deviation of
0.011.

V. DISCUSSION
Judging by the prototypes, we conclude that the cluster
c21 represents repositories with relatively small activity,

while other clusters represent different types of activity in
repositories, such as sudden peak of developing activity lately
(cluster c22, where the metrics for the past two weeks have
noticeably larger values than for the past month); fresh repos-
itory, where developers’ activity is decreasing (cluster c23,
where the number of commits and closed issues for the latest
date and the past two weeks is decreased as compared to the
past month); repository on the maintenance stage (cluster c24,
where the number of closed issues is the highest among the
prototypes across all time periods except for the latest date);
fresh, steadily developed repository (cluster c25, where the
activity for the past two weeks is higher than for the past
month, and all metrics are the highest among the prototypes
on the latest date); repository at a peak of developers’ activity
(cluster c26, where the number of lines of code added and
deleted is the highest among the prototypes for the past two
weeks, month, and the whole history, and there is a relatively
high number of commits for the past month and two weeks).
We were able to infer this interpretation by inspecting not
only the prototypes, but also the repositories inside the clus-
ters. For the different activity types clusters, we inspected the
following repositories:
Cluster c22 https://github.com/Vonage/vonage-python-sdk,

https://github.com/elastic/ecs-logging-java, https://
github.com/eclipse/tahu;

Cluster c23 https://github.com/Tencent/Firestorm;
Cluster c24 https://github.com/kernitus/BukkitOldCombat

Mechanics, https://github.com/GoogleCloudPlatform/
cloud-sql-jdbc-socket-factory/graphs/contributors;

14724 VOLUME 11, 2023



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

Cluster c25 https://github.com/apache/flink-kubernetes
-operator;

Cluster c26 https://github.com/RS117/RLHD.
To summarize, we have the following stages of developers

activity according to our interpretation: initial steady devel-
opment, where the repository has been launched only recently
and there is an intense development activity going on; active
development, where the repository is past its initial develop-
ment stage, and now the developers changemore lines of code
and do more commits; the disillusionment stage, where the
developers’ activity is decreasing or already dropped dramat-
ically as compared to the other stages, which might be caused
by lack of necessary technologies to support the development
and the corresponding project, or the team has decided to
leave the project temporary or permanently; sudden peak
of activity, where the developers contribute more with each
week and potentially are coming back to the left earlier
project (due to the advancements in connected technologies)
or they are coming from a new team that was assigned to
bring the project back on track; the maintenance stage, where
developers are more focused on closing the issues, which
means that the project has reached its maturity and now is
extensively used in the community.

We believe that these stages of development of the open-
source projects can be put on a graph in a similar fashion
as the Gartner’s hype cycle [31]. However, while some use
Gartner’s hype cycle to describe the development of emerging
technologies [32], [33], we use it to describe the developers’
community interest in open-source software projects and the
corresponding software repositories as shown in Figure 3.
Gartner’s cycle can also be found in the literature for pre-
dicting processes in other areas, including energy consump-
tion [34], [35].

We mark the position of the active repository clusters on
the hype cycle. We do not put the ‘‘expectation’’ on the y axis
as Gartner do, but we put the ‘‘community interest’’ there,
which corresponds to how actively developers are participat-
ing in the developing of an open-source repository. On the
x axis we have a representation of what we believe are the
stages of development of an open-source software repository.
It is worth noting that the hype cycle in Figure 3 does not
present precise values of certain metrics, but is rather a visual
representation of how we connect our data analysis results
with business and community perspective. Such connection
between data analysis results in the form of activity clusters
and business perspective in the form of the hype cycle is
useful for understanding the stage of maturity and interest
of developers in a software repository as well as the corre-
sponding technology development, which in turnwill help the
business representatives and the community to decide which
projects are more profitable to invest their resources in and
which ones should be left out of consideration.

