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Abstract We derive the forward and backward filtering equations for a class of degenerate partially observ-
able diffusions, satisfying the weak Hormander condition. Our approach is based on the Hélder theory for
degenerate SPDEs that allows to pursue the direct approaches proposed by N. V. Krylov and A. Zatezalo,
and A. Yu. Veretennikov, avoiding the use of general results from filtering theory. As a by-product we also

provide existence, regularity and estimates for the filtering density.
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1 Introduction

The classical kinetic model
dX; = Vidt,

dVy = odWy, o >0,

is a remarkable example of a system of SDEs whose Kolmogorov equation

0.2

78wf+v8;,3f+8tf =0, (t,z,v) € R3, (1.2)
is hypoelliptic but not uniformly parabolic. Precisely, (L2) satisfies the weak Héormander condition in that
the drift plays a key role in the noise propagation (see [14] and the introduction in [12]). In (TI) W is a

Brownian motion and X, V represent position and velocity of a particle. This type of SDEs arises in several
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linear and non-linear models in physics (see, for instance, [4], [23], [§], [11]) and in mathematical finance
(see, for instance, [2], [26]).

In this paper we study the filtering problem for (IT]). To the best of our knowledge, this kind of problem
was never considered in the literature, possibly because the known results for hypoelliptic SPDEs (e.g. [5],
[21], [16], [30] and [29]) do not apply in this case. Here we propose a unified approach for the derivation of the
backward and forward filtering equations based on the Holder theory for degenerate SPDEs recently developed
in [28] and [27] (see also [6] and [24] for similar results for uniformly parabolic SPDEs). Having an existence
and regularity theory at hand, we can pursue the “direct” approaches proposed by Krylov and Zatezalo [19)
and Veretennikov [33], thus avoiding the use of general results from filtering theory. In particular, as in [33]
we derive the backward filtering equation “by hand”, without resorting to prior knowledge of the SPDE, in
a more direct way compared to the classical approach in [25], [13], [22] or [30].

To be more specific, we consider the following general setup: we assume that the position X; and the
velocity V; of a particle are scalar stochastic processes only partially observable through some observation

process Y;. The joint dynamics of X,V and Y is given by the system of SDEs
dX, = Vidt,
d‘/t = b(tu Xt7 ‘/tu K)dt + 5-(t7 Xt7 ‘/ta S/;f)thl + 6(t7 Xt7 ‘/tu K)thza (13)
Y, = h(t, Xy, Vi, Yy )dt + 0(t, Y;)dW,
where W; = (W}, W2) denotes a bi-dimensional Brownian motion defined on a complete probability space
(£2, F, P) with a filtration (F¢)se[0,r] satisfying the usual assumptions. Hereafter, for simplicity we set Z; =
(X¢,V;) and denote by z = (z,v) and ¢ = (£,v) the points in R
Let }?)/T = 0(Ys,t < s < T) define the filtration of observations and let ¢ be a bounded and continuous

function, ¢ € bC'(R?). The filtering problem consists in finding the best }'tY p-measurable least-square estimate
of ¢(Zr), that is the conditional expectation E [¢(Zr) | F}]. Our first result, Theorem B shows that

BAZ) | Fli] = | BT, 00(0dc,

where T is the (normalized) fundamental solution of the forward filtering equation; the latter is a SPDE of

the form
dpus(C) = Ascus(Q)ds + Gs cus(Q)dWy (1.4)
where B = 0, + v0¢ and
As cus(€) = %(52 +6%) (5, ¢, Ys)0mus(C) + “lower order terms”,
Gs,cus(C)=3(s,¢,Ys)dus(C) + “lower order terms”.

The forward filtering SPDE is precisely formulated in (8:4)). The symbol dg in (I4) indicates that the SPDE

is understood in the It6 (or strong) sense, that is

ue (VB 4(0)) = f A (our(B L (O)dr + j Goop (s (BLONAWE, s e[tT],

where s — yB(£,v) denotes the integral curve, starting from (£, v), of the advection vector field vd¢ or, more

explicitly, B (¢,v) = (€ + sy, v).
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Ezample 1 The prototype of (L4 is the Langevin SPDE

0,2
dBus(é, V) = 70111/“45(57 V)ds =+ ﬂavuS(gv I/)dWSI, (1'5)

with o, 8 constant parameters. Clearly, if us = us(£, V) is a smooth function then (LH) can be written in the

usual It6 form )

dus(& 7/) = (%auuus(& V)_Vaﬁus(ga V)) ds + ﬁauus(& V)dWsl

Notice that J¢, being equal to the Lie bracket [0, B], has to be regarded as a third order derivative in the
intrinsic sense of subelliptic operators (cf. [10]): this motivates the use of the “Lie stochastic differential” dg
instead of the standard It6 differential in (2I)). Notice also that (LH) reduces to the forward Kolmogorov
(or Fokker-Planck) equation for (IIl) when 5 = 0.

Analogously, in Section we prove that

E (2™, Yr™") | Flr| = Jf(t,z,y;T,c,n)so(c,mdwn, (t,2,9) € [0,T] x R? x R,
R3
where T' denotes the (normalized) fundamental solution of the backward filtering equation that is a SPDE of
the form
—dBUt(Z, y) = VZtut(Za y)dt + gtut(zu y) * thl' (16)

We refer to (B.14) for the precise formulation of the backward filtering SPDE. The symbol » means that
(CE) is written in terms of the backward Ité integral whose definition is recalled in Section [l for reader’s
convenience. We shall see that the coefficients of the forward filtering SPDE are random, while the coeflicients
of the backward filtering SPDE are deterministic. Moreover, (I.4) is posed in R? (including the time variable)
while (L6) is posed in R*.

The rest of the paper is organized as follows. In Section 2] we resume and extend the Hélder theory for
degenerate SPDEs satisfying the weak Hormander condition, developed in [28] and [27]. In Section B which
is the core of the paper, we state the filtering problem and derive the forward and backward filtering SPDEs.
Section [ contains the proof of the results about the existence and Gaussian estimates for the fundamental
solutions of the filtering SPDEs. In Section [fl we review the definition and some basic result about backward
stochastic integration. For reader’s convenience, in Section [0l we collect the main notations systematically

used throughout the paper.

2 Fundamental solution of Langevin-type SPDEs

We present the Holder theory for degenerate SPDEs that will be used in the derivation of the filtering
equations. Compared to [27], here we state our results in a slightly more general setting where the dimension
of the non degenerate variable v can be possibly greater than one. This is done with the purpose of being
able to handle differential operators constructed from the generator of the full process (X:,V;,Y;) which
will appear in Section Bl both in the derivation of the forward and the backward filtering SPDE, and it

is not related to the number n of Brownian motions considered in the model ([3]). On the other hand
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the dimension lift does not bring any additional difficulty in the analysis since it is performed in the non
degenerate directions.
We first introduce some general notation and the functional spaces used throughout the paper.
We denote by z = (z,v1,...,vq) and ¢ = (£,v1,...,v4) the points in R x RY. Moreover, for any k € N,
O<a<land0<t<T,
i) mB 1 (resp. bBy 1) is the space of all real-valued (resp. bounded) Borel measurable functions f = f4(2)
on [t,T] x RI+1;
ii) CYp (resp. bCPp) is the space of functions f € mB; r (vesp. f € bB; r) that are continuous in z and
Cf'r (vesp. bCP'7) is the space of functions f € mBy 1 (vesp. f € bB; 7) that are a-Holder continuous in

z uniformly with respect to s, that is

|fs(z) — fs(<)|

su _— < 0.
ss[t,lg“] |Z — <|°‘
z#C¢

We also denote by Cg r} the space of functions f € mB; r that are Lipschitz continuous in z uniformly
with respect to s € [t,T;
iit) CFE® (vesp. bOFE®) is the space of functions f € mB; p that are k-times differentiable with respect to z

with derivatives in Cf'y (resp. bC{'r).

