
04 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Jorge Ejarque, Rosa M. Badia, Lo??c Albertin, Giovanni Aloisio, Enrico Baglione, Yolanda Becerra, et al.
(2022). Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. FUTURE
GENERATION COMPUTER SYSTEMS, 134, 414-429 [10.1016/j.future.2022.04.014].

Published Version:

Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence

Published:
DOI: http://doi.org/10.1016/j.future.2022.04.014

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/919590 since: 2023-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2022.04.014
https://hdl.handle.net/11585/919590

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Jorge Ejarque et al., Enabling dynamic and intelligent workflows for HPC, data
analytics, and AI convergence, Future Generation Computer Systems, Volume 134,
2022, Pages 414-429.

The final published version is available online at:
https://doi.org/10.1016/j.future.2022.04.014

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1016/j.future.2022.04.014

Enabling Dynamic and Intelligent Workflows for HPC,
Data Analytics, and AI Convergence

Jorge Ejarquea, Rosa M. Badiaa, Löıc Albertinf, Giovanni Aloisioh, Enrico
Baglionek, Yolanda Becerraa,c, Stefan Boscherto, Julian R. Berlina, Alessandro

D’Ancah, Donatello Eliah, François Exertierf, Sandro Fiorei, José Fliche,
Arnau Folchm,a, Steven J. Gibbonsp, Nikolay Koldunovl, Francesc Lordana,
Stefano Loritok, Finn Løvholtp, Jorge Maćıasj, Fabrizio Marozzog, Alberto
Michelinik, Marisol Monterrubio-Velascoa, Marta Pienkowskan, Josep de la
Puentea, Anna Queraltc,a, Enrique S. Quintana-Ort́ıe, Juan E. Rodŕıgueza,

Fabrizio Romanok, Riccardo Rossib,c, Jedrzej Rybickid, Miroslaw Kupczykq,
Jacopo Selvak, Domenico Taliag, Roberto Toninik, Paolo Trunfiog, Manuela

Volpek

aBarcelona Supercomputing Center (BSC)
bCentre Internacional de Mètodes Numèrics a l’Enginyeria (CIMNE)

cUniversitat Politècnica de Catalunya (UPC)
dJülich Supercomputing Centre (JSC)

eUniversitat Politècnica de València (UPV)
fAtos BDS R&D HPC & AI Software

gDtoK Lab Srl
hCentro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)

iDepartment of Information Engineering and Computer Science, University of Trento
jUniversidad de Málaga (UMA)

kIstituto Nazionale di Geofisica e Vulcanologia (INGV)
lAlfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung

mConsejo Superior Investigaciones Cientificas (CSIC)
nEidgenössische Technische Hochschule (ETH) Zürich

oSiemens AG
pNorwegian Geotechnical Institute (NGI)

qPoznan Supercomputing and Networking Center (PSNC)

Abstract

The evolution of High-Performance Computing (HPC) platforms enables the
design and execution of progressively larger and more complex workflow appli-
cations in these systems. The complexity comes not only from the number of
elements that compose the workflows but also from the type of computations
they perform. While traditional HPC workflows target simulations and mod-
elling of physical phenomena, current needs require in addition data analytics
(DA) and artificial intelligence (AI) tasks. However, the development of these
workflows is hampered by the lack of proper programming models and environ-
ments that support the integration of HPC, DA, and AI, as well as the lack of
tools to easily deploy and execute the workflows in HPC systems. To progress
in this direction, this paper presents use cases where complex workflows are
required and investigates the main issues to be addressed for the HPC/DA/AI

Preprint accepted by Elsevier FGCS May 16, 2022

ar
X

iv
:2

20
4.

09
28

7v
2

 [
cs

.D
C

]
 1

3
M

ay
 2

02
2

convergence. Based on this study, the paper identifies the challenges of a new
workflow platform to manage complex workflows. Finally, it proposes a develop-
ment approach for such a workflow platform addressing these challenges in two
directions: first, by defining a software stack that provides the functionalities to
manage these complex workflows; and second, by proposing the HPC Workflow
as a Service (HPCWaaS) paradigm, which leverages the software stack to fa-
cilitate the reusability of complex workflows in federated HPC infrastructures.
Proposals presented in this work are subject to study and development as part
of the EuroHPC eFlows4HPC project.

Keywords: High Performance Computing, Distributed Computing, Parallel
Programming, HPC-DA-AI Convergence, Workflow Development, Workflow
Orchestration

1. Introduction

High Performance Computing (HPC) plays an increasingly important role
across all scientific fields, and simulation has established itself as the third pillar,
alongside theory and experiments, fostering scientific and engineering advances.
This has been recognised globally leading to ambitious investments in HPC in
the US, China, and Japan. Europe is not different and has created the EuroHPC
Joint Undertaking, which is pooling EU and national resources in the order
of billions of Euros to develop European competitive science and technology,
deploying top-of-the-range exascale supercomputers.

In addition, the recent wide availability of Big Data sources has catalyzed
a data-centric science based on the intelligent analysis of these data collections
and on learning techniques for gleaning the rules hidden in them. Such data
collections may be the result from large HPC simulations, raw data from field-
/laboratory experiments, measurements of physical phenomena, gathered from
the Web, and in general produced in different scientific and engineering fields.

In this sense, the scientific process has been described as consisting of three
inference steps: abduction (i.e., guessing at an explanation), deduction (i.e.,
determining the necessary consequences of a set of propositions), and induc-
tion (i.e., making a sampling-based generalisation). These key logical elements
have been presented in [1] by the Big Data and Extreme-Scale Computing
(BDEC) [2], an international initiative that focuses on the convergence of data
analytics (DA) and High-Performance Computing (HPC). While the abduc-
tion and induction involve the use of analysis and analytics processes (DA
techniques), the deduction is typically an HPC process. However, the three
different steps of the scientific process have been realised until now with sepa-
rated methodologies and tools, with a lack of integration and common view of
the whole process. The main BDEC recommendation is to address the basic
problem of the separation between the two paradigms: the HPC and DA soft-
ware ecosystems. In addition, current international roadmaps, including that
of BDEC, advocate for combining HPC with artificial intelligence (AI), itself
tightly linked to the DA revolution. An additional observation is that the usage

2

of HPC resources by scientific workflows is often conducted in a brute force
manner, by submitting a large number of simulations or modelling jobs, gen-
erating a large amount of data which are then to be analysed/processed in a
decoupled process. There is thus a need for smarter workflow approaches, able
to leverage HPC in a more energy-efficient way but also able to carry out the
different HPC, DA and AI steps in a more integrated form. The situation is
similar in the context of industrial applications: for example, in the area of
manufacturing, current technologies based on Full Order Models (FOM), de-
veloped for increasingly complex designs, generate a large amount of data that
is processed in later steps to obtain Reduced Order Models (ROM) that can
be used in the construction of digital twins. A more integrated approach will
streamline the solution of FOM problems, paving the road toward adaptive al-
gorithms. This, in turn, will allow faster and more reliable ROM, reducing the
required simulation time and thus having a positive impact in the industry.

