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Abstract

We consider a model of associative storage and retrieval of compositional memories

in an extended cortical network. Our model network is comprised of Potts units,

which represent patches of cortex, interacting through long-range connections. The

critical assumption is that a memory, for example of a spatial view, is composed of a

limited number of items, each of which has a pre-established representation: storing

a new memory only involves acquiring the connections, if novel, among the partici-

pating items. The model is shown to have a much lower storage capacity than when

it stores simple unitary representations. It is also shown that an input from the hippo-

campus facilitates associative retrieval. When it is absent, it is advantageous to cue

rare rather than frequent items. The implications of these results for emerging trends

in empirical research are discussed.

K E YWORD S

associative recall, computational constraints, compositional memory, Potts network, spatial
scenes

1 | INTRODUCTION

In one of the first recorded attempts to dissect declarative memory,

Dante Alighieri, in canto XVII of his Purgatorio (≈1315, see

(Alighieri, n.d.)), distinguishes three forms of increasing complexity of

what he calls the imaginative faculty, the ability to recall facts and

events not currently conveyed by sensory inputs. First, in verses 19–

21, he exemplifies the ability to retrieve a single female character,

from Greek mythology, from a cue comprised of a single major

attribute—her metamorphosis from woman into nightingale; this can

be accomplished, in principle, by a simple pattern associator

(Edmund, 1998). Second, in twice as many verses, 25–30, Dante's

imagination recalls an entire scene, the death of Haman from the bibli-

cal Scroll of Esther. Although concisely reported, the scene is sug-

gested to be more vivid and rich in detail than the paired associate

recall, and also compositional in nature: it includes elements, like the

death on the cross and the Persian Shah (in this instance, Ahasueros),

which likely feature in several other unrelated scenes or events that

the poet might have recalled. How can we conceive the neural mecha-

nisms required to evoke such a compositional snapshot?

The third form of imagination, exemplified with an episode drawn

from the poem by Vergil, Dante's guide, is even more complex, since

it involves Princess Lavinia speaking and trying to understand what

went on in her mother's mind that drove her to commit suicide. Recal-

ling the episode therefore implies the recursive activation of theory-

of-mind schemata: we need to get into Lavinia's thoughts as she

attempts to comprehend the dynamical unfolding of her mother's

drama by getting into her thoughts.

The ability to recall facts and events not currently conveyed by

sensory inputs is integral to mind-wandering, the drifting of the mind

away from current (sensory) experience toward inner contents such

as memories or plans (Christoff et al., 2016; Ciaramelli &

Treves, 2019). Recent research has begun to investigate the neural

underpinnings of mind-wandering, and to reveal distinct patterns of
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alteration of mind-wandering, following brain damage, which roughly

parallel Dante's poetic intuition of three levels of complexity in the

imaginative faculty. Patients with lesions in the ventro-medial prefron-

tal cortex (vmPFC) tend to mind-wander less than healthy and brain-

damaged controls, and when they do they are more focused on the

present and on the self, suggesting a deficit in activating dynamical

schemata to self-project into imaginary situations different from the

perceptual present, such as future events or others' perspectives

(Bertossi & Ciaramelli, 2016). Hippocampal patients, on the other

hand, report mind-wandering as frequently as healthy controls, but

their thoughts are of a streamlined logical/semantic character, impo-

verished in spatial details and bereft of episodic contributions, particu-

larly from the recent past, the last year or so of actual experiences

(McCormick et al., 2018). It thus appears that vmPFC integrity is

necessary for the self-initiation and unfolding of mind-wandering epi-

sodes, perhaps imbuing them also with self-related value

(Rolls, 2022a), whereas hippocampus integrity is important for the

composition of elements drawn from recent experience into imagined

scenes that fuel mind-wandering, whether or not they closely match

combinations of elements that actually occurred (Barry &

Maguire, 2019; Ciaramelli et al., 2019; Ciaramelli & Treves, 2019;

Hassabis et al., 2007; McCormick et al., 2018).

Why should it be so? After all, influential memory theories pro-

mote the idea that, after hippocampally driven consolidation, even

episodic memories should become independent of the hippocampus

(Marr, 1971; Squire et al., 2015). One such theory viewed the hippo-

campus as a complementary learning system, needed because the

cortex, just like a back-propagation trained network, is postulated to

be able to only learn slowly (McClelland et al., 1995); logically, once

the cortex has taken its time, the hippocampus can be disposed

of. The Multiple Trace Theory has emphasized instead the qualitative

distinction between truly episodic memories that remain dependent

on the hippocampus through a lifetime, and semanticized memory

content that can be retrieved and utilized also without the hippocam-

pus (Moscovitch et al., 2005). A somewhat intermediate formulation

has been put forward, to try and reconcile the contradictory empirical

evidence, which can be invoked in partial support of either extreme posi-

tion: it holds that the hippocampus regenerates constructs that appear

to be simple reactivations of the activity patterns originally encoded, but

are not (Barry & Maguire, 2019). By titrating the degree of infidelity of

the reactivated from the original, this proposal can satisfactorily interpo-

late between views that prima facie clash with each other.