We use boldface to denote the stochastic version of the previous functional spaces. Let (Wt)te[o,T] be a one-
dimensional Brownian motion on a complete probability space ({2, F, P), endowed with a filtration (]:t)te[O,T]

satisfying the usual conditions, and let P; 7 be the predictable o-algebra on [¢,T] x (2.
Definition 1 We denote by Cf}o‘ the family of functions f = fs(z,w) on [t, T] x R¥T! x 2 such that:

i) (s,2) = fo(z,w) € C’f}o‘ for any w € (2;
ii) (s,w) > fs(z,w) is Py r-measurable for any z € R4+
Similarly, we define bC} 4.

We consider a class of degenerate SPDEs of the form

dBus(C) = As,CUS(OdS + gs,CUS(OdWs (2.1)

where B = 05 + v10¢ and

‘AS;CU‘S(C) = %aij (C)awuj us(C) + b;(C)a%us(C) + CS(C)’U,S(C),
gs,Cus(C) = U;(Q-)amus(C) + hs (C)us (C)

Definition 2 A solution to (I) on [t,T] is a process u = u,(&,v) € C) that is twice continuously

differentiable in the variables v and solves the equation

us (724 (€)) = ui(¢) + L Ar s our (e (Q))dr + Jt Grnp (yur(roi(Q)dW,,  se[t,T],

where s — vB(&,v) denotes the integral curve, starting from (£, v), of the advection vector field v;0¢, that

is 72 (§,v) = (§ + sv1,v).
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Definition 3 A fundamental solution of the forward SPDE (Z1J) is a stochastic process T' = T'(¢, z; s, (),
defined for 0 <t < s < T and z,¢ € R such that for any (¢,z) € [0,T) x R¥*! and to € (t,T) we have:

i) T'(¢, z;+, ) is a solution to (Z1]) on [to, T];

ii) for any ¢ € bC(R9*1) and zy € R4*!, we have

lim f T(t,z;8,()p(2)dz = p(z0), P-a.s.
R2

(s,8)—(t,2z0)
s>t

In [27], under suitable assumptions on the coefficients, we proved existence and Gaussian-type estimates of
a fundamental solution for (2.I) when b, = ¢ = hy = 0 and d = 1. Here we slightly extend those results to
an SPDE of the general form (Z1]) and to the backward version of it, that is

—dpui(z) = A ur(2)dt + Gp Lui(2) x AW, B =0, +v10,. (2.2)

— k+o — k+o
We denote by Ct} (and th; ) the stochastic Holder spaces formally defined as in Definition [l with
P in condition ii) replaced by the backward predictable o-algebra 75t,T defined in terms of the backward
Brownian filtration (cf. Section [A). Again, ([2.2)) is understood in the strong sense:

<0
Definition 4 A solution to (Z2) on [0,s] is a process u = wus(x,v) € C;, that is twice continuously

differentiable in the variables v and such that

w (026) =0+ [ Acs w6+ [ Gop iR @)W, e (0]
Definition 5 A fundamental solution for the backward SPDE (2.2)) is a stochastic process I = f‘(t, 2;8,()
defined for 0 <t < s < T and z,( € R+, such that for any (s, () € (0,7] x R¥*! and to € (0, s) we have:
i) T'(-,;5,¢) is a solution to @) on [0, t];

ii) for any ¢ € bC(R41) and zy € R4*L, we have

lim J T(t,2;5,0)@(C)d¢ = o(20), P-as.
R2

(t.2)=(s.20)
t<s
Next we pose the standing assumptions on the coefficients of (21 and ([22)).
Assumption 1 (Regularity) For some a € (0,1), we have:
i) aebC;{p, 0 € bCY, b,ce bCy 1, he bC{ 1 in the forward SPDE 21);
.. Pl = é+a Fb «—12 .
ii) aebCyr,0€bCyr,bcebCqyr, hebCqyr in the backward SPDE [2.2).
Assumption 2 (Coercivity) There exists a random, finite and positive constant m such that

{a¢(2) — o4 (2)0F (2))¢, ¢ = m|C|?, te[0,T], 2, e R P-g.s.

In our analysis we make use of the Ito-Wentzell transform. Let (x,v) € R4*1. For a fixed t € [0, T) we consider

the SDE in R¢

S

(s 0) = v — j or (A (@, )Wy, se [T, (2.3)

t
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and, for a fixed s € (0,7, the SDE

S

T (,0) = v+ j or (2, 7 (2, 0)) » AWy, te[0,s]. (2.4)

t

Assumption [l ensures that (Z3) and (Z4) have strong solutions and the maps (z,v) — (z,7{%(z,v)) and
(z,v) = (2,5, %(z,v)) define forward and backward flows of diffeomorphisms of R**! respectively. These
changes of coordinates allow to transform the SPDEs (21) and (Z4) into PDEs with random coefficients

whose properties depend on the gradient of the stochastic flow: to have a control on it, we impose the some

additional condition. For any suitably regular function f = f(w) : RN — R, & > 0 and multi-index 3 € N},
we set
(Fe,p = S%PNU + [w]?)°|0 f (w)]. (2.5)
WE.

Assumption 3 There exist ¢ > 0 and two random variables My € LP({2), with p > max {2, %}, and My €
L*(02) such that with probability one

sup  ((Ou)e,s + (Oe)1/21e,p) < M, 1Bl =1, |8'| =2,3,
te[0,T7]
sup (hip12,5 < Mo, 18] = 1.
te[0,T]

Assumption [ requires that o4(z) and h:(z) flatten as z — oco. In particular, this condition is clearly
satisfied if o and h depend only on ¢ or, more generally, if the spatial gradients of ¢ and h have compact
support.

In order to state the main result of this section, Theorem [ below, we need to introduce some additional
notation: we consider the Gaussian kernel

I(t )———1 e 7—1 —2+—|v|2 t>0, ( )eRXRd A>0 (2.6)
X, U X X, U . .
AL Ly td42r3 p 2)\ t3 t 9 ) ) )

To fix ideas, for d = 1 and up to some renormalization, I') is the fundamental solution of the degenerate
Langevin equation (I2)). For a recent survey on the theory of this kind of ultra-parabolic operators and the
related sub-elliptic structure, we refer to [IJ.

In the following statement, we denote by ¢g'V'~1 (and ”g'IW’_l) the inverse of the Ito6-Wentzell stochastic
flow (z,v) — ¢V (,v) := (z,7}¥ (2, v)) defined by @3) (and (z,v) — 5" (z,v) := (2,5} %(z,v)) defined by

@), respectively). Moreover, we consider the vector field

Yio(2) 1= ((1D1(2), RVt T ()20 (), (2.7)
with V,y™ = (00,7 V)i,j=1,..a and 0z y™ = (07" )i=1,...a, and define ?t,s analogously, namely

Yio(2) = ((FE01E) — (D (Vo) T a7 ().