However, creating these new integrated workflows is not an easy task. Every
HPC, DA or AI step of these workflows is often implemented as a stand-alone
framework designed for a specific purpose. Developers have to dedicate a con-
siderable effort to manage the integration of different frameworks in distinct
phases of the workflow lifecycle. In the development phase, developers have to
program the integration of the different workflow components implemented in
a variety of programming models. In the deployment phase, different tools and
frameworks must be deployed in the infrastructure. Finally, in the execution
phase, the execution of all the distinct components must be orchestrated dynam-
ically and intelligently. While in our approach the task graph of the workflows is
generated at runtime, this is not the only source of dynamism. For example, we
also consider that the workflow may have to adapt according to specific data in-
puts or intermediate results; and the workflow may also need to react to failures
or exceptions, cancelling parts of the workflow and/or spawning new computa-
tions on it. By intelligent, we do not only mean that the workflows include AI
elements in their application components, but also that the runtime can make
intelligent decisions to improve the workflow execution. These may range from
automating processes to reduce human intervention to task-scheduling policies
that take into account data locality, or that implement resource elasticity to
improve energy efficiency. For these reasons, new workflow platforms enabling
the design of complex applications that integrate HPC, DA, and AI processes
are necessary.

These platforms should exploit the use of the HPC resources in an easy,
efficient, and responsible way as well as enable the accessibility and reusability
of applications to reduce the time to solution. To this end, this paper analyses
the context of HPC, DA and AI convergence and presents use cases where these
complex workflows are required. Based on this analysis, the paper exposes the
challenges of delivering a new workflow platform to manage complex workflows.
Finally, it proposes a development approach for such workflow platform which
addresses these challenges. This platform consist of two parts: a software stack
that provides the functionalities to manage these complex workflows, and the
HPC Workflow as a Service (HPCWaaS) concept, which leverages the software

3

stack to facilitate the reusability of complex workflows in federated HPC infras-
tructures1.

The paper is organized as follows. Section 2 presents use cases where complex
workflows integrating different HPC, DA and AI techniques are required to
efficiently solve different scientific and industrial problems. Section 3 analyses
the context of HPC, DA and AI convergence as well as the related work, and
identifies the main challenges toward efficiently supporting these new complex
workflows. Section 4 presents a novel approach to address these challenges.
Section 5 discusses several key decisions of our solution as well as how they
compare to alternative approaches. Section 6 draws the conclusions from this
work and proposes guidelines for future research directions.

2. Use Cases

This section describes three selected use cases from thematic areas, with
high industrial and social relevance, that can benefit from innovative and a more
holistic workflow approach. These areas target very different users/communi-
ties and needs, specifically referring to digital twins in manufacturing (Section
2.1), climate modelling (Section 2.2), and urgent computing for natural hazards
(Section 2.3).

2.1. Digital twins in manufacturing

Today, the maturity of numerical methods allows the simulation of realistic
problems in manufacturing and the definition of realistic digital counterparts,
known as ”Digital Twins” of the object or process of interest. Simulation-based
design can nowadays largely substitute experimentation in many fields of ap-
plication. The predictive value of the numerical models comes however at the
price of a high computational cost. This becomes a blocker in different practical
scenarios, and in particular when the objective is deploying the Digital Twin
as a companion of the manufactured object for edge computing purposes (for
example, on the on-board computer of production machines). For this applica-
tion it is necessary that the simulation model provides its results synchronously
with the real world, meaning that it has to incorporate input from live sensors
and provide immediate results. Currently this requirement can only be fulfilled
by extremely simplified models with very limited capabilities. Information on
spatial distribution, which would be necessary to identify critical locations such
as thermal hot-spots, is out of reach for online applications. This limitation can
be solved via Model Order Reduction approaches that allow the definition of
“surrogate models”, known as ”Reduced Order Models” (ROM), which present
a similar predictive value but a much reduced computational cost. The essen-
tial idea at the basis of such approaches is to perform first a campaign of high
fidelity numerical experiments (known as Full Order Models or FOM) in order

1In this paper, a federation refers to a set of HPC resources geographically distributed used
in collaboration for a workflow execution

4

to collect training data. Such data is then analyzed in search of the most rele-
vant patterns, typically using large-scale Singular Value Decomposition (SVD)
techniques. Finally, the identified patterns are fed back to the original simu-
lation model which exploits them to construct the target ROM model. The
corresponding workflow is shown in Figure 1.

Figure 1: Main phases in the workflow for the construction of ROM models.

The overall outcome is that the ROM model provides a tunable approxima-
tion (that is, an approximation with a controllable level of accuracy with respect
to the original FOM model) albeit at a fraction of the computational and mem-
ory costs required by the FOM. These projection-based ROM approaches can be
viewed as a special class of machine learning (ML) techniques, characterized by
an overall workflow that adheres to the classical training and inference model.
From a computational point of view, the training part is particularly challenging
since it requires dealing both with the generation of “experimental” data and
with their analysis via large-scale SVD. The generation of training data implies
a classical finite element solution, implemented through the software Kratos
[3][4], with a computational cost governed by the cost of solving linear systems
of equations. This step is typically addressed within the project by the use of an
algebraic multigrid solver [5],[6]. The computation of the SVD is identified as a
computationally critical kernel in the reduction workflow as it forms the basis
for various of the reduction algorithms as well as for the hyperreduction steps.
The computation of the large scale SVD faces challenges related to both its
computational cost and to the memory requirements. For example a workflow
including 10 million degrees of freedom (dof) and 5000 time steps would require
400 GB of memory simply to store the unprocessed data, with the memory re-
quirements becoming sensibly higher for any manipulation of such data. While

5

careful out-of-core approaches (disk swap) allow overcoming this memory limi-
tations, they provide a practical bottleneck to any dynamic workflow due to the
inherently large increase in the computational time (hours instead of minutes).
To overcome this challenge, the implementation of a distributed randomized
truncated SVD able to deal with a large amount of distributed memory while
at the same time reducing the computational time is required.

A complete workflow may also require an iterative refinement of the training
campaign to deal with gaps in the training space. The effective use of supercom-
puters requires integrating both the training and the inference steps within a
single complex workflow that is adapted to the specific needs of the problem to
be addressed. This in practice implies that, while a “classical” workflow would
require manual iterations between training and evaluation, integration within
a workflow management system allows automation of the process with obvious
advantages in real applications.

A practical challenge is the need to deploy the different software stacks on
multiple hardware configurations. This represents a nontrivial challenge given
the strong dependency on system libraries, such as the message passing interface
(MPI).

Furthermore, the described workflow can also be integrated with other AI
frameworks with the aim of eventually employing the ROMs as building blocks
in the construction of system-level models. This integration also poses rele-
vant challenges, particularly regarding the interoperability between the different
modules to be integrated within the same workflow.

2.2. Climate modelling

The study of climate change and related climate phenomena is extremely
challenging and requires access to very high-resolution data. In this respect,
the climate community has been continuously pushing the boundaries to de-
ploy and run model simulations at the highest resolution possible, exploiting
cutting-edge supercomputing infrastructures [7]. The resulting output consists
of large, complex and heterogeneous datasets that require proper solutions for
management and knowledge extraction [8], and which can take advantage of
data-oriented approaches from DA and AI fields.

Typical end-to-end Earth System Modelling (ESM) workflows consist of dif-
ferent steps, including input data pre-processing, numerical simulation runs,
output data post-processing, as well as DA and visualization. Even though they
represent different parts of the same scientific discovery process, their seamless,
intelligent and efficient integration into HPC environments still needs to be
addressed at a variety of levels to become a reality.