None of the above, however, really addresses any constraints that

may arise below the functional system level, that is, in the neural net-

work mechanisms that are invoked to implement the required opera-

tions of memory storage and reactivation. An exception may be the

argument that rapid neocortical learning would lead to catastrophic

interference (McClelland et al., 1995), although it was later qualified

that this would only happen with new content inconsistent with previ-

ously stored information (McClelland, 2013). Episodic memories, how-

ever, are typically neither fully consistent nor inconsistent with each

other, rather, they are diverse, entailing a variably overlapping set of

items.

We ask here whether there are purely computational constraints

that require cooperation between the hippocampus and neocortex in

the associative storage and retrieval of snapshot compositional mem-

ories, and which stem from the distinct neural network organization

of the hippocampus and of vmPFC (and neocortex in general). The

hippocampus has available the dentate gyrus, which can establish a

new, tendentially orthogonal compressed representation for any new

memory (Treves & Rolls, 1992). In the neocortex there is no dentate

gyrus, but its presumably large storage capacity—particularly in

humans—should allow for the associative storage of many new combi-

nations of items, most of which are already endowed with their neu-

ronal representations. To what extent is this the case?

2 | THE POTTS MODEL OF AN EXTENDED
MEMORY NETWORK

The Potts associative network offers a tractable mathematical model

(as shown from the early study by Ido Kanter (1988)) of how composi-

tional memories may be stored over large swathes of neocortex and

later retrieved through purely associative mechanisms. In contrast to

the neural networks usually considered in machine learning, it is

recurrent (also at large scale) rather than directional, lacking a priori

defined input and output layers, and the connection weights are

modified by a model associative rule, with no involvement of error

signals. As a memory device, therefore, it operates by self-organiza-

tion, without instructions or extra ingredients, as envisaged by Brai-

tenberg (Braitenberg & Schüz, 2013). In the cortex, obviously, such

self-organization, for example, what is stored where, is grounded in

cortical connectivity, the overall framework for which is largely

genetically determined. The Potts network does not however deal

with localization issues, in order to focus solely on the interactions

between patches of neocortex, mediated by axons travelling

through the white matter. It subsumes the dynamics within each

patch into the suitably defined Potts units. The correspondence

with the underlying full-fledged cortical network has been discussed

in (Naim et al., 2018).

2.1 | Potts units that model cortical patches

A Potts unit, introduced in statistical physics in 1952 (Potts, 1952),

has S states pointing each along a different dimension and can be

regarded for our purposes as representing a local subnetwork or corti-

cal patch of real neurons, endowed with its set of dynamical attrac-

tors; these span different directions in activity space, and are

assimilated to the states of the Potts unit. One can then define an

autoassociative network of N Potts units interacting through tensor

connections (Naim et al., 2018). The memories are stored in the

weight matrix of the network during a learning phase, described only

summarily, as in the Hopfield model (Hopfield, 1982): each memory μ

is a vector or list of the states taken in the overall activity configura-

tion to be stored by each unit i: ξμi . We label by the index k each of

2 RYOM ET AL.
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the S states a Potts unit can take (assuming for simplicity S to be the

same throughout the network) and we consider an extra quiescent

state, k¼0, when the unit does not participate in the activity configu-

ration of the memory. Therefore, k¼0,…,S, and each ξμi can take

values in the same categorical set.

For the standard, quasi-orthogonal memories, for which it is

assumed that units are assigned an activity state independently of

each other and of any information already present in the network, the

tensor weights read (Kanter, 1988).

Jklij ¼
1

Na 1� a
S

� �Xp
μ¼1

δξμ
i
k�

a
S

� �
δξμ

j
l�

a
S

� �
1�δk0ð Þ 1�δl0ð Þ, ð1Þ

where i, j denote units, k, l denote states, a is the fraction of units

active in each memory, and the δ
0
s are Kronecker symbols. This form of

the tensor weight has been shown to effectively recapitulate associa-

tive, ‘Hebbian’ synaptic plasticity in the underlying neural network

(Naim et al., 2018) and, as in Hopfield-like models, the subtraction of the

mean activity per state a=S ensures a higher storage capacity (Kropff &

Treves, 2005). We shall see how this learning rule has to be modified if

we consider, in the case of compositional memories, that information

about their components is already present in the network.

Locally, each patch of cortex tends to align its activity with one

of the attractor states or to remain in the null state, which is

expressed in the Potts model by

σki ¼
exp βrki

� �
PS
l¼1

exp βrli
� �þ exp β θ0i þU

� �� � ð2Þ

and

σ0i ¼
exp β θ0i þU

� �� �
PS
l¼1

exp βrli
� �þ exp β θ0i þU

� �� � , ð3Þ

where rki is the input variable tending to align unit i to state k. This

occurs within a time scale τ1, as expressed by the equations below. U

and θ0i are the common and unit-specific components of an effective

threshold, that incorporates a variety of inhibitory effects. From Equa-

tions (2) and (3), we see that
PS

k¼0σ
k
i �1, and note also that σki takes

continuous values in the (0,1) range for each k, whereas the memories,

for simplicity, are assumed discrete, implying that perfect retrieval is

approached when σki ’1 for k¼ ξμi and ’0 otherwise. Equations (2)

and (3) are SoftMax functions, and 1=β is an effective temperature

parametrizing the level of noise in the cortical patch represented by

individual Potts units (when β!∞, each unit expresses a single non-

zero σ).