Eventually, equation

2 = z+j Yo, (\)dr, selt T,
t
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defines the integral curve of Y, s starting from (¢, z), and equation
C+IYTS*S<)d, te[0,s],

defines the integral curve of {QS ending at (s,(). The main result of this section is the following theorem
whose proof is postponed to Section [4} for reader’s convenience, in Section [G] we collect the main notations

used hereafter.

Theorem 4 Under Assumptions[dti), [2 and[3, the forward SPDE 1)) has a fundamental solution T and

there exist two positive random variables N\, p such that

P ( —tgi(C) — Vi’z) <ST(t,25,() < pl ( —t g () — 7?") , (2.8)
00Tt 5,6, 0)| < <= (5= 6,00 7 (E0) = 9) | (2.9)
— |

‘auil/j]'-‘(t7z; 87571/)’ < —tFX (S - tagilivzyil(gu V) - 7§7z) ’ (210)
S — )

‘QT.:
~

for every 0 <t <s<T, z(=(&v)e R and i, j = 1,---d, with probability one.
Similarly, under Assumptions [1+ii), [ and [3, the backward SPDE [22) has a fundamental solution r

satisfying estimates
e (s ta?;*m a:@‘)<f<t,z;s,<><m(s—m;?;v*(z)—af@), (2.11)
D (s =g @) = 709), (2.12)

a’UiUJ t T,v;s C ‘ —FX ( —t givg 1(5[,',’[)) _,?i;C)7 (213)

]

for every 0 <t <s<T,z=(z,v),( e R andi,j =1,...d, with probability one.

Remark 1 We would like to emphasize that Theorem Ml is new even in the deterministic case, i.e. when
o =0, h = 0 and the coefficients are deterministic functions. In fact, a study of Kolmogorov PDEs with
coefficients measurable in time was only recently proposed in [3]: however in [3] the coefficients are assumed
to be independent of the spatial variables that is a very particular case where the fundamental solution is

known explicitly.

In the derivation of the forward filtering SPDE, we will use a deterministic backward Kolmogorov PDE to

which Theorem M applies. Precisely, we will use the following
Corollary 1 Let Assumption[2 with o = 0 be satisfied and let a € bCS'r, b, c € bC’g)T, for some « € (0,1),
and ¢ € bC(RI1Y). Then there exists a bounded solution of the backward Cauchy problem

—dpf(t,z) = A f(t, z)dt

f(Ta ) =@,

(2.14)

in the sense of Definition[{], that is

T
FAR) =00+ | A 0 (B s (2 EDTIXRIL 1)
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where vB(x,v) = (x + sv1,v). Moreover, if ¢ € bC*(R*1) for some a € (0,1) then there exists a positive

constant C' such that,

sup  |08F(tz,0) < C(T — 1)~ 7%, 1<|8 <2 (2.16)
(z,v)eERxR?

3 The filtering problem

Consider system (3] and suppose that h = § = ¢ = 0, that is no observation is available on the solution
Zb# starting from z at time ¢. Then, it is well known that, under suitable regularity and non-degeneracy

assumptions on &, we have

E [p(2:7)] =J I(t, % T, O (Q)dC (3.1)

R2
where I' = I'(t, z; T, ) is the fundamental solution of the backward Kolmogorov operator

~2
K = %aw + b0y + V0 + 0, (3.2)

with respect to the variables (¢,z,v) and of its adjoint, the Fokker-Plank operator K*, w.r.t the forward
variables (T, &, v).

In this section we study the filtering problem for system (3] and, assuming that Y is not trivial, we
prove a representation formula for E [¢(Z7) | }"{T] that is analogous to (B)) in the sense that it is written
in terms of the fundamental solution of a backward and a forward SPDE, whose existence is guaranteed by
Theorem [l Actually, in filtering theory, the derivation itself of the filtering SPDE is a non-trivial task.

As already mentioned, in our analysis we will adopt a direct approach. However, we should acknowledge
that there are at least two quite different direct approaches proposed in the literature: both of them are
meant to avoid the purely probabilistic techniques of the general filtering theory.

The direct approach by Krylov and Zatezalo [I9] mimics the derivation of the standard Kolmogorov
operator ([B2)): roughly speaking, assuming that the filtering SPDE is known in advance, one takes a solution
u¢ (whose existence is guaranteed by Theorem M), applies the It6 formula to u¢(Z;) and finally takes expec-
tations. This is the approach we follow in Section 3] to prove the existence of the forward filtering density
and the representation of the conditional expectation E [¢(Zr) | F{p| in terms of it.

On the other hand, the direct approach by Veretennikov [32], [33], allows to derive the backward filtering
SPDE “by hand”, without knowing the equation in advance: the main tools are the backward It6 calculus
and the remarkable backward diffusion SPDE of Theorem We follow this approach in Section to
derive the backward filtering SPDE and the corresponding filtering density. Note however that in Section
B2 we only provide an informal, yet quite detailed, derivation: a full proof is outside the scope of the present
paper and would require a generalization of the results of Section[B]to degenerate diffusions. This is certainly
possible but would require some additional effort and is postponed to future research.

We notice that system (L3]) can be written more conveniently as

dZ; = BZydt + es (b(t, Zp, Yy)dt + 5 (t, Zy, Ys) AW} + 6(t, Zy, Yy)dWE)
dY, = h(t, Z,,Y,)dt + 0(t,Y,)dW},
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) ()

Hereafter we assume the following non-degeneracy condition:

with

Assumption 5 (Coercivity) There exists a positive constant m such that

0(t,y) = m, G(t,z,y) =m, te[0,T], zeR? yeR.

3.1 Forward filtering SPDE

We consider the solution (Z2*,Y;).e, 7 of system ([B3) with initial condition ZI* = 2z € R%; we do not

impose any initial condition on the Y-component. We set o = (7, 5) and introduce the stochastic processes

7 h S, Ca YS
US(C) = 0(57<5}/S)7 95 = 0(57}/5)5 bS(C) = bS(Ca}/S)v hS(C) = ﬁa
The forward filtering SPDE for system (B3] reads as follows
dpvs(&,v) = AXvs(&,v)ds + GFug(€, I/)% B = 05 + vk, (3.4)

05’
where A* and G* are the adjoints of the differential operators (with random coefficients)

2 ~
Ag = |O’S(€27 ) Qv + bs(§,v) 0y, Gs == 05(& V)00 + hs(&,v),
respectively.
In order to apply to (B4 the general results of Section 1, in particular Theorem Ml and Corollary [, we

assume the following conditions. We recall notation (23]).
Assumption 6 (Regularity) The coefficients of B3) are such that & € bCyH*(R?), 6 € bCH¥(R3), 0 €
bCGp(R), be bC) (R?), h e bCF 1 (R?).

Assumption 7 (Flattening at infinity) There exist two positive constants €, M such that

rS[lL}IEI)‘] (<5-(t7 ) y)>8,,3 + <5-(t7 ) y)>1/2+5,ﬁ’ + <h(t7 ) y)>1/2,5) < M
yEiR

for |8l =1 and |B'| = 2,3.
Remark 2 With regard to the existence of solutions to ([34), let us introduce the process

W, = J o-tdy, = wlr—-w} +J he(Z8%)dr,  se[t,T).
t t

By Girsanov’s theorem, (Ws)se[tﬂ is a Brownian motion w.r.t the measure ) defined by dQ = (gfr’z)_ldP

where

dob® = hy(Z5%)2 0% dt + he(Z57) b dW], o =1. (3.5)
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Moreover, (Ws)se[tﬂ"] is adapted to (]—'tY s)seft,7]- Then, equation B4) can be written in the equivalent form
dBvs(C) = A¥vy(C)ds + GFu,(C)dW, (3.6)

under Q. Under Assumptions B [ and [[, by Theorem Ml a fundamental solution I' = T'(t, z; s, () for (B.6)
exists, satisfies estimates (Z8), 29), (ZI0) and s — I'(¢, z;5,¢) is adapted to (f{s)se[t,T]- We say that the

stochastic process
I~ I‘(tu z58, C)

I'(t,z;s,() = )
( C) SR2 I‘(taZQSaCl)dCl
is the forward filtering density for system (B.3]). This definition is motivated by the following

0<t<s<T, z(eR?