The methodologies currently available for developing scientific workflows in
the climate field are unable to integrate the whole set of components transpar-
ently into a single workflow The current approach usually relies on non-standard,
home-made scripts to address the operational needs and integrate different com-
ponents into the ESM workflow. Most often, these efforts focus on a specific
HPC machine, which makes it extremely hard to port the same solution to other

6

HPC facilities. To this end, ESM workflows can benefit greatly from enhanced
solutions that hide the underlying technical details of HPC machines and pro-
vide standardized ways to develop and integrate the distinct ESM workflow
components, including DA and AI components. This could lead to improved
execution efficiency, along with an optimized usage of HPC resources and in-
creased research productivity.

In this respect, the improvementsprovided by dynamic access to the model
simulation results at runtime, together with AI techniques, can be exploited as
part of the ESM workflow management. They can bring forward advanced pos-
sibilities for smart execution of the workflow, enabling more efficient resource
usage as well as a shorter time-to-solution. One of the typical tasks in climate
modelling is to run ensemble simulations that consist of multiple members and
can take a significant amount of time. Ensembles are used to assess uncer-
tainty in model results, for model tuning, or for exploring different scenarios
of particular events. In the current workflows, the number of members to run
is usually fixed at the start of the workflows and is constrained by the avail-
able computational resources.Ultimately, not all the members may be needed.
In this sense, dynamic workflows with in-memory access to model results, able
to adapt simulations at runtime by performing a smart (possibly AI-driven)
pruning of ensemble members, could reduce resource usage and improve energy
efficiency. One of our major objectives is to determine which metrics can be
used to prune members without impacting the quality of the simulation. This
requires novel systems able to adapt dynamically the workflow execution, based
on these runtime-computed metrics. In a more general sense, dynamic access to
model results allows the implementation of model diagnostics, especially those
that require high temporal frequency data without changing the model code and
frequent data serialization. This is especially important for very high resolution
climate models, which face I/O and storage limitations.

Data-driven approaches can also play a significant role in enhancing knowl-
edge extraction from large climate simulation data, leading to a better under-
standing of the climate system. In this respect, Tropical Cyclone (TC) detection
and tracking represents an important case study since it requires multiple two-
dimensional fields, such as pressure, temperature, wind velocity, vorticity, at
different time steps (with a frequency of at least 6 hours) and from very high-
resolution General Circulation Model (GCM) data [9], for example coming from
the Coupled Model Intercomparison Project - phase 6 (CMIP6) [10] or very
high-resolution models (e.g. the CMCC-CM3 model).

TC analysis can be very challenging due to the large amount of data in-
volved, its heterogeneity, and processing complexity. This is even more critical
if data from multiple models are considered in the process. Different detec-
tion and tracking methods, mainly based on statistical methods, are available
in the literature [11], and new emerging approaches are investigating the use
of ML/deep learning (DL) techniques to assess the possibility of speeding up
the process and improving energy efficiency. Currently, these types of analyses
are generally executed offline, on the data produced by the ESM models, us-
ing specialized tools and scripts and could benefit greatly from novel solutions

7

able to include DA and ML/DL technologies in the HPC workflow. The adop-
tion of strongly integrated and data-driven approaches will enable scientists to
tackle considerably larger and more complex problems than are possible today
in climate science. In-situ mechanisms will represent another step forward in
this direction by integrating data-driven approaches directly within the model
simulation, delivering an even more efficient solution.

Figure 2 shows the resulting end-to-end ESM workflow integrating the afore-
mentioned aspects. This can only be possible through new workflow platforms
able to integrate HPC, DA and AI components.

Figure 2: Main phases envisioned in the enhanced ESM workflow. The left side shows the
ensemble members pruning process, while the right side depicts the feature extraction stages
based on HPC, DA & ML/DL techniques.

The availability of enhanced workflow capabilities will ultimately (i) support
transparent integration of simulation-centred and data-driven components, (ii)
allow scientists to further increase knowledge of the climate system by delivering
better data to end-users for societal challenges, and (iii) democratize access to
these complex end-to-end ESM workflows.

2.3. Urgent computing for natural hazards

Urgent Computing (UC) applies HPC/DA during or immediately after emer-
gency situations, combining complex edge-to-end workflows with capacity com-
puting. Early decisions in earthquake/tsunami response are typically based on
interpretations of the best available, yet often limited, data immediately fol-
lowing the event to estimate its impact. Synthetic maps of ground shaking
and/or tsunami inundation can help to assess losses (e.g., for the insurance sec-
tor) or to direct immediate relief (e.g., for civil protection and first and second
responders). Ensemble realizations are typically required to account for input
and model uncertainties, and have strict time constraints (e.g., two hours in

8

ARISTOTLE-eENHSP, enhanced European Natural Hazard Scientific Partner-
ship [12]). Given their inherent computational cost and input data sensitivity,
significant HPC resources are needed to enable high-fidelity large-scale ensemble
simulations within the required time constraints.

Seismic and tsunami UC workflows consist of three main phases (see Figure
3):

1. Pre-processing, where an ensemble of possible earthquake sources (with
uncertainty) is based on seismic data.

2. Simulation, where ground shaking/tsunami impact is quantified numeri-
cally for each individual scenario.

3. Post-processing, in which simulation results are aggregated to produce
probabilistic estimates including both source and modelling uncertainty,
potentially updated with incoming observations from monitoring networks.

Figure 3 displays the existing workflows and planned development extensions.
In particular, future UC workflows aim at being responsive to live data streams
with dynamically updated scenario ensembles and hazard analyses. ML-based
emulators may be able to predict outcomes of the HPC-based simulations given
sufficient training sets. The tsunami post-processing currently performed on
local hardware may be improved by being performed on HPC resources, and
a prototype of a database of Earth models will be developed for the seismic
workflow.

Figure 3: Main phases in the UC workflows for earthquakes and tsunamis. Black elements
describe the existing workflows and red elements the desired advances.

9

2.3.1. Probabilistic tsunami forecasting and faster than real time tsunami sim-
ulations

Probabilistic Tsunami Forecasting (PTF) for tsunami early-warning requires
that a large ensemble of tsunami simulations are calculated Faster Than Real
Time (FTRT), based on source estimates immediately following an earthquake
[13, 14, 15, 16, 17]. Uncertainties arise both from model limitations and scarce
knowledge of fault geometry and mechanism. Both are managed in PTF [13].
Ensemble initialization is based on real-time seismic monitoring tools and sim-
ulations are performed with the Tsunami-HySEA code running on Graphics
Processing Units (GPUs). Post-processing aggregates the individual simula-
tions, managing inherent uncertainty. The following specific steps may improve
the operational level of tsunami forecasting:

1. Revision of the PTF workflow to reach time-to-solution performance tar-
gets relevant for UC, with time-management and failure safeguards.

2. Optimization of ensemble initialization and updating with dynamically
evolving uncertainty quantification, based on real-time seismic data, tsunami
records, and DA.

3. Use of AI for rapid impact estimation (e.g. [18, 19, 20]) to accelerate the
workflow and potentially integrate ensembles in real-time.

4. Use of DA and AI tools to enhance event diagnostics and post-processing
analyses including cloud storage of detailed results for subsequent DA
processes.

To meet time constraints, the workflow will benefit from a solution that
overlaps multiple phases, avoids global synchronizations, and exploits workflow
environments able to perform dynamic elastic resource management. Fault tol-
erance is an additional requirement, as is an environment able to integrate HPC
phases with DA and AI.