2.2 | Potts model dynamics

When the Potts model is studied as a model of cortical dynamics, for

example, of latching dynamics (Russo & Treves, 2012), U tð Þ and θ0i tð Þ

are functions of time, to represent the temporal course of long-range

(indirect) and local inhibition. In addition, state-specific thresholds

θki tð Þ are used to represent firing rate adaptation effects (Ryom

et al., 2021). Here, however, we are only interested in modeling asso-

ciative retrieval of a content-addressable memory, that is, a simple

rapid operation that succeeds or fails within the time scale τ1 of neu-

ronal activation. We do not consider, therefore, slow inhibition and

adaptation processes, and assume for simplicity a single common

component of the threshold, U tð Þ, which varies rapidly enough to reg-

ulate the overall activity in the network at a constant level,

XN
i¼1

XS
k¼1

σki ¼Na: ð4Þ

While this assumption is rather unrealistic, it allows assessing the

associative capability of the network under ideal conditions, free of

the temporal fluctuations of unregulated dynamics. The time evolu-

tion of the network is then governed by the equations

τ1
drki tð Þ
dt

¼ hki tð Þ� rki tð Þ: ð5Þ

The input that the unit i in state k receives is the sum of an inter-

nal component, that is, coming from the other Potts units, and a term

θki , which here is used to model not adaptation (as in the latching

dynamics studies (Russo & Treves, 2012)) but a sustained external sig-

nal, considered constant over the time scale of retrieval, such as that

which can come from the hippocampus (we use it with a minus sign

for consistency, as θ usually denotes a threshold).

hki ¼
XN
j≠ i

XS
l¼1

Jklij σ
l
j�θki : ð6Þ

The way the patterns ξ
μ
are generated, that is, their probability

distribution, has effects on the retrieval properties of the network,

that is, on its ability to retrieve with good accuracy one of the stored

memories, if this is partially cued. A quantitative measure of this abil-

ity of the network is the storage capacity, the number of memories the

network model is able to store and retrieve, given values for its vari-

ous parameters.

2.3 | Simple memories

Simple memories in the cortex would be assigned distributed rep-

resentation over several Potts units, exhibiting a higher level of

(self-)organization than simple memories in the hippocampus,

which are taken to be distributed over many individual neurons.

Still, if across Potts units memory patterns are nearly orthogonal,

that is, randomly correlated, like those assumed to be established

by the dentate gyrus in the hippocampus, the Potts model

equipped with Equation (1) can store and retrieve an extensive

RYOM ET AL. 3
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number of patterns and each pattern has a large basin of attrac-

tion (Figure 2a,b).

What if memory representations have a nontrivial structure,

rather than randomly correlated? In the next section, we examine the

retrieval properties of Potts neural networks when memories have a

semi-naturalistic internal structure, in terms of items, which are

defined as percepts that are included whole in several memories. For

example, a farm can be a familiar percept participating in the memory

of several autobiographical events that have taken place at the farm.

This implies that the representations of those memories are unlikely

to be randomly correlated: they share (at least) the item farm.

2.4 | Compositional memories

We take our model compositional memories to embody a further

level of organization and to include Z items, each of which has now

a distributed cortical representation over several Potts units

(Figure 1b). Two conceptually distinct stages of learning are, there-

fore, envisaged: first, the representations of the items are stored and

subsequently, if a pair of items appears in a compositional memory,

the tensor connections between the corresponding Potts units are

strengthened. In practice, a novel item may happen to be stored only

the first time it is included in an episodic memory; but here we are

interested in the capacity of the model for retrieval, not in detailing

the learning process. Across memories, some items may appear more

frequently than others. We consider a pool of K items. Each memory

can contain items with different frequency, from rare to very

frequent ones.

We denote with ηρi (ρ¼1,2,…,K), the activity patterns, of sparsity

of a0 ¼ a=Z, which represent the items. Here a is the sparsity, that is,

the fraction of active units, of the memories themselves, ξμi
(μ¼1,2,…,p), and the details of how we compose the memory

patterns from those of the items are explained in Appendix A.1. Here,

we only emphasize that the network model does not discuss the local-

ization of representations in distinct cortical areas, a major and rele-

vant issue which is however beyond the scope of this study. The item

activity patterns are randomly scattered across the Potts units.

The connection weights are set differently than in Equation (1),

to express the notion, inherent to the compositional construct, that

once an item has been encoded onto the synaptic connections, it is

there and it is not stored again every time that item is present in

the input,

Jklij ¼ 1�δk0ð Þ 1�δl0ð Þ 1

Na0 1�a0

S

� 	XK
ρ¼1

δηρ
i
k�

a0

S

� 	
δηρ

j
l�

a0

S

� 	2
664

þ 1

2Na 1�a
S

� �XK
ρ¼1

XK
σ¼1

Fρσ δηρ
i
k�

a
S

� �
δησ

j
l�a

S

� �
3
775,

ð7Þ

where Fρσ is 1 if a pair of items (ρ, σ) appears together in one of the p

memories, and 0 otherwise. Thus, the two lines above reflect the two

stages of learning envisaged. That is, while the first term of

Equation (7) reflects one-shot associative learning of individual items,

assumed to have occurred before, the second term likewise stores

relations between items included at least once in the same composi-

tional, episodic memory, and again the pair is stored once even if it

recurs in multiple memories. Note that the prefactor with a0 in the

denominator makes the single-item term stronger than the pair-of-

items term, as 1=a<1=a0 ¼Z=a. Note also that more complex, for

example, iterative and non-associative processes involved in acquiring

the individual items in memory are not considered in the present

model for simplicity, but they would not necessarily affect the con-

straints we focus on here, which are those arising from the associative

storage not of items but of unique compositions of items.