Theorem 8 Let (Z1%,Y;) e, 1) denote the solution of system [B3) with initial condition ZV% = 2. Under
Assumptions (3, [8 and[7, for any » € bC(R?) we have

BIAZ) | Flir] = | BesT.00(@d, (62 [0.7] < B2 (3.7

Proof By Remark 2] {, L(t, 2T, )p(¢)d¢ € mF{T. We prove that, for any bounded and F{T—measurable
random variable G, we have

Blap(z)] - B| 6l [ TesT0p0) (35)

with ¢%* as in (3.35). From [B.8) with ¢ =1 it will follow that

ples) 1720 = ([ resT.o0)

and therefore also (1) will follow from (B38]).
By a standard approximation argument, it is enough to take ¢ in the class of test functions and G of the
form G = e~V 95 where ¢, = ¢(s,Ys) with ¢ = ¢(s,y) being a smooth, bounded and non-negative function

on [t,T] x R. Thus, we are left with the proof of the following identity:

E|e 3 edop(z) | = B [5 05 (p7) ™ fRZ L(t, 21T, <><p(<>d<] : (3.9)

To this end, we consider the deterministic backward Cauchy problem

T~

£ (5,6 9PC0) = Q)+ [ (A= clra)f (re®PCu) dn (.G e [ T) X B x R, (3.10)

S

where
~ 1
AT = 5 (|U(Ta <7 y)|281/l’ + 29(7-5 y)&(Tv Ca y)auy + 92 (Ta y)ayy) + b(T5 Cv y)av + h(Ta <7 y)ay

In differential form, (BI0) reads as

—dpf(s,C.y) = (Af(5,Cy) = (s, (5.G,9) ) ds,
F(T,¢ ) = @(Q)-

Corollary [Il ensures existence and estimates of a strong solution f to (BI0]).
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Next, we consider the process

MmN [ (s OF (s, G Y, e [T,
R2
where Mtt " is defined by continuity. By definition, we have
z — Tc S s 2\ —
My = e o) | T T 00

On the other hand, by the Feynman-Kac theorem we have
4 —(T C S z
M* = [(t,2,Y0) = B8 e tp(28) | v

Hence to prove B.3) it suffices to check that M = (M!*).cp, ] is a martingale: to this end, we prove the

S

representation

T
MY = MP* + J GL2dW,
t

6o =S () [ P0G 08) F5. GV sel8T) @)
and conclude by showing that
E JT|G§’Z|2d51 <. (3.12)
t
We first compute the stochastic differential dg f (s, (,Ys): by Corollary [l we have
(6, Y2) = (<A 50205+ 00 ) F(6.Yodds 40, (5. :)aYe

_ (ﬁs + %(gayy + hy(Z)0, + cs> F(5,C,Y2)ds + 850, F(s,C, Vo) AW
On the other hand, we have
dT(t,z;5,() = A¥T(t, 2;5,()ds + GET(t, 2; s, c)%
— (A2 + Ra(Z)GF) Tt 225, Q)ds + GET(t, 235, ()W L.
Then, by It6 formula we have
dg (f(s, ¢, YoT(t,235,) = Li(t, 235, Q)ds + Iz (t, 255, () AW,
where
1(t,255,0) = f(s,C. Ya) (A% + ha(Z0)G2) Tt 55.€)
éefayy +h(Z5)0y + cs) F(5,GY0) + 05GIT(t, 255,00y f (5, ¢, Vo),
Ly(t, z35,0) = f(5,¢, Ys)GIT(t, 255,C) + 0L (t, 255,0) 0y £ (5, (, Y5).

+ I‘(tu Z5 8, C) (_V’A\ls +

This means that for any s € (¢,7] we have

FT (), Yr)T(, 25 Ty v (Q)) = f(5,¢, Yo)T(t, 25 5,€)
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T

T
n f Lt 27 AP L (Q))dr + f Do(t, 257 AB(O)dIV

S S

Next, we integrate over R? the previous identity and apply the standard and stochastic Fubini’s theorems

(see, for instance, [30], Chapter 1) to get

| TR QYIRS TR ) = [ 5, C YR 255,00
T
w ] o @nacer

T
[ psnaR oacart. @)

By the upper bounds ([2.8)-@I0) of the fundamental solution, the estimates of the solution f and its
derivatives in Corollary [l the boundedness of the coefficients and the non-degeneracy Assumption B we
have

(T — s)%

s—1t

3

T
c W, — t,z /
[ [ 1t cpacer < | FATGTE o O Em O G < 0

s (T—T)%

and, analogously

T 2 T C 2 O/
f <f Lot 27, <>|d<> dr < f < : f Lnr — t, 27, g™ 1() — W)dc) o<
s \JRr2 s \(s—1)2 Jre ’ s—t

for some positive random variables C, C’. This justifies the use of Fubini’s theorems.

Now, from equality (3.I3) we perform the change of variable ¢/ = 42 (), which has Jacobian matrix

Idaxo + (7 — $)B; since its determinant is equal to one for any 7, we get

j f(T,c,YT>r<t7z;T,<>d<=J (5, YD (t, 2 5,O)dC
R2 R2

+LTJR211(t, rgcdwf J Ly(t, z;7,¢)dCdW !,

Integrating by parts and using the identity
1
[ (16 VDA 0,555,004 T35, 520,05, Y0) 4 0,651 555. 000, (5,6, )

I(t,2;s,0) (A + 29§auy+9 0L0,, + hs (§,Y5)6y> f(s,¢,Ys)d¢

2

- [m
fR T(t, 25, O Auf (5, ¢, Vo),

2

we get
J f(T, 6 Yr)D(t, 2T, Q)d¢ = J f(5,¢,Ys)T(t, 235, ¢)dC
R2 R2
T(t, 27, g) ﬁT(ZT)gT + e (Z,)0, + cT) F(r,¢, Y, )dCdr

) (Gr +0:0y) f(7,¢, Y7 )dCdW .

g Jm
of [
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Eventually, we multiply the expression above by e~ §¢ erdr(oh2)~1: since

a (e S el h) = e Bt (o) T (—egds — oy(Z,)aW} ),
d<6_ St CTdT(Ql-zz)_lv JRZ f(7 Ca Y)F(tv Z5 C)d<>5 = JRZ I‘(ta Z5 8, C) (ﬁS(ZS)gS + hS(ZS)ay) f(S, Cv Ys)dCd&

by It6 formula, for s € (¢, T] we have
M7 = V) [ G YR 55T )
R2

T
— M +j e %d%m-lj Tt 2 7,0) (G + 6:0,) F(r,C, Y2 )ACAW]
s R2

T
M 4 J GLraw?,

S

with G%# as in ([B.I0). Now, again by the estimates of the fundamental solution (cf. Theorem ), the estimates
of the solution f and its derivatives (cf. Corollary [I]), the boundedness of the coefficients and the non-

degeneracy condition (@), we deduce the estimate
_ —1
G < Ce) ! [ B = g Q) 2t < €
R

for some positive constants C, C’. This implies (B12]) and concludes the proof.