2.3.2. UCIS4EQ

The Urgent Computing Integrated Services for Earthquakes (UCIS4EQ)
workflow has been developed as a Pilot Demonstrator under the ChEESE Center
of Excellence2. UCIS4EQ coordinates the execution of large 3D full waveform
simulations to obtain rapid and realistic synthetic shaking estimates following
an earthquake [21]. UCIS4EQ is coupled to state-of-the-art massively paral-
lel simulation solvers so that, given sufficient HPC resources, simulations can
be completed within minutes to hours. Typical uncertainties come both from
source characteristics that cannot be constrained uniquely (given sparse ini-
tial data) and from unresolved soil effects which may amplify or reduce seismic
waves.

UCIS4EQ is developed considering not only the functional requirements,
but also to ensure the quality of non-functional requirements such as robust-
ness, interoperability, availability, portability, and maintainability. Each process

2https://cheese-coe.eu

10

is encapsulated to work as a specialized micro-service, with all components con-
tainerized and ready to deploy as a cloud service. The following specific aspects
should be upgraded in the UCIS4EQ workflow (under development or not im-
plemented) to bring it closer to an operational level:

1. An integrated workflow management system, including workflow moni-
toring and steering and dynamic resource management. Currently the
components are activated sequentially, with HPC jobs submitted simulta-
neously.

2. Ensemble simulations for uncertainty quantification. A current prototype
exists for suites of runs without assigned probabilities.

3. Real-time data assimilation to assess and/or adjust the ongoing simula-
tions.

4. A prototype database of 3D velocity models.

5. Regression and/or DL models to estimate shaking intensity maps at time
scales of seconds to minutes. Such ML “twins” will enhance uncertainty
quantification.

To achieve the use case objectives, the workflow will benefit from a solution
that enables autonomous integrated management of the multiple HPC and data
assimilation phases, with support for a real-time assessment of the situation to
enable a dynamic adaptation of the simulations.

3. Background and challenges

This section analyses the context of HPC/DA/AI convergence for supporting
the new complex workflows presented in the previous section. First, we present
background and previous work from several points of view (development, deploy-
ment, data management and computer architecture). Afterwards, we present
the main challenges to efficiently supporting these complex workflows.

3.1. Background and related work

3.1.1. Workflows development and HPC

An important aspect in scientific workflows concerns the programming struc-
tures they provide for the development of scientific applications [22]. Existing
approaches in this area can be broadly categorized based on their level of ab-
straction model (high-level versus low-level) and on the type of programming
formalism they support; some of them are based on graphical interfaces, such
as Kepler [23], Taverna [24] or Galaxy [25]; some on textual interfaces, such
as Pegasus [26], Askalon [27] or Autosubmit [28]; and several on programmatic
interfaces, such as COMPSs [29] or Swift [30].

A relevant observation is that scientific communities seem to stick to one or
another solution. For example, Galaxy [31] has been adopted by the ELIXIR life
science research infrastructure as its main workflow environment, while Cylc [32]
was selected, among others, by the Earth Science community.

11

Typically, HPC applications are developed using the MPI programming
model [33], which is the de-facto standard for this type of applications. It is
based on the idea of having a large number of concurrent processes exchanging
messages to solve a large problem cooperatively. MPI is combined with other
approaches to exploit concurrency inside the potent HPC nodes. The most pop-
ular approach for this is OpenMP [34]. Additional complexity for the application
developers is the appearance of accelerators, such as GPUs, which require spe-
cific programming environments such as CUDA [35] or OpenCL, among others.
HPC programming models tend to be quite low level and require considerable
effort from the application developer.

3.1.2. Data analysis workflows

DA applications can be conveniently modelled as workflows combining dis-
tributed datasets, pre-processing tools, data mining and ML algorithms, and
knowledge models. Compute and storage facilities of large-scale HPC systems
can be effectively exploited to parallelize the execution of workflows composed
of dozens to thousands of tasks, to achieve higher throughput and to reduce
turnaround times. This is particularly true in the context of DA workflows, in
which the data volumes to be analyzed are huge, and tasks take a long time to
complete their execution on conventional machines [36]. Implementing efficient
DA workflows from scratch on HPC systems is not trivial and requires expertise
in parallel and distributed programming. To cope with design and programming
issues, high-performance programming models for data analysis workflows have
been recently proposed [37].

DA workflows allow programmers to express parallelism at several levels
(i.e., data, task, pipeline parallelism), which can be exploited at runtime by
HPC platforms comprising a large number of processing and storage elements.
In addition, the ability to reuse workflows by modifying the input data or the
algorithms and tools, combined with the ability to create hierarchical workflows
where individual nodes can, in turn, be workflows, allow users to define and
execute a variety of data analysis applications that go well beyond the classical
scientific applications executed on HPC platforms.

3.1.3. AI workflows

The convergence of AI environments –and more specifically ML libraries–
with HPC platforms provide the opportunity for major performance improve-
ments for the effectiveness, reusability and reproducibility of the simulation
[38]. Usually, models are generated by running effective ML algorithms over
large data sets that are produced from various sources. The generated model
can comprise vectors of coefficients as well as different tree or graph structures
with specific values. These derived models can accelerate the development of
high-performance DL inference applications. Furthermore, pre-trained models
also speed up the production deployment process.

Having a model repository enables the tracking of parameters and results of
trained models to further package with ML libraries and codes in a reproducible
and reusable manner in a targeted environment. For HPC and DA convergence,

12

storing, managing, and sharing capabilities of models are key requirements for
building workflows that make use of ML/DL models. Some efforts towards
automatic management of ML in HPC systems are Dkube3 or the CODEX AI
suite4

3.1.4. Deployment in large infrastructure systems

Due to the widespread number of compilers, library versions, and their in-
compatibilities, every time users want to deploy a new workflow in a super-
computer, they have to check the dependencies, and install the missing ones
taking into account the libraries and compiler versions to detect possible in-
compatibilities. To mitigate these issues, there exist tools such as Spack [39] or
Easybuild [40] that provide mechanisms to deal with these issues and automate
the installation process of new software in HPC environments. However, they
still require an expert HPC developer to create the packages or recipes for these
tools and verify that they work for each supercomputer.

In Cloud environments, virtualization and container technologies have sim-
plified the portability of complex applications. Hypervisors such as KVM [41]
or container engines such as Docker [42] allow running processes in customized
environments on top of computing nodes. These environments can be cus-
tomized as normal computers and saved as images, which can easily be copied
to other nodes where the same process can be executed with the same envi-
ronment. The main barriers to deploying these technologies in HPC are rooted
in the requirement of running hypervisors and engines in privilege mode (root
access) with the security consequences that this implies and the integration of
images with specific HPC hardware such as fast interconnects drivers. Singular-
ity [43] is a container engine that tries to overcome these issues by not requiring
privileged user mode to run the container, allowing direct access to the host
drivers to benefit from the special HPC hardware. Cloud Computing also pro-
vides service-oriented abstractions called Everything-as-a-Service, where a set
of services is offered depending on the usage model. One of the latest pro-
posed service models is Function-as-a-Service (FaaS). This service enables users
to execute functions in the Cloud in a transparent way with a simple REST
application programming interface (API) call and without having to deal with
the entire deployment, configuration and execution management overhead. The
FaaS platforms, such as the commercial AWS Lambda, Google Cloud Func-
tions, or open-source approaches like OpenWhisk [44] or OpenFaaS [45], are in
charge of managing the different function executions, allocating the computing
resources when required, deploying the function software, obtaining the input
data and storing the output results.