Our results show that there are a vast number of abandoned
or low developers activity repositories among the reposi-
tories with relatively high popularity/size ratio on GitHub.
Our methodology allowed us to identify ‘‘outliers’’ among

FIGURE 3. Hype cycle for active software repository clusters.

inactive repositories, which turned out to represent different
types of developers’ activity and connect them to the hype
cycle similar to the Gartner’s. We believe this demonstrates
that if an open-source software repository has reached a rel-
atively high popularity to size ratio (as shown by the number
of stars and forks vs. the size in kilobytes), then in most cases
this repository is already in a such maturity state, where there
is relatively small amount of developers activity going on.
The active repositories that we have identified are presented
in such small quantity that they look more like an anomaly as
compared to the majority of other maturity repositories.

In this workwe used consensus clustering as related studies
reported it provides improved quality of solution and robust
clustering, as well as more stability with respect to random
initialization compared to a single clustering method [23],
[36]. In addition, we believe that using cluster ensembles
is beneficial to a user, who has no proficiency in clustering-
based data analysis and does not have a clear criteria on
how to use a specific clustering technique, such as software
managers. Consensus clustering will allow them to worry less
about the specifics of math of a single clustering method and
focus more on the data analysis.

A. THREATS TO VALIDITY
In order to avoid threats to internal validity, we used cluster
validity indices, several clustering techniques, and interpreted
the resulting clusters tomake sure that our clustering is caused
by the meaningful effects of the chosen metrics.

In terms of external validity (i.e., the extent to which the
results of a study can be generalized to other situations),
we cannot generalize our findings to the development plat-
forms other than GitHub. However, GitHub now hosts more
than 200 million public repositories [37], making it a good
starting point for this research.

In terms of construct validity (i.e., the degree towhich a test
measures what it claims, or purports, to be measuring), while
our initial list of software repository metrics was designed
to be useful from the perspective of changes analysis (e.g.,
commits added per day) and based on used and provided
by GitHub API, there could be other important metrics that

VOLUME 11, 2023 14725



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

we did not include in the initial set of repository metrics.
However, our proposed approach can be used with different
set of metrics including code metrics, which could provide a
deeper insight into repositories’ code structure.

VI. CONCLUSION
The goal of our work was a) to understand if the software
repositories can be grouped into clusters based on their
metrics to gain dedicated practical insights b) while using
consensus clustering to avoid being subject to the specifics
of math of a single clustering technique. We divided the
metrics data into multiple subsets and clustered each sub-
set into two clusters, then measured the discrepancy value
between the resulting clusters. By inspecting the discrepancy
values, we were able to identify that there are more than two
clusters inside our repository metrics dataset. We revealed
seven clusters of different types of repositories in terms of
developers’ activity, of which the majority turned out to be
either abandoned or having relatively low activity, while the
rest corresponded to different types of developers activity.
Wemapped the results of the data analysis to the Gartner hype
cycle to facilitate the link between the analysis and business
perspective part.

For the futureworkwe are considering expanding our set of
metrics to include metrics related to pull requests, comments,
releases, and workflows to see if our clustering based on both
code and process metrics will be able to predict whether a
repository is on-demand among users and popular among
developers or not. This would allow us to make inference
about the connection of code and process metrics of GitHub
software repositories. In addition, we also plan to study the
clustered repositories in detail by inspecting their history of
development in terms of the software metrics and potentially
modify our hype cycle into a more precise graph that would
show community’s interest to open-source software projects
and repositories.

REFERENCES
[1] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, ‘‘Curating GitHub

for engineered software projects,’’ Empirical Softw. Eng., vol. 22, no. 6,
pp. 3219–3253, 2017.

[2] H. Borges and M. T. Valente, ‘‘What’s in a GitHub star? Understanding
repository starring practices in a social coding platform,’’ J. Syst. Softw.,
vol. 146, pp. 112–129, Dec. 2018.