3.2 Backward filtering SPDE

As in the previous section, in order to apply the general results of Section 1 to the filtering SPDE for system

B3), we impose the following conditions:

Assumption 9 (Regularity) The coefficients of B3) are such that & € bCiH*(R?), & € bC§,(R?), 6 €
bCoh*(R), b€ bCH 1(R?), h e bCF 1 (R?).

Assumption 10 (Flattening at infinity) There exist two positive constants e, M such that

tes[g%’] (<6(ta ) ')>€,5 + <5'(t7 K ')>1/2+s,6’ + <9(t7 ')>€,ﬁ + <9(t7 ')>1/2+s,6’ + <h(ta K ')>1/2,ﬁ) <M

for |8l =1 and |B'| = 2,3.

The backward filtering SPDE for system (B.3) reads

dYy

—dpui(z,y) = Az, y)dt + Grug(z, y) * ity

B:=0; +vd,, (314)
where z = (z,v) and

"Zt = (|U(t7 2, y)|2avv + 20(t5 y)a'(tv 2, y)avy + 92 (tv y)ayy) + b(ta 2, y)av + h(tv 2, y)aya (315)

h(t, z,y)
0(ty)

N =

Ge =5 (t,2,y)00 + 0(t, )0y + h(t,z,y),  h(t,zy) =
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Before presenting the main result of this section, we comment on the existence of solutions to (BI4). Let

(ZL2Y, Y)Y, oY1) o1 ) be the solution, starting at time ¢ from (z,y,7), of the system of SDEs

dZ, = BZ,dt + ex(b(t, Z,, Yy)dt + &(t, Zy, Vi)dW}E + 6(t, Zy, V) dAW?2),
dY, = h(t, Z,Yy)dt + 0(t,Y:)dW}, (3.16)
th = %(t, Zt, }/15)2Qtdt + ’Fl(t, Zt, }/t)gtthl.

By Girsanov’s theorem, the process

S

Whsv = J 0~ (1, Y 2Y)dy =Y
t

=w!-w} +f h(r, 2429 YE*¥Ydr,  set, T,

t
is a Brownian motion w.r.t the measure Q“*¥ defined by dQ"*¥ = (g*¥')~1dP. Notice also that (W;vay)SEW]
is adapted to (F),)sefr,r) where FY, = o(Y1*¥, t < 7 < s). Then equation (3I4) can be written in the
equivalent form

—dpus(z,y) = ./Zsus(z, y)ds + g~sus(z, y) * dW; (3.17)

or, more explicitly,
T - T - -
e (B (2,9)) = ur(z,y) + f Aua( /B, (2, y))ds + f Gous(B L (zy) »dW,  te[0.T], (3.18)
t t

where 7B(z,y) = vB(z,v,y) = (z + sv,v,y). In BI7) and @IR), we simply write W! instead of WY
because the starting point of the Brownian motion is irrelevant in the stochastic integration. Theorem [l
guarantees that a fundamental solution T' = (¢, z,y; 5, ¢, ) for BI7) exists and satisfies estimates (1)),
2I2) and 2I3). Moreover, t — f‘(t, z,y; T, (,n) is adapted to (-ngT)te[O,T]- The main result of this section

is the following

Theorem 11 Let (Z3*Y,Y*Y) denote the solution of system B3) starting from (z,y) at time t € [0,T)
and ¢ € bC(R3). Under Assumptions[d, [ and 10, we have

t,z t,z Y UEW) (2,) 2
E [@(Z’Il 1yaYT1 1.7!) | ]:t T] = 7,5 (t,Z,y) € [OaT] x R* x Ra (319)
’ (1)
Uy (Zay)
where ug“") denotes the solution to BI4l) with final datum u(T“a) = .

Definition 6 (Backward filtering density) The normalized process

T f‘(tvzvyaTvCan)

r t,Z, 7T7 ) = = ,
( ! C 77) S I‘(tvzvy;Tv Cl;nl)d<1d771
R3

for 0 <t < T and (z,y),(¢,n) € R? xR, is called the backward filtering density of system (3.3)). By Theorem
01l we have

E[p(Zg*, Y= | Flp] = Jf(t,z,y;T,C,n)w(C,n)dCdm (t,z,9) € [0,T] x R* x R, (3.20)
R3

for any ¢ € bC(R3?).
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Remark 3 Notice that formulas (319) and (B:20) represent the conditional expectation in terms of solutions
to the Cauchy problem for the backward filtering SPDE. This is not the case for formula ([87) in the forward

case.

In the rest of the section we sketch the proof of Theorem [[Il First, notice that under Q“*¥ we have

S ~ —~ 1 S ~
Q?Zﬁym = T exp (J h(Tv Z;f-,z,y, Y:,z,y)dwi - 5 J h(Ta Zf_,Z,y7 Y‘if’Z’y)QdT) ) S € [tv T]a
t t

and system (310 reads
dZbY = B(s, 2059, YY) ds + e ( (5, ZL>, Y20 dW? + &(s ,Z;vay,Y}Zwy)dW;) :
AY Y = (s, Y229 dW?, (3.21)
g = s, Z050 Y o0) e T

where E(s, z,y) = Bz+ea(b(s, z,y)—ﬁ(s, 2,9)5(s, z,y)). Recalling the notation z = (z,v) € R? and omitting

the arguments of the coefficients for brevity, the correspondent characteristic operator is
1 ~ ~ ~ ~
£ = 5 (I + 020y, + 12Ky + 2300, + 20500, + 2000, ) + (B, V).

We write the backward diffusion SPDE for system (B3.2I]). Assuming that ¢ is smooth and letting V(z,y) :=
o(Z7Y, Y, 25Y), by Corollary 2 we have

—d(Vs(z,y)o7™Y") = L(Vs(2,9) 0777 ") ds + 0u(Vs(2,y)07™Y") (&(s,z,y) * dW?2 + (s, 2,y) * dW;)
+ 0y (Va(2, 9057 ™0(s, 2,y) * AW, + 0, (Va(z, 1) 03" "nh(s, z,y) » dW!

(noting that 0, Zy%Y = 0,Y,*Y = 8,,027%" = 0 and 10, 057Y" = op>¥")

= 5 (70t 2,) Pl + 6262 9)0u + 20062 9)6(t,3)00) (Vi (2, )05 ")
+ (s, 2, 9) (@(t 2,900 + 0(6,1)0,) + (B(t,2,), V-)) (Va(z, y) o™ ")ds
+6(5,2,9)00 (Va(2,9)077"") * AW?
+ (6(8, 2,9)00 + 0(s, 2,y)0y + h(s, z,y)) (Vs(z,9)037%™) dW'?
(noting that (s, z,v)(5(t, z,y)0s + 0(t, y)0 ) + (B(t,z,y), V) = vy + b(t, 2,y)0y + h(t, z,y)0y)
= L(Va(2,9)05™"")ds + 6(s, 2,y)u(Va(2,y) 7"") + dW?
+ ( (s,2,y)0s + 0(s,y)0y +h(s, 2 y)> (Vs(z,y) o0 M dWE.
where £ = .Zt + v0;, with th as in (3I5), is the infinitesimal generator of (Z;,Y;). Therefore we have
P25 Y )05 = ol y) = Vilzy) o™ = Vi (z,y)op ™!