3URLhttps://www.dkube.io/products/datascience/hpc-slurm.php)
4URLhttps://atos.net/en/solutions/codex-ai-suite-fast-track-artificial-intelligence

13

3.1.5. Data management/storage aspects

Persistent storage in HPC has traditionally been dominated by file systems
[46]. Applications consuming file-based data need to open and read the files to
load the data into memory, transforming it to the appropriate data structures for
efficient manipulation. This process is usually implemented by the programmer
as part of the application unless using specific file formats, such as NetCDF [47]
or HDF5 [48], which provide specific libraries to facilitate this task. Additionally,
scalability problems in file-based storage systems are well-known [46], which
led to different storage solutions based on abstractions other than files (e.g.,
object stores or key-value stores, among others) gaining popularity not only in
Cloud but also in HPC environments [49]. These storage solutions can provide
more flexibility in accessing persistent data by enabling data accesses at a finer
granularity, as well as providing efficient access to data during the computation,
and facilitating the implementation of common application patterns in HPC,
DA and AI, such as producer-consumer or in-situ analysis or visualization.

New technologies blurring the line between memory and storage have re-
cently become available. These technologies, called persistent memories or non-
volatile memories (NVM), such as Intel Optane DC [50], are similar to memory
in speed, similar to disk in capacity, and are byte-addressable. These features
open the door to computing directly on the stored data without having to bring
it to memory, enabling HPC, DA, and AI applications to deal with larger vol-
umes of data (i.e., not fitting in main memory) at high-speed [51].

3.1.6. Computer architecture perspective

The recent trends in HPC confirm that a hybrid architecture combining
CPUs, GPUs, and even customized accelerators has become the preferred node
type for a large range of workloads of interest for HPC and data centres, includ-
ing ML, DA, and scientific simulation. The path to keep increasing performance
while maintaining energy efficiency lies in the use of Domain-Specific Architec-
tures (DSAs). Indeed, one of the most prominent and appealing domains for
specialization and adaptation of the system is DL. New accelerator units such
as Google’s TPU [52] offer considerable higher energy efficiency when compared
with traditional architectures (CPUs or even GPUs). Adoption of such DSAs to
workflows becomes significant. In addition, over the last years, reconfigurable
devices, such as FPGAs (field-programmable gate arrays), are gaining popu-
larity as co-processing devices in HPC and Data centre environments. There
are clear past successful examples such as the Catapult project [53]. Moreover,
new products based on FPGAs, such as Alveo and Versal boards, target AI
applications and the HPC domain.

3.1.7. Other related projects

We can find several EU funded projects targeting the convergence between
HPC and DA. The LEXIS project [54, 55, 56] tackles the description and au-
tomation of computational workflows (e.g., simulations with subsequent data
analysis steps) providing easy access to federated computing and data systems.

14

It is building an advanced engineering platform and portal leveraging large-scale
geographically distributed HPC and Cloud computing resources.

Similarly, the EVOLVE project [57] also proposes a software stack to inte-
grate HPC and DA environments. It consists of a Python module for Apache
Zeppellin notebook, which is used to create workflows based on container im-
ages deployed and orchestrated on top of a Kubernetes architecture. It allows
to transparently deploy applications both in the Cloud and in clusters.

The ACROSS project [58] is a EU funded project that aims at combining tra-
ditional large scale HPC simulations, high-per-formance data analytics (HPDA)
and ML/DL techniques to boost the performance of the simulation frameworks
and/or improve the quality of the simulation results without increasing com-
puting resources consumption.

The ADMIRE project [59] focuses on satisfying the performance require-
ments of today’s data processing applications by addressing the storage bottle-
necks in HPC architectures. To this aim, the project proposes to create an ac-
tive I/O stack that dynamically adjusts storage resources to the computational
resources of jobs, taking advantage of emerging multi-tier storage hierarchies
including persistent memory devices.

3.2. Challenges

The context and requirements of the described use cases have raised a set of
challenges in workflow design and management that are summarised below.

3.2.1. Challenge 1: Enable the openness, reusability, reproducibility and acces-
sibility of the workflows and their results

With the introduction of virtualization and containers, porting applications
into Cloud environments has improved considerably, easing the porting of ap-
plications implemented in well-known software stacks (e.g., LAMP, MEAN,
Hadoop). However, the complexity of workflows is growing fast, and they are
required to combine multiple HPC, DA, and AI frameworks. Enabling the
portability and accessibility of these workflows to the wide variety of HPC sys-
tems is still an open challenge. First, current workflows require deploying and
orchestrating the multiple frameworks, which must be coupled tightly with the
computing infrastructure. Moreover, reusing the same tools used in the Cloud
environments to deploy applications in HPC environments is not possible due
to the security and accessibility requirements in supercomputers. Therefore,
installations and deployments are usually managed by system administrators to
ensure they are adapted to the supercomputer capabilities.

A similar challenge appears with the workflows results. Enabling their
reusability and reproducibility requires designing and implementing a tailored
mechanism to make those results available to the users considering the access re-
strictions of the HPC systems. To overcome this situation, new tools or current
Cloud deployment and data-sharing tools have to be redesigned, extended, and
adapted to accommodate the requirements of the new complex workflows and
to fulfil the HPC access constraints. This includes related to user management,

15

security and version control of the workflow and their components (data, model,
code components) in federated infrastructures.

3.2.2. Challenge 2: Simplify the development of complex workflows while keep-
ing their capabilities and performance

Traditionally, the HPC software stack has focused on providing libraries
to optimally exploit the target infrastructure. As mentioned earlier, existing
HPC programming models, such as MPI or OpenMP, enable the development
of parallel applications but they are still too complex for general scientists,
especially if they need to develop a higher abstraction, complex, workflow. Even
more, existing workflow systems usually do not entail the possibility of including
parallel or HPC tasks (i.e., tasks implemented with MPI and/or OpenMP).

Also, as mentioned in section 1, different methodologies have been proposed
for the development of HPC, DA, and AI codes. In general, current available
methodologies for developing workflows do not fulfill the requirements of in-
creasingly complex applications, requiring novel procedures supporting a holis-
tic workflow composed of HPC simulations or modeling, DA and AI tasks. To
keep performance, the usage of new, powerful, and energy-efficient heteroge-
neous computing nodes is a must. For example, GPUs are very efficient in
the DL training phase, but they require the development of specific code for
heterogeneous devices.

To address these issues, new methodologies that support simpler and intu-
itive workflow development need to be proposed. Since our focus is to support
workflows that integrate components of diverse nature (HPC, AI, and DA),
these methodologies should bridge the gap between the application and the
heterogeneous infrastructure in order to maintain the expected performance.

3.2.3. Challenge 3: Support for workflow dynamicity

An additional challenge introduced by complex workflows is dynamicity.
Current workflow managers support static workflows with very limited dynam-
icity. This approach fits traditional workflows that solve problems with simple
pipelines or graphs, repeated loops with different input parameters, or small
workflow modifications using conditional control flows. However, the complex
workflows considered in this work require support for high degrees of dynamicity
and flexibility in their development and execution. The workflow programming
models and engines should support applications with dynamic data sources,
with variable input data, producing alterations in the computation workflow,
invalidating the initiated computations and requesting new computations. In
some cases, the workflow requires a dynamic adaptation applied in real-time to
fulfill an urgency constraint of the computation. To support this dynamicity,
the workflow manager should be able to react to changes in the input data and
generate new computations on demand.