F IGURE 1 Compositional memories as represented in a Potts neural network. The episodic memory of a friends' wedding relies on a
composition of items already given, at least in some instantiation, a long-term representation (a), such as the canopy, the people present, the food,
the rings and the car with which they leave. In the Potts model (b), these elements are assigned sparse distributed representations over several
Potts units, each loosely standing for a small patch of cortex.

4 RYOM ET AL.
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2.5 | Retrieval cues versus Hippocampal input

To simply cue the network we activate a fraction f of the units active

in a given memory, concentrated within some of the items of that

memory, and let the network evolve without further external input.

For example, for f¼0:5, when Z¼5, the cue is applied essentially to

all the units active in two of the items, and to half of those active in a

third (minor adjustments are due to the coincidence of some of the

active units). With memories including both rare and frequent items,

we consider applying a cue concentrated at either end of the fre-

quency spectrum.

To model hippocampal inputs operating at retrieval, instead, we

assume that the hippocampus has reinstated a compressed represen-

tation of the entire memory, and is able to convey a corresponding

signal to all the units of the Potts network, which unlike the cue is sus-

tained over the time course of retrieval. We express that through the

state-specific thresholds, θki , by setting, for memory μ,

θki ¼�γδξμ
i
,k ð8Þ

so that γ regulates the intensity of facilitation. Note that this θki is

taken to be constant in time. The model thus allows contrasting two

neural mechanisms for the reactivation of compositional memory: in

the former, it is up to the long-range cortical connections, while in the

latter, the hippocampus does it, in line with the indexing theory

(Teyler & DiScenna, 1986), leaving to cortical connections only to

retrieve the detailed content of each item.

3 | RESULTS

3.1 | A strong constraint on compositional
memories

First, for the sake of analytical clarity, we start from a simple case, in

which all items appear with the same (average) frequency in the com-

positional memories: we vary the number of memories p, compose

each by drawing from a common pool of K items, and set the other

parameters at their default values, specified in Table 1, including the

number of items per memory Z¼5 The C++ code is available in the

OSF repository. Note that, when for example p¼300, items appear

on average in 5 distinct memories each, if K¼300 as well, and in as

many as 15 memories each, if K¼100. This increases the difficulty of

maintaining the unique item configuration of the compositional mem-

ory, even though it is present in the full cue (Figure 2a), and once

p¼400, compositional memories are effectively inaccessible (the

overlap, which measures the correlation of the retrieved activity with

the stored representation, drops to zero); whereas simple unitary

TABLE 1 Parameters of the network.

Symbol Meaning Default value

N Number of Potts units 1000

S Number of states per unit 7

p Number of memory patterns 200

a Sparsity of patterns 0.2

Z Number of items per memory 5

K Number of items in total 200

B Number of bins 20

f Fraction of units for cuing 0.5

γ Strength of hippocampal input 0.1

F IGURE 2 Unitary memories and compositional memories. (a) The overlap between stored patterns and retrieval states is plotted as a
function of the total number p of stored memories. The network stores only one type of memory: either unitary (blue) or compositional memories

with fixed frequency (red). The network starts from a perfect version of one memory pattern (f¼1:0) and is allowed to follow its dynamics until it
reaches a retrieval state or a limiting time. From bright red to dark red, color encodes the number of items K in the pool. The blue curve is for
random patterns (unitary memories). Network parameters are set at default values (see Table 1). (b) Similar to (a), but the network is partially cued
by a memory pattern. The partial cue is prepared by flipping back a fraction 1� f¼0:5 of active units of the cued pattern into a quiescent state.
(c) The same network stores two types of compositional memories: memories made of frequently used items (red) and those made of rarely used
items (used once, pink). There are p (x-axis) memories in total, half in either category. The black dashed line indicates the initial value of the
overlap (i.e., f).

RYOM ET AL. 5
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memories (which can be conceived as comprised of non-repeated

items) do not show a capacity limit, with our parameters,

until p¼16000.

The apparent exception is, perhaps surprisingly, when the pool of

items is very small, K = 50—for those it appears that the network

remains highly correlated with the cue, hence with the memory itself,

all the way to high values of p. This is due to two effects, as clarified

by Figure 2b. First, we can imagine the network as moving on a free-

energy landscape (or its generalizations, the details are beyond our

purposes here); for movement to be unimpeded, the landscape has to

be smooth, which it is not for K¼50, due to the limited number of

item representations dotting it. Now, the full cue does not really test

the retrieval or pattern completion ability of the recurrent Potts net-

work, but only its reluctance to drift away from the initial configura-

tion of activity, already specified by the cue—and with a rough

landscape the network is very reluctant, as it cannot effectively move.