(
T
f L(Vi(z,y) 0570 )ds—i—J 6(8,2,9)00 (Vs (2,y)03>Y™) » dW2

t

f Go(Ve(2,9)07%") x dWL. (3.22)
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Now we take the conditional expectation in ([3.22)) and exploit the fact that W? is independent of ]-?7/ - under

Q"*Y (this follows from the crucial assumption that 6 is a function of ¢,y only): setting
t,z,
P (zy) = BV Vi, y)o™t | B |

and applying the standard and stochastic Fubini’s theorems, we directly get the filtering equation

t,z,y
ay;

T T
Zsug“") z,y)ds + J g~sug“") 2,Y) x ———
(2,9) t (2,9) 705.9)

@W@w=wwm+f

t

which is equivalent to ([BI4]). Analogously,
1 iz 12y, 1
D (zy) = BT gt | F |

solves the same SPDE with terminal condition u(Tl )(z, y) = 1. To conclude, it suffices recall the Bayes rep-

resentation for conditional expectations or the Kallianpur-Striebel’s formula (cf. [30], Lemma 6.1) according

to which we have
EQ (257 YY) o | Fi

E zhay ytay Y 1 _
[(P( T 4T ) | ]:t,T] Qb [Q%z,y,l | ]_—tYT]

4 Proof of Theorem [4]

As in [27] the main ingredient in the proof of Theorem Ml is the Itd-Wentzell formula that transforms the
original SPDE into a PDE with random coefficients. In this section we explain how to tweak the change of
variables introduced in [27] to deal with the additional term h and we also consider the backward equation.

We set d = 1 for simplicity.

4.1 It6-Wentzell change of variables

We first recall some global estimates, proved in [27], Section 4, for vV, 5" in ([2.3)-(2.4) and their derivatives
under Assumptions [T} 2] and

Lemma 1 For any & € [0,a), we have v € C?'}é‘. Moreover there exists € € (O, %) and a random, finite

constant ¢ such that, with probability one,
s (&)l < eyl +&2 402,
e < BN (E w) < e,
0e715 (& )| < (s —1)%,

P (e n)| <~

h \/1+§2+I/2,

for any (§,v) e R?, 0 <t < s <T and |B| = 2. Analogous estimates hold for 5", € Cgf

A\
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We introduce the “hat” operator which transforms any function fs(¢,v), s € [¢t,T], into

ft,s(§, V) = fs(ﬁ,%?g(& V))

Let us(&,v) a solution to (2] on [¢,7]. Then we define

001 00 Qinn(@s 800 = exo (= [ Dot — 5 [ i2(ar).
We have the following

Proposition 1 us is a solution to the SPDE 21) on [t,T] if and only if v, s is a solution on [t,T] to the
PDE with random coefficients

dgvr,s(C) = (af ((Q)Auvts +bF(Q)Apvr,s(C) + ¢f o (Quis(Q)) ds, B =05 + Y, (4.1)

where
Yio =Y (&) = (1016 v)0 — (N (&v)1(0u71%%) (€ v) e (€, 1), (4.2)

is the first order operator identified with the vector field in (Z1) (with d = 1) and the coefficients af ., bf ,
ct. are defined in &) below. Moreover, af. € bC{r, bf ,cf € ngT, Y, €C)p, 0u(Yi )1 € bCy for
any @ € [0,a), and there exist two random, finite and positive constants my, my such that, for s € [¢,T],

¢ € R?, we have
m ' <af () <my,  my' <0, (Yes())h < my, (4.3)
with probability one.

Proof By a standard regularization argument, we may assume u € Cf)T so that equation (Z1)) can be written

in the usual Ito sense, namely
dus(C) = (As,c —110¢)us(C)ds + Gs cus(s)dWs.
By the standard It6-Wentzell formula (see for instance [30], Theorem 1.17), and the chain rule we have
dity,, = («Ts,c\ut,s — WOy, + %&isa/glm - ag’\gsﬁgat,s) ds + hy. ity AW, (4.4)
= (L — Yo0) e st + Dy sty s dW,

where £; 5 1= Gt 50y + l_)t1581, + ¢,s with

bt s = (81/7;‘]:)71 (l;t,s - &t,silt,s - (au’ﬁ?]:)il&t,sau&t,s - dt,sauu’ﬁg) ) (45)
Et,s = éiE,s - (avﬁ)/g;/)ila't,savilt,s-
Notice that the change of variable is well defined by the estimates of Lemma[Il Next we compute the product

Vi = O1,5ls,s: by the Tto formula dg; s = — ot she «dW, and therefore

dvr,s(C) = 01,5(Q)ir,(C) + U5 (C)d0r,s + dlir,.(C)0r,.(C))s (4.6)
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= (@t,S(OEt,S(@;slUt,s)(O - @t,s(O(Yt,s(@;,slvt,s))(o - B?,s(C)Ut,S(C)) ds.

Now we notice that

06,5(O) (Y5 (07 2v6,6))(C) = (Yes00,6)(C) + (Ye,s In 9 2) (Ove, s (C),

and eventually, by a standard application of the Leibniz rule, we get

dv,s(C) = (azs(oavvvt,s(o — (Yt,svt,5)(C) + bzs(C)avUt,S(O + C;;S(C)Ut,s(C)) ds,

where

_ 1 _9a R
Ay s = Qt,s = 5(31/72]:) 2(at,s - 0t2,s)= (4.7)

b = bis + 20,50, In 0y 4

t,s

¢Fo=0Cs+ b0 Ingy ) +as (0, ) + 02, 2) + Yy slng, s —hi,.

The regularity of the coefficients and (4.3]) follow directly from (7)), Assumption 2l and Lemma [Il

Remark 4 When the coefficients are smooth, condition ([43]) ensures the validity of the weak Hormander
condition: indeed the vector fields 4/af.d, and Y ., together with their commutator, span R? at any point.

In this case a smooth fundamental solution to (A1) exists by Hormander’s theorem.

In the backward case the computations are completely analogous since it only suffices to reverse the time

in equations (£4) and (6. Precisely, we introduce the “check” transform

frs(@v) = fi(& 7 (x,0),  te]0,s],

with %;"; as in (24)). For a solution u; = u(z) to (Z2)) on [0, s], we define

vs(2) = Bua(2iies(s),  Buslz) = exp ( [(e@eav. -5 [ hi(z)df),

which solves, on [0, s], the deterministic equation with random coeflicients
—digues(z) = (a;’js(z)amvt,s + By 4 (2)Bsvs(2) + E;*js(z)vt,s(z)) dt, B=0o+Y,., (4.8)

where S?t,s and the coefficients are defined similarly to (£2) and (@H), exchanging the hat- and check-
transforms in the definitions. As for the forward case, by Assumption 2land Lemma [T} af. € bézT, by ., cf. €
S0 0,1 - & . . s
bC, 1, Yi. € C, 7, 0u(Ye)1 € bCva for any @ € [0, ), and there exist two random, finite and positive
constant my, my such that, for ¢ € [0, s] and z € R?, we have
mi' <ap,(z) <mi, myt < 0(Yes(2))1 < my,

with probability one, which ensures the weak Hormander condition to hold.



Backward and forward filtering under the weak Hérmander condition 19

4.2 The parametrix expansion

Equations of the form (£I) have been studied in [27] by means of a time-dependent parametrix expansion
which takes into account the unbounded drift Y. The only minor difference here is the presence of a term of
order zero ¢* which, as we shall see, does not modify the analysis substantially.