However, the workflow dynamicity can not only be driven by the input data.
For example, an early analysis of the results can detect parts of the workflow
tending to solutions that are insignificant for the final results. Such compu-
tations can be canceled for saving resources or dedicating them to extend the

16

search space or to increase the effectiveness of the solution. In this sense, the
workflow manager should be also able to dynamically modify an existing work-
flow by removing already expected computations, and sometimes adding new
ones in reaction to given events.

Finally, the mentioned dynamic workflow support at the development and
execution level has to be tightly combined with elastic resource management in
order to adapt the computing capacity with the changing computing demands
required by the workflows, which will make more sensible use of the resources
and save power.

3.2.4. Challenge 4: Enable data management and computation integration

Current approaches to implement data management usually differ between
environments that execute scientific applications and those that implement DA.
However, workflows integrating both kinds of computation can improve the pro-
ductivity of scientists and engineers, as well as the performance of the workflows
themselves, which could start the analysis of the data before the data generation
ends. To provide an effective environment for this kind of hybrid workflows, it
is necessary to provide a unique data management strategy that reduces the
data movements between different storage systems, whilst supporting both sci-
entific and DA workloads efficiently. This unique strategy should be able to
provide the data generation application with a fast data ingestion mechanism,
which should not limit the potential parallelism of the computation (avoiding
synchronisation points due to data storing). At the same time, it should be able
to provide a simple interface that enables programmers to access intermediate
results efficiently.

Datastores for DA usually meet these requirements. However, developers of
HPC applications, used to working with files, are reluctant to adopt them for
several reasons. First, the efficient utilisation of this type of datastores involves
a low-level knowledge of their design, to tune all the available configuration
parameters. Second, deciding how to organize the data (i.e., defining the data
model) influences the performance of both reading and writing, and obtaining
efficient data models also requires a deep knowledge of the execution platform
(both hardware and software stack). Third, enhancing data locality is also a goal
of this type of data store, but once again it is rarely transparent to programmers.
Finally, changing their traditional approach to storing data involves learning
new interfaces that usually change from one datastore to another.

To overcome this reluctance, it is necessary to add a layer to the software
stack that relieves programmers of these tasks. This layer should provide auto-
matic and transparent tuning of the data store and data locality enhancement,
automatic data modelling, and a simple interface independent of the particular
data store in the system and close to the data structures managed by the ap-
plication. These features would allow the programmer to focus on the problem
domain, and at the same time, provide the required performance and parallelism
in collaboration with the programming model.

In addition, the popularisation of persistent memory devices offers the pos-
sibility of rethinking strategies both on how data is accessed and how data is

17

modelled in datastores. By exploiting the capabilities of these devices in the
data management layer, again transparently to the programmer, applications
will be able to seamlessly manage larger amounts of data and benefit from a
higher performance in data access.

4. eFlows4HPC solution

eFlows4HPC is a EuroHPC funded project which aims at enabling dynamic
and intelligent workflows in the future European HPC ecosystem. The high-
level structure of the project is depicted in Figure 4. We propose integrated
solutions to cover the challenges presented in Section 3.2. First, eFlows4HPC
defines a software stack that covers the different functionalities to support the
whole lifecycle of the complex workflows introduced in this paper. Second, it
proposes the HPC Workflow-as-a-Service (HPCWaaS) methodology to enable
reusability of these complex workflows as well as simplifying the accessibility to
HPC resources. Finally, the project also works on the workflow kernels for new
heterogeneous architectures.

Figure 4: eFlows4HPC project overall approach.

4.1. eFlows4HPC software stack

The eFlows4HPC software stack comprises existing software components,
integrated and organised in different layers (Figure 5). The first layer consists
of a set of open repositories, catalogues, and registries to store the informa-
tion required to facilitate the re-usability of the target workflows (Workflow
Registry), their core software components such as HPC libraries and DA/AI
frameworks (Software Catalog), and its data sources and results such as ML
models (Data Catalog and Model Repository). Besides, it also provides the HPC

18

Workflow-as-a-Service interface, which allows developers to deploy workflows in
the HPC infrastructures transparently and makes them easily accessible for the
final users. This layer mainly addresses Challenge 1, and the details about how
the components are used to address it are described in Section 4.2

The second layer provides the syntax and programming models to imple-
ment these complex workflows combining HPC simulations with DA and AI.
A workflow implementation consists of three main parts: a description about
how the software components are deployed in the infrastructure (provided by
an extended TOSCA definition [60]); the functional programming of the paral-
lel workflow (provided by the PyCOMPSs programming model [61]); and data
logistic pipelines to describe data movement to ensure the information is avail-
able in the computing infrastructure when required. The combination of these
three models enables the reproducibility and reusability aspects of Challenge
1 and focuses on the development aspects of Challenges 2 and 3. More details
about workflow development are provided in Section 4.3Finally, the lowest layers
provide the functionalities to deploy and execute the workflow based on the pro-
vided workflow description. On the one side, this layer provides the components
to orchestrate the deployment and coordinated execution of the workflow com-
ponents in federated computing infrastructures. On the other side, it provides
a set of components to manage and simplify the integration of large volumes of
data from different sources and locations with the workflow execution. This part
of the stack addresses the runtime aspects of Challenges 2, 3 and 4. More details
on how these components interact at execution time are given in Section 4.4

Figure 5: eFlows4HPC Software Stack.

4.2. HPC Workflows-as-a-Service (HPCWaaS)

Currently, one of the main barriers to the adoption of HPC is the complexity
of deploying and executing workflows in federated HPC environments. Usually,

19

users are required to perform software installations in complex systems which
are well beyond their technical skills. Therefore, preparing the workflows for ex-
ecution in a supercomputer typically takes a large amount of time and human
resources. If it needs to be replicated on several clusters for reliability require-
ments or in order to assess the reproducibility of the results, the required time
and resources will increase. To widen the access to HPC to newcomers and,
in general, to simplify the deployment and execution of complex workflows in
HPC systems, eFlows4HPC proposes a mechanism to offer HPC Workflows-as-
a-Service (HPCWaaS) following a similar concept as the Function-as-a-Service
(FaaS) in the Cloud, but customizing it to workflows in federated HPC environ-
ments. The goal is to hide all the HPC deployment and execution complexity to
end-users in such a way that executing a workflow only requires a simple REST
web-service [62] call.

Figure 6: Overview of the proposed HPC Workflow-as-a-Service model.

Figure 6 shows an overview of how the proposed model works. The HPCWaaS
is built on top of the eFlows4HPC software stack in order to provide the required
functionality to develop, deploy, and execute complex workflows. Similar to the
FaaS model, two user roles are defined in the HPCWaaS: one for workflow
developers that are in charge of implementing the workflows, and another for
workflow user communities, which are solely interested in executing the workflow
and obtaining the results. To support these two roles, the HPCWaaS platform
provides two interfaces: the Developer Interface, to build and register the work-
flows in the system, and the Execution API which provides a REST interface
to manage the execution of the registered workflows.