When using a partial cue, instead, for example, f¼0:5, the other over-

lap curves do not change much, but the one for K¼50 starts to drop

already for p>50. Second, if the cue maintains nevertheless activated

the items it is applied to (3 out of 5, for f ¼0:5), there is a substantial

chance, if the pool is small, that also some of the remaining items will

be those appearing in the memory to be retrieved. So we can consider

the small K case as essentially an artifact, in any case irrelevant to

human memory, which represents more than 50 items.

For larger K values on the other hand the constraint is real, and it

can be understood to a first approximation by considering the individ-

ual items as robust blocs of units that can be reactivated coherently,

while the challenge for the network lies in using the item pairings,

stored in the connectivity, in order to retrieve the correct configura-

tion of Z items. The challenge is tougher the more memories are

stored, because more pairs of items will have been stored in the con-

nections between the Potts units. Resorting to an argument devel-

oped many years ago for the Willshaw model (Golomb et al., 1990;

Willshaw et al., 1969), we can estimate the probability that a pair of

items has not been stored as the probability that it has not been

stored in one memory, to the power p: Prob

Fρσ ¼0
� �¼ 1� Z=Kð Þ2

h ip
≈ exp �pZ2=K2

� �
. If this probability

becomes small, most item pairs will be encoded in the network, that

will, therefore, find it difficult to select those in the compositional

memory. This interference effect is reduced for large K, but then a

complementary negative effect sets in, that the network is overloaded

with items. Simulations show that the two effects complement each

other and lead, irrespective of the K value, to an effective capacity

much reduced with respect to that of unitary memories.

3.2 | Memories composed with frequent and with
rare items

Figure 2c shows that the capacity constraints is almost as stringent

also in a network that has stored compositional memories composed

of frequent (hence, repeated) items, and other memories composed of

rare items (in our model, appearing only once, hence unambiguously

individuating the episodic memory that includes them). The effective

storage capacity for the latter is a bit higher, as the signal that leads

from a partial cue to reactivate the complete configuration of items is

clearer, but since the noise is contributed and felt by both frequent

and rare memories once they share the same network, the difference

is small. Note that in Figure 2c frequent items, from a pool of K¼100,

are repeated as many times as those with K¼200 in Figure 2b, as

they appear in half of the p memories.

We have also simulated a network storing half compositional and

half unitary memories. Unitary memories can also be conceived as

composed of items appearing only once; the difference with the case

above is in the learning rule, which in the compositional case of

Equation (7) assigns more weight to the individual items, because of

the prefactor 1=a0. Overall, however, the interference resulting from

the storage of the other memories is similar, and so is the resulting

storage capacity for compositional and unitary memories (not shown).

Note that if the latter were alone, many more of them could be

stored, but since they share the connection space with compositional

memories, their effective “storage capacity” is almost the same as that

of compositional memories.

3.3 | Scale-free memories

Next, we consider a more realistic case in which memories include

items of different frequencies. We proceed as follows: we group items

into B bins, indexed by 1,…, l,…,B, and each bin includes l items

(Figure 3a). Then a memory is assembled by combining Z items

obtained by sampling bins evenly. This results in the few items in the

first bins being picked up more frequently than the many in the later

bins and, as one can easily show, in an approximately scale-free distri-

bution of items across memories (here, scale refers to frequency; see

also the Appendix A).

Figure 3b (lightest green curve) shows that diversity in the distri-

bution of item frequency has an adverse effect on storage capacity. A

suitable comparison is between a scale-free distribution of items in

B¼20 bins, which implies B Bþ1ð Þ=2¼210 items overall, the lightest

green curve, and compositional memories with fixed-frequency items

drawn from a pool of K¼200 (the red curve). The comparison indi-

cates that the more realistic, mixed distribution of item frequencies,

coexisting within the same memories, does not solve the capacity

constraint imposed on compositional memories; if anything, it makes

it somewhat worse.

3.4 | Hippocampal inputs

The results above indicate that memory retrieval triggered by partial

cues is inherently less effective with compositional memories, in

which the component items have been stored on their own, than with

unitary representations. This suggests that a more effective retrieval

operation could be initiated by a full cue, possibly weak but full, that

is, distributed over all the component items. Such a cue could come

6 RYOM ET AL.
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from an auxiliary compressed representation of the full memory, of

the type that the hippocampus has been widely thought to store and

retrieve, in turn, from partial cue.

To explore this hypothetical mechanism, we add a model hippo-

campal input to the compositional representation in the extended cor-

tical network; following (Ryom et al., 2021), this is simply a sustained

external contribution to the signal aligning each Potts units toward

the activation state it has in the memory to be retrieved. It is parame-

trized by a variable γ. In formulas, using Kronecker's δ we write

hki ¼
XN

j ≠ ið Þ¼1

XS
k¼1

Jklij δσ j lþ γδξμ
i
,k: ð9Þ

Obviously, when the factor γ is large enough, successful retrieval

is expected to be merely transferred from the hippocampus to the

neocortex, in this model, with the latter not performing any significant

role. As shown in Figure 3b, however, simulation results are complex.