In this section we briefly resume the parametrix construction and show how it works in the backward

framework. For the sake of readability, here we reset the notations and rewrite equation (1) as
Asvs(€) = Ysus(¢) = 0svs(¢) =0, se(t,T], (e R, (4.9)
where A; is a second order operator of the form
As = a0, + 050y + ¢

and Yy = (Ys)10¢ + (Ys)20, is the vector field in (2). For fixed (t,z0) € [¢,T) x R?, we linearize Y by
setting
Y2 (0) = Yo(ri™) + (DY) (%) (¢ = 7i0™) (4.10)

where

S
71550720 =20+ Y., (fyto’zo)dT, S € [t07 T]7

-
to

and DY is the reduced Jacobian defined as

Then we consider the linearized version of (£9), that is
AL 005 (€) = Y0005 (C) — 0505(C) = 0, se(t,T], Ce R?,

where

Alo#0 = g (yL0:%0)g,,,. (4.11)

It turns out (cf. [27], Section 5) that, for any choice of the parameters (to, z9), equation (£I1]) has a funda-
mental solution T't0:20 = T't0:20(¢ 25 ). Moreover, I'*+#*0 has an explicit Gaussian expression and satisfies
the following estimates for some A, i > 0 that depend only on the general constants of Assumptions [ 2]and

B):
F)x*1 (S - t7< - ’Yf,os)zo(z)) < urt07zo(tuz; SuC) < F)\ (S - tuc - Wf?;zo(z)) )
|6U1—\t0,z0(t, zZ;3 8757 I/)| < K F)\ (S - t7 (67 V) - ’7:,05)20 (Z)) ) (412)

s—1
|ayyrt0720(t, 2; 8757 I/)| < %F)\ (S —t, (57 1/) — ,7:705720(2)) R

:

for 0 <t <s<T and z,¢eR? with I') as in (2.6) and s — vff)s’zo(z) defined by

P00 () = 2 4 f Yo (o ())dr,  se [t T].
t
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We introduce the so-called forward parametriz

Z(t,z;8,0) :=T"(t,2;5,¢), 0<t<s<T, z,(eR?

that will be used as a first approximation of a fundamental solution T' of ([@9). Owing to the fact that

V. i(2) = AL*, Z satisfies estimates (12).

Now we set
H(ta 238, C) = (-As -Ys— (-A?Z - Yé’z)) Z(tu Z58, C)
and notice that

[H(t, ;8,0 < las(¢) — as(ve*)|0w Z(t, 255, )
+[(Ya = YI)Z(t 25,0 + bs(ON10, Z (2, 255, O] + les(ON Z (2, 235, )
(since 0,(Y5)1 is a-Holder continuous by Proposition [I)

PN Sl A e
= s—t (s —1)3/2

¢ — e
(s — 1)1

+ +1>B@u<ﬁﬂ

(for some A > X and i > p)
I

< ———+
(s — )10/

Ii(s —t,¢ —757).
Next, we set
I® H(t, z;s,C) = JS » H(t, z; 7, w)L (1, w; s, )dwdr.
t
A recursive application of the Duhamel principle shows that
L(t,2;5,() =Z(t,z2;5,() + T ®H(t,2;5,()
N-1

=Z(t z;s,() + Z Z@H®(t,2;5,¢) + T® HON (t, 2 5,(), N >1.
k=1

(4.13)

As N tends to infinity we formally obtain a representation of I' as a series of convolution kernels. Unfor-

tunately, as already noticed in [7] and [27], the presence of the transport term makes it hard to control

the iterated kernels uniformly in NV, as opposed to the classical parametrix method for uniformly parabolic
PDEs. Thus the remainder I' ® H®N must be handled with a different technique, borrowed from stochastic

control theory: the rest of the proof proceeds exactly in the same way as in [27] to which we refer for a

detailed explanation.

Next, we consider the backward equation
Ay (2) + Yyue(2) + due(z) = 0, te[0,s), z = (z,v) e R?,
where ;\t is a second order operator of the form

Ay = Gy0yp + bi0y + G, z = (z,v) € R?,

(4.14)
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and Y, = (Y,)10, + (Y4)20,. For a fixed (s, (o) € (0, s] x R2, we define the linearized version of [@14)), that
is

—50,C0 50,C0

A u(2) + Y, wg(2) + dau(z) = 0, te[0,s), zeR?, (4.15)

where the definition of ¥, “ i analogous to that of Y%-*0 in ({I0) and

A G0 =Gt [V e sl
Equation (£IH]) has an explicit fundamental solution r s0:60 =T s0:60 (t, z; 8, ¢) of Gaussian type, that satisfies

estimates analogous to ([{12). The backward parametriz for (£14) is defined as
Z(tzsg“) C(tzsg“) 0<t<s<T, z(eR?%

As in the forward case, Duhamel principle yields the expansion

N-—1
L(t,2;5,C) = Z(t,2;5,C) + Z tzsC)—i—I‘@H (t,z;s,C), N=>1, (4.16)

where H(t,z;s,() = (At +Y, - Ato o Y o CO) Z(t,z;s,¢) and the rest of the proof proceeds as in the
forward case. In particular, existence and estimates for the fundamental solutions of (£1]) and (@8] (in the
sense of Definitions Bl and [H) follow from the parametrix expansions [@I3)) and (&I6). Eventually, it suffices

to go back to the original variables to conclude the proof: we refer to [27], Section 6, for full details.

4.3 Proof of Corollary [

By Theorem @ there exists a fundamental solution I of equation m in the sense of Definition[Bl Moreover,
since o = 0, T satisfies estimates (211, (Z12) and ZI3) with giv ' =1Id and 57°¢ = 4B ,(¢) as in Definition
Then, the function

)= | PesT.OpQd  @)e 0 T) xR,
Rd+1
solves problem ([2.14). Since ¢ € bC'(R¥*!), we have

swp 1) < Il swp | Pe T <€
R 1

zeRd+1 zeRd+1

for a positive constant C. Estimate ([2.I6]) is proven in [9], Proposition 3.3.

5 Backward Ito calculus

In this section we collect some basic result about backward Ité integrals and the backward diffusion SPDE
(or Krylov equation according to [30]). This is standard material which resumes the original results in [15],
[17), [18], [20], [31] (see also the monographs [30] and [22]).
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Let W = (Wy)sejo,r] be a d-dimensional Brownian motion on (£2,F, P, FV) where 7" denotes the

standard Brownian filtration satisfying the usual assumptions. We consider
Ft=0(GuN), Gi=0Ws—Wy,t<s<T), tel0,T],

the augmented o-algebra of Brownian increments between ¢ and T'. Notice that (]—";V .'t)ogth is a decreasing

family of o-algebras. Then the process
Wyi=Wr—Wr_y,  tel0,T],
is a Brownian motion on (2, F, P, ]i') where
Fo=F0 tefo, 1],

is the “backward” Brownian filtration. The backward stochastic It0 integral is defined as

s T—t -

J Up * AW, 1= up_pdW ., 0<t<s<T, (5.1)

t T—s
under the assumptions on u for which the RHS of (5.1]) is defined in the usual It6 sense, that is
i) t — up_, is F-progressively measurable (thus u; mF," for any t € [0,T]);
ii) ue L?([0,T]) as.
For practical purposes, if u is continuous, the backward integral is the limit

n

f wpx dW, = lim YT ug, (Wi, — Wi, ) (5.2)
t

|7[—0% /=

in probability, where 7 = {t =ty <1 < --- < t, = s} denotes a partition of [¢, s].