At development time, workflow developers are in charge of building the work-
flow using the information stored in the registries and the programming models
provided by the eFlows4HPC stack (to be described in Section 4.3). Once

20

the workflow implementation is completed, the workflow is registered in the
HPCWaaS platform to make it available to the community of workflow users.
On one side, the workflow description will be stored in the Workflow Registry,
the description of software components will be stored in the Software Catalog,
and the data sources and outcomes will be registered in the Data Catalog and
Model Repository. Upon a successful registration, the workflow developer re-
ceives a service endpoint from the Execution API, which can be shared with the
workflow users to invoke the developed workflow. At invocation, the workflow
will be automatically deployed and executed in the computing infrastructure
using the rest of eFlows4HPC stack functionalities.

The proposed HPCWaaS model addresses the reusability, reproducibility and
accessibility of Challenge 1. Once a workflow is registered to the HPCWaaS, dif-
ferent workflow users can easily execute the workflow by invoking the workflow
end-point that facilitates the accessibility. Several users can run the workflow
with the same input parameters that will perform the same computation provid-
ing the reproducibility capability in the developed workflows, but they can also
invoke the workflow with different input data to perform the same computation
on different datasets that also simplifies reusability. Since the workflow and the
descriptions of their software components are stored in public repositories, they
can also be re-used to compose other complex workflows.

The following sections provides additional details on how the eFlows4HPC
components interact to provide the required functionality in the phases of the
workflow lifecycle.

4.3. Workflow development phase

One key part of the mentioned challenges is the implementation of complex
workflows that combine HPC, DA, and AI frameworks in a dynamic and reusable
way. eFlows4HPC proposes two mechanisms in order to achieve this challenge,
as depicted in Figure 7. On the one hand, the software stack provides a set of
open catalogs and repositories, providing workflow developers with a means to
store and share information about the software components, data and models
used by the workflows. These component are built on top of version control
repositories, such as Git, providing the capabilities to manage different versions
of the stored descriptions and codes:

1. The Data Catalog and the Model Repository store the description of those
datasets and ML models that are available as input for the workflows or
those that are generated by the workflows. They include information on
how to access or store them, such as the format, location, and protocol
(FTP, WebDAV, etc.). This description is used by the Data Logistic
Pipelines to identify the input and output data and how to process them.

2. Similarly, the Software Catalog stores the description of the software com-
ponents used by the workflows. It stores the information about how the
software is deployed and how it is invoked. The first part is included in
the workflow TOSCA description and the invocation description is used

21

Figure 7: Workflow development phase.

by the PyCOMPSs workflow to simplify the integration of software exe-
cutions inside a workflow.

3. Finally, the workflow registry stores the workflow descriptions, which can
be retrieved by other users to reproduce the same workflow in other envi-
ronments or use them as templates to create new workflows.

In addition, we propose a description that uses this information to create com-
plex workflows that combine different software (HPC, DA, and AI frameworks)
which are portable and reproducible. This description is composed of a com-
bination of an Extended TOSCA syntax, the PyCOMPSs programming model,
and the data logistic pipelines.

TOSCA is an OASIS standard to describe the deployment topology and
orchestration of cloud applications. This standard allows developers to spec-
ify the software components and services required by an application, and the
relationships between them. For each component, TOSCA describes how it is
deployed, configured, started, stopped and deleted. According to their rela-
tionships, TOSCA orchestrators, such as Yorc, generate a set of workflows to
orchestrate the whole application lifecycle (deployment, execution, and release).
In eFlows4HPC, the TOSCA definition is extended to support the deployment
and execution of workflows implemented with PyCOMPSs and data logistic
pipelines.

The PyCOMPSs programming model provides the logic of how the different
software invocations are performed. PyCOMPSs is a task-based programming

22

model that enables the development of workflows that are executed in parallel
on distributed computing platforms. It is based on sequential Python scripts,
offering the programmer the illusion of a single shared memory and storage
space. While the PyCOMPSs task-orchestration code needs to be written in
Python, it supports different types of tasks, such as Python methods, external
binaries, possibly multi-threaded (internally parallelised with alternative pro-
gramming models such as OpenMP or pthreads), or multi-node (MPI applica-
tions). Thanks to the use of Python as the programming language, PyCOMPSs
supports almost all the dynamicity a programming language offers to developers
(loops, conditionals, exceptions) and naturally integrates well with DA and ML
libraries, most of them offering a Python interface.

Finally, in the last part of the workflow description, the Data Logistic
Pipelines allow developers to describe how the workflow data is acquired, moved
and stored during the workflow life-cycle in order to ensure the data is available
in the computing infrastructure when required. The pipelines are also defined
in Python, which reduces the entry barrier for the development.

Figure 8: Workflow description example.

Figure 8 illustrates an example of a workflow description. As mentioned
earlier, it is mainly an extended TOSCA topology defining the components of
the workflow and their relationships. For instance, this example is composed of
two PyCOMPSs workflows, two data pipelines, and several services. One of the
PyCOMPSs workflows must be deployed in an HPC infrastructure and requires
an HPC simulator as well as an ML framework; the other runs in the cloud and
requires a DA framework. Regarding the data logistic pipelines, one is defined
to retrieve data from an external repository and move it to a shared storage of
an HPC cluster; the other performs movements between the HPC and Cloud
environments. The TOSCA description of the workflow components provides a
link to specify where the code for the components is stored, and describes how
it can be deployed and executed.

As mentioned earlier, the workflow description is registered and stored in
a workflow registry by means of the Development Interface. The result of this

23

registration produces a new service endpoint in the Execution API that can be
later used to invoke the execution of the workflow.

4.4. Workflow invocation phase

Prior to executing the registered workflows, the users have to configure the
infrastructure access credentials. These consist in the usernames and secrets
such as public-key certificates, passwords, etc. The users’ certificates are man-
aged by an Execution API, as shown in Figure 9a. This provides a few methods
to register and access credentials or generate a new secret, such as a key-pair
that the user has to authorize by adding them in the authorized keys of the
HPC cluster. The access credentials are stored in a secrets’ storage such as
Vault [63]. These credentials will be identified by a token attached to the user’s
workflow invocation. This will allow the components involved in the execution
to use these secrets to access the infrastructure on behalf of the user, deploy the
required components and data, and spawn the workflow computations.

Once the credentials are registered, the user only need to invoke the end-
point provided at the end of the workflow development phase. As a result of this
invocation, the deployment and execution in federated computing HPC infras-
tructures is triggered. This functionality is provided, as depicted in Figure 9, by
the cooperation of several components at different levels. At the highest level,
the Ystia Orchestrator (Yorc) is in charge of managing the overall workflow
deployment and execution. First, it retrieves the workflow description (Step 1
in Figure 9b) and passes the data logistic pipelines to the Data Logistic Service
(Step 2 in Figure 9b) to set up the required data movements such as the data
stage-in and stage-out, or periodical transfers to synchronize data produced
outside the HPC systems (Step 3b in Figure 9b and Step 2b in Figure 9c).
In parallel with the data deployment, Yorc orchestrates the deployment of the
main workflow components in the computing infrastructures and manages their
lifecycle (configuring, starting services) as described in the TOSCA part in the
workflow description (Step 3a in Figure 9b).

This deployment is managed by means of containers that offer the sim-
plest way to distribute software. However, the creation and deployment of the
container images will differ depending on their functionality and target envi-
ronment. For components and software deployed in the Cloud, we follow the
traditional toolchain with images created from generic binary packages provided
by the operating systems. In the case of HPC software, containers are built ac-
cording to the target architecture of the HPC system in order to achieve the
performance offered by these systems. In these cases, we propose a combination
of the container image build procedures with HPC build systems like Spack [39]
or easybuild [40]. These systems are used to manage the installation of software
for HPC environments facilitating the installation of the software different com-
piler tool chains and architectures. Introducing them in the container images
build procedures will bring the benefit of the container-based software distri-
bution while fulfilling the requirements for getting good performance in HPC
systems.