On the one hand, the sustained input enhances network capacity, the

more the stronger it is, but without really removing the capacity limit

for compositional memories, indicated by the drop in all green curves

at p¼600. On the other hand, also a weak hippocampal input pro-

duces a noticeable effect, when the fraction of the standard partial

cue is f¼0:5. When p¼200, Figure 3c shows that even a weak sus-

tained input, γ¼0:2, leads to retrieval to a level midway to that

obtained with γ¼1:0, and as a function of f the same level is reached

in the entire range 0:01< f <1:0: in practice the hippocampal input

requires only a minimal additional cue—and also when this is absent

(f’0:0) hippocampally triggered retrieval is effective on its own.

3.5 | Triggering retrieval from frequent or from
rare items

Given the interference caused by the multiple pairings of frequent

items with others, in retrieving compositional memories, one may

F IGURE 3 Scale-free distribution of item frequency. (a) An example of distribution of item frequency with B¼20 bins. Bins are arranged

according to the frequency of items they include along the x-axis, with frequency indicated by bin height, while bin width alludes to the number
of items per bin. (b) Retrieval for memories comprised of items following the frequency distribution given in (a). Color encodes γ values (i.e., the
strength of hippocampal inputs). f¼0:5,B¼20. The red curve is for single frequency items, as in Figure 2b. (c) Similar to (b), the overlap is shown
as a function of f for p¼200.

F IGURE 4 Effect of item frequency on retrieval. (a) Two methods of cueing the network with a partial version of memory patterns are
compared by different colors. A fraction f of units among Na active units for a memory pattern is chosen preferentially from frequent items

(green) or from rare items (violet). p¼200, γ¼0:0, B¼20. (b) Same as (a) but for γ¼0:2, that is, with some hippocampal input. Dashed curves
show results that include only a subset of memories that include very rare or very frequent items (from the last or first two bins in the
distribution).

RYOM ET AL. 7
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wonder whether the operation is more effective if triggered by the

reactivation of the rarer items. This can be examined in the model sim-

ply by applying the partial cue f to the Potts unis active in the repre-

sentation of the rare vs. the frequent items. In Figure 4, this is done

considering model scale-invariant representations produced with

B¼20 bins, and applying the cue at either end of the frequency spec-

trum (solid curves); or by selecting memories with at least one item

from the first two (frequent) or the last two (rare) bins, and averaging

only over either restricted subset (dashed lines). Figure 4a shows that

without the model hippocampal input, γ¼0:0, there is a marked effect

of where the cue is applied, but only for f ≤0:2, that is, effectively

when a single item is cued. In that case cuing a frequent item is inef-

fective, while cuing a rare one is (partially) effective, although the cor-

relation with the full memory is still far from ideal (overlap just above

0.4, or 2/5 items retrieved). With weak hippocampal input, γ¼0:2,

retrieval is still incomplete, but the effect of where the partial cue was

applied is virtually erased.

4 | DISCUSSION

In this study, we look at purely computational constraints for the

retrieval of episodic, compositional memories, which turn out to be

relatively complex to analyze, despite the artificial simplicity of the

assumptions in-built in the model we have considered. To assess the

range of validity of the results obtained, it is therefore useful to

review the main assumptions:

• Compositional episodic memories are conceived statistically as

being structured in terms of items, independently drawn from a

pool of such items, with no further substructure. For example,

the image of a groom can be composed with that of a thick

wood as well as with that of a lawn, even though weddings

more often take place on the latter. In further work we shall

relax this assumption by introducing structured schemata into

the model.

• Two distinct modes of content-addressing an episodic memory

are envisaged. In the first, a partial cue sets in the active state the

Potts units relative to a fraction f of the items composing the

memory—which is intended to correspond to the initial alignment

of some patches of cortex along the local attractors which repre-

sent those items, while the rest of the cortex is not aligned to

anything.

• In the second mode, the hippocampus provides a sustained cue

of possibly limited strength, but delivered to all relevant

patches of cortex—therefore, a hippocampal index in Teyler and

DiScenna's sense (Teyler & DiScenna, 1986) rather than a par-

tial cue.

• The hippocampal representation of a compositional episodic mem-

ory, if it exists, is assumed to be unitary and not compositional,

hence unrelated to the detailed semantic content of each item.

• Other simplifying assumptions are more “technical,” as they relate

to the Potts neural network model.

Obviously all such assumptions are extreme, and relaxing them

results in some form of interpolation. This can be regarded as a gen-

eral limitation of an approach which, in the trade-off between clarity

and plausibility, favors the former.

4.1 | Compositionality effectively shrinks the
cortex

The model offers a number of theoretical insights. One of the main

findings is that the storage capacity that had been previously calcu-

lated for unitary representations (Kanter, 1988; Kropff &

Treves, 2005) is much higher and essentially irrelevant to that for

compositional representations. The storage capacity for compositional

representations is indeed constrained by factors that should be inves-

tigated further: the statistics of compositionality, the (long-range) con-

nectivity, the plasticity that underlies the acquisition of compositional

memories (expressed in the model by the “learning rule” adopted).