A backward Itd process is a process of the form

T T
Xt:XT+J bsds—i—f oy xdW,,  tel0,T],
t t

also written in differential form as

*dXt = btdt + o x th (53)

Theorem 12 (Backward Itd formula) Let v = v(t,z) € C2(Rso x R?) and let X be the process in (5.3).
Then

—d’U(t,Xt) = ((at’l))(t,Xt) + %(O'tdzk)ij (amﬂjv)(t,Xt) + (bt)i(amiv)(t, Xt)) dt + (Ut)ij (6%0) (t,Xt) * thJ
(5.4)

A crucial tool in our analysis is the following
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Theorem 13 (Backward diffusion SPDE) Assume b,0 € bC?(Rxo x RY) and denote by s — X% the
solution of the SDE
dX5" =b(s, XE%)ds + o (s, X0T)dW, (5.5)

with initial condition Xf’w = x. Then the process (t,z) — X%w solves the backward SPDE

—dX5T = LXEdt + 045 (t,x) 00, X507 % dW

T,z
X" =x,

where

1
L= Q(U(t’x)a* (t,2))ij 0z, + bi(t, )0z,

is the characteristic operator of X. More explicitly, in (.0) we have

LX7" = S(0(t,2)0™ (8, 2))ij0uya, X7 + bilt, 2) 00, X7

N | =

Remark 5 The regularity assumption of Theorem [[3lon the coefficients is by no means optimal: [30], Theorem
5.1, proves that (¢, z) — X%z is a generalized (or classical, under non-degeneracy conditions) solution of (5.6])
if b, 0 € bO(Rsp x RY).

Proof For illustrative purposes we only consider the one-dimensional, autonomous case. A general proof can
be found in [30], Proposition 5.3. Here we follow the “direct” approach proposed in [31]. By standard results
for stochastic flows (cf. [22]), z — X%w is sufficiently regular to support the derivatives in the classical sense.

We use the Taylor expansion for C2-functions:

F0) - 10 =670 + L7080, Ae[0.1] 5.7)

We have

(by the flow property)

n tp_1.®
lp, Xy t
_ k _ k&
=S (o

by with 0) = th,w+(5 and 0 = AkX = th—lyx _r
T th

= AX)?
= (Akxamxgw + 3 ) amX;M“k“kX) (5.8)
k=1
for some A\, = A\g(w) € [0,1]. Now, we have

ty

tk tk
ApX =X — g = J b(X=1")ds + J o (X017 W,
t

k—1 th—1
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Thus, setting
Apt =ty — tp_1, AW = Wtk — Wtk—l? ANkX = b($)Akt + U(l')AkVV,

by standard estimates for solutions of SDEs, we have
tr

AeX — ApX — L (Xt - b)) ds + J (0(X!1%) — o)) WV, = O(Art),

lk—1
tr,t+ A A X tr,T
Oxa X — Opa X7 = O(Agt),
in the square mean sense or, more precisely,

E {mkx — A X 4 (O XM AX 5 X"

2
] < co(1+ |2*)(Axt)?
with ¢ depending only on T and the Lipschitz constants of b, 0. From (B.8)) we get

(ArX)?

Xpt -z =) (ﬁkxaxxt;*z - amxgw) + O(Agt).
k=1

Next we recall (5.2) and notice that 0, X7, 0., X" € mfi,‘fv’t’“. Thus, passing to the limit, we have

n T T

Z AkX(?mX;’“z — J b(t, )0, X7 ds + J 0(2)0, X7" * dW,
t t

n - T

D UARX )20, X3T — | 0% (2)05 X5 ds,

k=1 t

in the square mean sense and this concludes the proof.

We have a useful corollary of Theorem

Corollary 2 (Invariance of the backward diffusion SPDE) For v € bC?(R%) and X as in (5.5), let
V' = o(X5T). Then V" satisfies the same SPDE (5.0), that is

—dVE" = LV At + 04 (t, )0, V™ * dW]
with terminal condition VTT’m = g(x).

Proof To fix ideas, we first consider the one-dimensional case: by the backward SPDE (5.6 and the backward
It6 formula (54), we have

o%(t, )

2
—dv(Xp") = (TMX;I)@X;IV L ote)

2

O (X0") 00 X2 + b(t, x)v’(X%x)an%z> dt
+ o (t, )0 (Xp7)0, X 0" x dW, =

(using the identities 0, V" = v/ (X57)0, X5¥ and 0., V2" = 0" (X5") (0. X57)? + 0" (X57) 00 X27)

2(t
- (%amv;@ +b(t, x)amv;’w) dt + o(t, 2)0, V" « dW,
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and this proves the thesis. In general, we have

00, VE" = (Vo) (X77)0r, X5,
awhlkaTt”w = (aijv)(X;w)(ath;m)i(aka%m)j + (VU)(X;w)(aﬂchka%m)v

and by (5.6) and (5.4)

5 @)X )

,dv(X%z) = (% ((VX;I)O'(t7 x)((VX%I)U(t, I))*)
’ G("(t’ 7)o" (6:2))ig0r0 X™ + b(t,xWX%””) (Vo) (XE*)dt

+ (Vo) (XE)N(VXE o (t, x) » dW; =
(by G.9))

1
= (5(0@, 2)0* (2))ij 0,2 V™ + b2, x)va“) dt + VVp o (t, ) « dW;.

6 Summary of notations

The points in R? are denoted by z = (z,v) and ¢ = (&, v), with z generally standing for the initial point and
¢ for the final point. Analogously the points in R%*! are denoted by z = (z,vy,...,v4) and ¢ = (&, v1, ..., V).
Moreover, as a general rule, when a quantity depends on both an initial state and a final state, the variables
which describe the initial state are always appended first, regardless of whether they act as the pole or not:
in particular this is the case when denoting deterministic or stochastic flows, conditioned or unconditioned

densities, deterministic or stochastic fundamental solutions. In particular, as in Section 2l we denote by:

o t — vB(2) = (z + tv,v) the integral curve, starting from z, of the advection vector field vd,;

e g"V(z,v) := (x,7%(z,v)) is the forward stochastic flow of diffeomorphism defined by the SDE

S

(2, 0) = v — f or (@ () AWy, se [t T,

t

W=l ig its inverse;

and g
o 5"V (z,v) := (2,%}%(z,v)) is the backward stochastic flow of diffeomorphism defined by

Fie(z,v) = v+ J or(z, 7 (@,v)) x AW, t €0, s],
¢

and g (z,v) is its inverse;

e L% is the integral curve, starting at z at time ¢, defined by the ODE

yhE = 2 + f Yt)T(’}/f.’z)dT, s€e[t,T],
t

where Yo,s(2) i= ((10)1(2), ~ (3 ()1 (Vort) 7 ()220 (2) )
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o 57 ¢ is the integral curve, ending at ¢ at time s defined by

¢ =<+f Y. (35%dr,  telo,s],
t

where ¥y,4(2) == ((1)1(2), — (T ()1 (V710 7 (20705 (2) )

Lastly, I\ (¢, z,v) denotes the Gaussian kernel

F(t )— 1 ex ! «%'2 |'U|2 t>0 ( )ERXRd A>0
,0) = —Fzexp|—=— 5+ — T, .
Al 4y td;s 2\ t3 t ) ) ) )
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