[3] M. O. F. Rokon, P. Yan, R. Islam, and M. Faloutsos, ‘‘Repo2Vec: A com-
prehensive embedding approach for determining repository similarity,’’
in Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Sep. 2021,
pp. 355–365.

[4] A. Strehl and J. Ghosh, ‘‘Cluster ensembles—A knowledge reuse frame-
work for combining multiple partitions,’’ J. Mach. Learn. Res., vol. 3,
pp. 583–617, Dec. 2002.

[5] C. Treude, L. Leite, and M. Aniche, ‘‘Unusual events in GitHub reposito-
ries,’’ J. Syst. Softw., vol. 142, pp. 237–247, Aug. 2018.

[6] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, ‘‘MUDABlue:
An automatic categorization system for open source repositories,’’ J. Syst.
Softw., vol. 79, no. 7, pp. 939–953, Jul. 2006.

[7] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predictive
Models Softw. Eng., Sep. 2010, pp. 1–10.

[8] M. A. Saied, A. Ouni, H. Sahraoui, R. G. Kula, K. Inoue, and D. Lo,
‘‘Improving reusability of software libraries through usage pattern min-
ing,’’ J. Syst. Softw., vol. 145, pp. 164–179, Nov. 2018.

[9] P. Pickerill, H. J. Jungen, M. Ochodek, M. Maćkowiak, and M. Staron,
‘‘PHANTOM: Curating GitHub for engineered software projects
using time-series clustering,’’ Empirical Softw. Eng., vol. 25, no. 4,
pp. 2897–2929, Jul. 2020.

[10] D. Tsoukalas, M. Mathioudaki, M. Siavvas, D. Kehagias, and
A. Chatzigeorgiou, ‘‘A clustering approach towards cross-project
technical debt forecasting,’’ Social Netw. Comput. Sci., vol. 2, no. 1,
pp. 1–30, Feb. 2021.

[11] V. Lenarduzzi, N. Saarimäki, and D. Taibi, ‘‘The technical debt dataset,’’ in
Proc. 15th Int. Conf. Predictive Models Data Anal. Softw. Eng., Sep. 2019,
pp. 2–11.

[12] Z. Xu, L. Li, M. Yan, J. Liu, X. Luo, J. Grundy, Y. Zhang, and
X. Zhang, ‘‘A comprehensive comparative study of clustering-based unsu-
pervised defect prediction models,’’ J. Syst. Softw., vol. 172, Feb. 2021,
Art. no. 110862.

[13] A. J. J. Tan, C. Y. Chong, and A. Aleti, ‘‘E-SC4R: Explaining software
clustering for remodularisation,’’ J. Syst. Softw., vol. 186, Apr. 2022,
Art. no. 111162.

[14] R. A. Coelho, F. D. R. N. Guimaraes, and A. A. A. Esmin, ‘‘Apply-
ing swarm ensemble clustering technique for fault prediction using soft-
ware metrics,’’ in Proc. 13th Int. Conf. Mach. Learn. Appl., Dec. 2014,
pp. 356–361.

[15] S. P. R. Puchala, J. K. Chhabra, and A. Rathee, ‘‘Ensemble clustering based
approach for software architecture recovery,’’ Int. J. Inf. Technol., vol. 14,
pp. 2013–2019, Jan. 2022.

[16] I. S. Dhillon, Y. Guan, and B. Kulis, ‘‘Kernel k-means: Spectral clustering
and normalized cuts,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2004, pp. 551–556.

[17] E. Schubert, S. Hess, and K. Morik, ‘‘The relationship of DBSCAN
to matrix factorization and spectral clustering,’’ in Proc. LWDA, 2018,
pp. 330–334.

[18] A. Ng, M. Jordan, and Y. Weiss, ‘‘On spectral clustering: Analysis and an
algorithm,’’ in Proc. Adv. Neural Inf. Process. Syst., 2002, pp. 849–856.

[19] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc.
KDD, 1996, vol. 96, no. 34, pp. 226–231.