The key finding, that is, the low storage capacity for compositional

representations, may seem counter-intuitive: using a representa-

tion preassembled in blocks of units—the items—makes recall more

difficult instead of facilitating it. The computational reason is that

associative retrieval, in general, is robust to the interference of

other memories if these produce uncorrelated fluctuations (i.e., the

noise, in a signal-to-noise analysis) over many units or many small

groups of units. If the fluctuations are coherent over large chunks

of cortex, because they represent interfering items, the noise does

not average out so well. It is as if compositionality nullified the key

advantage of the cortex for memory—its sheer size—by obstructing

the approach to the “law of large numbers,” that is, the mutual can-

cellation of random fluctuations, which is key to associative

retrieval. The pre-assemblage effectively reduces the size of the

network to Z, the (average) number of items in a compositional mem-

ory; of course, only from the point of view of associative retrieval

(in other respects, for example, for representational capacity, the cor-

tex remains huge).

4.2 | Without the hippocampus, rare elements
facilitate recall

Rare elements are those shared between relatively fewer memories.

The effect demonstrated in Figure 4 reflects indeed the lower confu-

sion associated with the retrieval cue coming from those items—they

have established fewer strengthened connections to other items, and

therefore are less likely to trigger the retrieval of multiple compatible

memories. With the parameters we have adopted, the effect is not

huge and limited to very partial cues (small f). Analyzing how it may

scale up when cues are more detailed and the network more closely

simulates a human cortex is beyond the scope of this work. We note

for now that this effect, the advantage of cueing rare elements, van-

ishes once the hippocampus, in our model, provides a sustained full

cue, even if weak, suggesting that the contribution of the

8 RYOM ET AL.
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hippocampus is vital to retrieve compositional memories involving

highly frequent items.

4.3 | The hippocampus helps, but by brute force

A final remark on the results is that Figure 3b indicates that the model

hippocampal input does not really solve the low capacity problem.

Whatever its strength γ, retrieval quality begins to decline at about the

same memory load p. What happens is that in our model the hippo-

campus effectively takes over the retrieval task, and can send to the

cortex a strong signal with its outcome, that the cortex would have

been unable to get at on its own. Investigating a more significant cor-

tical contribution, in this computational framework, probably requires

a more articulated model, that we intend to analyse in future work.

5 | IMPLICATIONS FOR EMPIRICAL
RESEARCH

The model can be related to a body of nascent theoretical notions and

empirical data that seek to dissect the contribution of distinct brain

structures to imaginative acts such as event (re)construction and

mind-wandering (McCormick et al., 2018). One hypothesis is that

vmPFC mediates schema-related relations among the objects in a

scene, whereas the hippocampus assembles cohesive scenes

(Gilboa & Marlatte, 2017; McCormick et al., 2018; Moscovitch

et al., 2016). This is consistent with the evidence that constructed

experience in patients with hippocampal lesions is rich in content but

lacks spatial cohesiveness, whereas that of vmPFC patients also lacks

(schema-based) constitutive elements (De Luca et al., 2018), and that

mind-wandering is of poor episodic quality in hippocampal patients

(McCormick et al., 2018) vs. severely reduced in vmPFC patients

(Bertossi & Ciaramelli, 2016).

While the contribution of the hippocampus to event imagination

may also be productively contrasted with that of other cortical areas,

focusing on the division of labor between vmPFC and the hippocam-

pus, a distinction that may turn out to be useful is the one analysed

recently by Mullally and Maguire and involving ‘Space Defining (SD)’
and ‘Space Ambiguous (SA) objects (Mullally & Maguire, 2011;

Mullally & Maguire, 2013). Mullaly and Maguire have suggested and

shown empirically that SD objects promptly evoke a strong sense of a

surrounding 3D space. An example SD object is a couch, which

promptly evokes a sense of a surrounding 3D space compatible with a

living room and not with other types of spatial layouts; SD objects

define (identify) the space they fit in. A fly, an example SA object, does

not. SA objects are compatible with, and shared between, many spa-

tial layouts. Consistent with the prominent role of space processing

for mental construction, SD objects are preferentially chosen as the

initial building block to mentally construct a scene, and are picked last

to be removed from a mental scene (Mullally & Maguire, 2013). Pro-

cessing of SD and SA stimuli is associated with different activity in the

parahippocampal cortex (Mullally & Maguire, 2011), the superior

temporal gyrus, and vmPFC (Monk et al., 2020), in line with the differ-

ent functional properties of the two classes of items.

The SD-SA distinction must be considered together (and not con-

founded) with another independent distinction, that between objects

that are more or less likely to be associated with other objects or

related concepts (Bar & Aminoff, 2003), and hence trigger their activa-

tion (Mullally & Maguire, 2011). Although SD objects tend to be evoc-

ative of content (associated with other objects/concepts), as in the

previous example of the couch, which can easily activate, in addition

to the 3D space of a living room, the image of a nearby coffee table or

TV, the SD/SA and contextual richness dimensions are distinct, and

dissociable from the one another both behaviorally and neurally

(Mullally & Maguire, 2011). We have recently isolated, for example,

SD objects high in contextual associations (e.g.: swing), SD objects

low in contextual associations (e.g.: chair), SA objects high in contex-

tual associations (e.g.: fishing rod), and SA objects low in contextual

associations (e.g.: belt) to be used as cues for event construction

(Stendardi et al., in preparation).