[20] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction
To Cluster Analysis. Hoboken, NJ, USA: Wiley, 2009.

[21] T. Caliński and J. Harabasz, ‘‘A dendrite method for cluster analysis,’’
Commun. Statist., Theory Methods, vol. 3, no. 1, pp. 1–27, Jan. 1974.

[22] D. L. Davies and D. W. Bouldin, ‘‘A cluster separation measure,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 2, pp. 224–227,
Apr. 1979.

[23] J. Ghosh and A. Acharya, ‘‘Cluster ensembles,’’ Wiley Interdiscipl. Rev.,
Data Mining Knowl. Discovery, vol. 1, no. 4, pp. 305–315, 2011.

[24] S. Vega-Pons and J. Ruiz-Shulcloper, ‘‘A survey of clustering ensem-
ble algorithms,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 25, no. 3,
pp. 337–372, May 2011.

[25] X. Z. Fern and C. E. Brodley, ‘‘Solving cluster ensemble problems by
bipartite graph partitioning,’’ in Proc. 21st Int. Conf. Mach. Learn., 2004,
p. 36.

[26] T. Li, C. Ding, and M. I. Jordan, ‘‘Solving consensus and semi-supervised
clustering problems using nonnegative matrix factorization,’’ in Proc. 7th
IEEE Int. Conf. Data Mining (ICDM), Oct. 2007, pp. 577–582.

[27] E. Balas andM. J. Saltzman, ‘‘An algorithm for the three-index assignment
problem,’’ Oper. Res., vol. 39, no. 1, pp. 150–161, Feb. 1991.

[28] H. P. Williams, ‘‘Integer programming,’’ in Logic and Integer Program-
ming (International Series in Operations Research & Management Sci-
ence), vol. 130. Boston, MA, USA: Springer, 2009.

[29] M. J. Saltzman, ‘‘Coin-Or: An open-source library for optimization,’’ in
Programming Languages and Systems in Computational Economics and
Finance (Advances in Computational Economics), vol. 18, S. S. Nielsen,
Ed. Boston, MA, USA: Springer, 2002.

[30] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[31] B. Burke and D. Smith, ‘‘Hype cycle for emerging technologies, 2019,’’
Gartner, Stamford, CT, USA, Tech. Rep. G00370466, Aug. 2019.

[32] Y. Kondo, K. Asatani, and I. Sakata, ‘‘Extending hype cycle prediction by
applying graph network analysis,’’ in Proc. Portland Int. Conf. Manage.
Eng. Technol. (PICMET), Aug. 2022, pp. 1–9.

[33] D. E. O’Leary, ‘‘Gartner’s hype cycle and information system research
issues,’’ Int. J. Accounting Inf. Syst., vol. 9, no. 4, pp. 240–252,
Dec. 2008.

14726 VOLUME 11, 2023



Y. Bugayenko et al.: Qualitative Clustering of Software Repositories Based on Software Metrics

[34] M. Kriechbaum, A. Posch, and A. Hauswiesner, ‘‘Hype cycles during
socio-technical transitions: The dynamics of collective expectations about
renewable energy in Germany,’’ Res. Policy, vol. 50, no. 9, Nov. 2021,
Art. no. 104262, doi: 10.1016/j.respol.2021.104262.

[35] H. Jarvenpaa and S. J. Makinen, ‘‘Empirically detecting the hype cycle
with the life cycle indicators: An exploratory analysis of three technolo-
gies,’’ in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage., Dec. 2008,
pp. 12–16.

[36] L. I. Kuncheva and D. P. Vetrov, ‘‘Evaluation of stability of k-means cluster
ensembles with respect to random initialization,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 28, no. 11, pp. 1798–1808, Nov. 2006.