In the present model, rare items can be taken to more immedi-

ately evoke a constellation of other items, because, being rare, they

have been associated strongly with a small number of other items and

contexts. This is the case for SD items, especially those with low

levels of contextual associations, which evoke virtually unique con-

texts. Cueing a rare (e.g., SD) item is likely more effective in triggering

memory retrieval, as competition between memories sharing that item

is less likely. Our computational findings indicate that if and only if the

hippocampal input is damaged or reduced, a partial cue applied to a

rare item is more effective in triggering accurate memory retrieval

than one applied to a frequent item. It would be interesting to investi-

gate, therefore, if the advantage in event construction observed for

SD versus SA items is more pronounced in the case of reduced input

from the hippocampus, for example testing patients with hippocampal

damage or using tasks that make heavier demands on neocortical

regions versus the hippocampus (e.g., priming).

As of now, it remains unclear to what extent the model captures

the spatial nature of memories for multiple items in visual scenes (which

is integral to the SD/SA distinction), especially as it does not describe

earlier visual processing (Devereux et al., 2018) nor the cortical connec-

tivity that leads to item and scene representations (Rolls, 2022b); but it

is clear that it fails to consider more structured constructs, usually

referred to as schemata. These can be elaborated in at least two differ-

ent dimensions. One is to consider schemata as groups of items that

often occur together as components of wider compositional scenes,

irrespective of exact timing relations (Audrain & McAndrews, 2022).

For example, the memory of a countryside wedding may include a

makeshift religious ceremony and a festive meal, each of which includes

distinct items bound together into those two schemata. A second

dimension is the temporal one. If two items A and B when they co-

occur do so in a fixed succession, such as the discussion of the Thesis

and the friends' congratulations, proper recall would entail reactivating

their representation in the same order. Ultimately, along both dimen-

sions one moves away from the snapshot character of simple episodic

memories, taking some steps toward their semantization.

RYOM ET AL. 9
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Developing our current computational model along the first

dimension involves considering some form of nested probability distri-

butions, which opens up a very large space of possibilities, so that it is

probably wise to focus on a specific set of empirical data. Along the

second dimension, instead, there is a straightforward neural mecha-

nisms that favors the ordered reactivation of the representations of

two items A and B: to enhance the connections from the units active

in A to those active in B, and not viceversa (Spalla et al., 2021). If a

spatial relation is captured, in part, by the availability of both options,

scanning A ! B as well as B ! A, a temporal relation singles out A !
B. Correctly reactivating all the temporal relations in an episode that

has been experienced could be challenging for the cortex, but a partial

reactivation that follows several originally distinct paths, making use

of self-related (Stendardi et al., 2021) and other schemata, may in fact

be the substrate for the generative process envisaged by Barry and

Maguire (Barry & Maguire, 2019).

Ongoing work is exploring whether assigning such temporal structure

to a simple composition of items can indeed facilitate their ordered reacti-

vation, irrespective of the model hippocampal signal. If so, the model may

be useful to better understand the phenomenology presented by vmPFC

patients (Ciaramelli et al., 2019) and also, perhaps, the third and most

sophisticated form of the imaginative faculty, as conceived by Dante.
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APPENDIX A

A.1 | Making memory representations

We construct representations of compositional memories in two

steps. In the first step, we assign Z items to each memory. This is done

either by sampling items evenly, so that on average they all occur with

the same frequency, or unevenly, as described in the text, for exam-

ple, with the quasi-scale-free procedure discussed below, and repre-

sented in Figure 3a. In the second step, we write a representation of

each memory by merging representations of its Z items. The only

issue in doing so is that there are some units that are shared by more

than one item. This would lead to representations with sparsity (frac-

tion of active units) less than a. In order to constrain all memories to

have the same sparsity a, we compute the “fields” hki of all units, by

assuming that the Z items of a particular memory are activated. Then

we select the Na units (and their states) which receive the largest

field, to define them as the representation of this particular memory.

A.2 | Scale-free item frequency

Scale-free distributions have been invoked as a simple description of

many natural phenomena, and there is considerable controversy as to

the ideas that have been put forward (Arita, 2005; Lima-Mendez &

Van Helden, 2009). There has been also considerable work on the

scale-invariant distribution of objects of different sizes in natural

scenes, which is closer to being relevant for the compositionality of

memory for scenes (Ruderman & Bialek, 1993). Here our intent is

merely practical, however: to generate a simple distribution of fre-

quencies, which does not involve an extra arbitrary parameter. The

distribution described in the text is approximately scale free, because

no such parameter is introduced explicitly, although implicitly the

number B of bins sets the upper and lower ends of the frequency

range with which items are assigned to memories: from about pZ=B to

pZ=B2 times. Within this range, each “frequency scale” is approxi-

mately represented evenly.

A.3 | Default parameters

When not varied systematically, parameters of the Potts model are

set as in Table 1. The C++ simulation code is available in the Open

Science Foundation repository, https://osf.io/z3epj/.
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