[37] The 2021 State of Octoverse. Accessed: Jun. 19, 2022. [Online]. Available:
https://octoverse.github.com/

YEGOR BUGAYENKO graduated from Dnipro
State University, Ukraine, in 1998. He is currently
the Director of the System Programming Labora-
tory, Huawei. His research interests include robo-
tization of software engineering, automation of
software project management, and object-oriented
programming.

KIRILL DANIAKIN received the B.Sc. degree in
applied mathematics from the Moscow Aviation
Institute, and the M.Sc. degree in data analy-
sis and artificial intelligence from Innopolis Uni-
versity. His research interests include application
of machine learning methods, meta-analysis to
software engineering, data science, and artificial
intelligence.

MIRKO FARINA received the B.A. and M.Sc.
degrees in Milan, the M.Phil. degree in Edinburgh,
and the Ph.D. degree in Sydney. He is currently
an Assistant Professor of philosophy with the Fac-
ulty of Humanities and Social Sciences, Innopolis
University. He is also an Honorary Member of
the Laboratory of Industrializing Software Pro-
duction (LIPS), Faculty of Computer Science and
Engineering, Innopolis University; an Honorary
Research Fellow at the Department of Philosophy,

King’s College London; an Expert Member of the UNESCO Inclusive Pol-
icy Laboratory; a Contributing Member of the Astana Club (2022); and a
member of Task Force 1 on Global Health and Covid 19, at G20, 2021.

ZAMIRA KHOLMATOVA is currently pursuing
the Ph.D. degree with the Faculty of Computer
Science and Software Engineering, Innopolis Uni-
versity. She is also a Teacher at the Faculty
of Computer Science and Software Engineer-
ing, Innopolis University. Her research interests
include data science, statistical techniques in data
science, investigation of code to improve the pro-
ductivity of developers, and empirical methods.

ARTEM KRUGLOV graduated from Ural Federal
University, in 2013. He received the Ph.D. degree
in 2017. He is currently an Assistant Professor
at the Faculty of Computer Science and Software
Engineering, Innopolis University. His research
interests include aspects of software develop-
ment processes, agile methodologies, product and
project management, and empirical methods.

WITOLD PEDRYCZ (Life Fellow, IEEE) is cur-
rently a Professor and the Canada Research Chair
(CRC) in computational intelligence with the
Department of Electrical and Computer Engineer-
ing, University of Alberta, Edmonton, Canada.
He is also with the Systems Research Institute of
the Polish Academy of Sciences, Warsaw, Poland.
He is a Foreign Member of the Polish Academy
of Sciences and a fellow of the Royal Society
of Canada. He was a recipient of several awards

including, the Norbert Wiener Award from the IEEE Systems, Man, and
Cybernetics Society, the IEEE Canada Computer Engineering Medal, the
Cajastur Prize for Soft Computing from the European Centre for Soft Com-
puting, the Killam Prize, the Fuzzy Pioneer Award from the IEEE Compu-
tational Intelligence Society, and the 2019 Meritorious Service Award from
the IEEE Systems Man and Cybernetics Society. He is the Editor-in-Chief
of Information Sciences andWIREs Data Mining and Knowledge Discovery
(Wiley) and the Co-Editor-in-Chief of International Journal of Granular
Computing (Springer) and Journal of Data Information and Management
(Springer).

GIANCARLO SUCCI (Member, IEEE) is cur-
rently a Professor with the University of Bologna,
Italy. Before joining the University of Bologna,
he was a Full Professor at Innopolis University,
Russia; a Professor with tenure at the Free Uni-
versity of Bolzano-Bozen, Italy; a Professor with
tenure at theUniversity of Alberta, Edmonton, AB,
Canada; an Associate Professor at the University
of Calgary, AB; and an Assistant Professor at
the University of Trento, Italy. His research inter-

ests include multiple areas of software engineering, including open source
development, agile methodologies, experimental software engineering, soft-
ware engineering over the internet, software product lines, and software
reuse.

VOLUME 11, 2023 14727

http://dx.doi.org/10.1016/j.respol.2021.104262