24

Regarding resource management, Yorc is in charge of orchestrating the re-
source provisioning by contacting the Cloud Manager (such as OpenStack) and
deploying the containers as indicated in the TOSCA topology. In the case of
HPC clusters, due to their connectivity and security constraints, the images are
exported to files and transferred to the HPC storage, which will be deployed as
containers at execution time using specialized HPC container engines such as
Singularity [43].

Once the workflow components and initial data have been deployed, Yorc
submits the execution of the main workflow processes to the HPC infrastructure
through UNICORE [64], which is in charge of managing the federation of HPC
compute and data resources in order to make them available to users in a secure
way (Step 1 in Figure 9c). At the lowest level, the COMPSs runtime [65]
will coordinate the invocations of the workflow components implemented with
the PyCOMPSs task-based programming model (Step 2a in Figure 9c). As
mentioned earlier, COMPSs supports several task types which can include HPC
simulations, DA transformations, etc. The runtime dynamically generates a
task-dependency graph by analysing the existing data dependencies between
the invocations of tasks defined in the Python code. The task-graph encodes
the existing parallelism of the workflow, which can be used to schedule the
execution in the resources already deployed by Yorc. Based on this scheduling,
the COMPSs runtime can interact with the different HPC, DA, and ML runtimes
to coordinate resource usage, deciding which parts can run in parallel to deliver
high overall performance.

However, the performance of the HPC simulations, DA algorithms, and/or
training or inference DL processes is related to several input parameters that
specify data partitionings and degrees of parallelism, such as the number of
MPI processes, the data chunk size, and/or training batch. This is usually
provided by the user and their optimal value is decided after a trial-and-error
process. This user decision can be improved by an AI-assisted system where
the optimal configuration (chunk size or number of processes) of the different
workflow parts is inferred at runtime based on historical information. Each
time a workflow is executed, the runtime systems (Yorc and COMPSs) store
profiling data about the duration and resource usage of the different workflow
tasks. This information, together with metadata for the dataset and the used
execution configuration, can be used to train an ML model which relates the
configuration to the used resources and the execution time. Then, every time
a new execution of a workflow is submitted, the runtime systems can use this
model to infer the best workflow configuration for the given the input dataset
and the available resources.

Apart from the dynamic task graph generation, the COMPSs runtime offers
several other features that enable different types of dynamicity in the work-
flow.For example, it is able to react to task-failures and exceptions in order to
adapt the workflow behaviour accordingly [66]. Moreover, it is also able to
combine distinct types of data patterns in the same workflow. For instance,
it supports data streams for communicating multiple tasks, or between tasks
and the main code. It can be used to create workflows, whose computation is

25

adapted to dynamic data sources, or to track the results of long-lasting com-
putations before finishing the execution, allowing faster reactions by canceling
unnecessary computations or spawning new ones with more relevant parame-
ters [67].

These functionalities, together with similar features provided by Yorc at a
higher level, enables the possibility of supporting workflows with a very dynamic
behaviour as described in Challenge 3.

Finally, with respect to the integration of the data management and com-
putation, the eFlows4HPC stack provides two solutions for persistent stor-
age: Hecuba (based on key-value databases) and dataClay (object-oriented dis-
tributed storage) [68]. These solutions can be leveraged by PyCOMPSs appli-
cations to store application objects as persistent objects in new memory devices
such as NVRAM or SSDs, enabling the keeping of data after the execution
of the application. This changes the paradigm of persistent storage in HPC,
dominated by the file system, to more flexible approaches. By using persisted
objects, application patterns such as producer-consumer, in-situ visualisation
or analytics, can be easily implemented.

Both solutions, Hecuba and dataClay, implement a common API that allows
programmers to manipulate all the data as regular Python objects, regardless
of whether they are persistent (stored in disk, NVRAM or similar) or volatile
(stored in memory). They allow decoupling the data view of the user and the
data organization in the storage system, which is defined according to the un-
derlying storage system and transparently to the programmer. In addition,
they can execute integrated with PyCOMPSs to enhance data locality and op-
timize the mechanism of passing parameters to tasks. Hence, the proposed data
abstraction layer implemented by Hecuba and dataClay addresses Challenge 4.

4.5. Architectural Optimizations within eFlows4HPC

An internal and important aspect within eFlows4HPC is the actual perfor-
mance achieved for the execution of the workflows. Therefore, the project also
puts the focus on the identification and optimization of the time-consuming
kernels (understood as independent pieces of code with a well-defined function-
ality). The optimization process takes into account not only raw performance
but also performance-per-Watt. Indeed, new energy-efficient heterogeneous ar-
chitectures currently being deployed in HPC and DA ecosystems will be targeted
for the workflow applications. The set of hardware solutions inspected in the
project ranges from pre-exascale systems, such as MareNostrum 5, to high-end
FPGA devices.

As an example, in the field of workflows using AI-specific components, the
project focuses on developing specific kernel optimizations for heterogeneous
architectures. One example is the optimization of convolution operations for
DL training and inference. In this direction, a dataflow-oriented programming
environment, such as that provided in HLS by Xilinx, enables the design of a
pipeline-oriented kernel where throughput is maximized, latency is minimized
and, in principle, higher energy efficiency is achieved.

26

A similar approach is followed in the direction of simulation-oriented HPC
applications: specific kernels can be identified and optimized for new emerging
technologies, such as RISC-V processors. In that aspect, the European Pro-
cessor Initiative (EPI) [69] is taken into account with the deployment of RISC-
V architectures, emulated on the Marenostrum Exascale Emulation Platform
(MEEP) [70].

Finally, GPU-based architectures are also considered for performance im-
provement of specific AI-related optimizations, mostly for distributed training
as required by the project workflows.

5. Discussion

One of they key aspects of our proposal is the concept of HPCWaaS. It ap-
plies the Function-as-a-Service (FaaS) model to the execution of complex work-
flows in hybrid HPC-Cloud systems. FaaS offers the functionality of exposing
functions in the Cloud without dealing with the deployment and execution de-
tails in the Cloud. In this model, a function is registered to the FaaS platform
in the Cloud and other users can invoke it from anywhere using a REST API.
This deployment-execution model is the concept that we port to the HPC en-
vironment. However, there are important differences, such as the computation
granularity and the complexity in the workflow development and deployment.
Current commercial or open-source FaaS approaches, which enable deployment
on private data centres, are focused on fine-grain computations (duration is re-
stricted to a few minutes) and do not support using multiple nodes to host a
function execution. Moreover, the HPC environments are restricted environ-
ments, and system administrators are reluctant to install this type of services.

In order to tackle all these constraints, we propose to build HPCWaaS on
top of the proposed software stack designed to operate with HPC environments
instead of trying to adapt one of the existing Cloud FaaS tools.

A similar concept is the Workflow-as-a-Service (WaaS or WfaaS). It was
initially introduced in [71] and several proposals have been described in [29, 72,
73, 74, 75]. These proposals focus on migrating traditional scientific workflows
as services in the Cloud. This migration has been performed in two ways:
one dedicated to integrating the Workflow Management Systems (WMS) with
Infrastructure-as-a-Service (IaaS) offerings where computations in the workflows
are scheduled in VMs; and an alternative one focused on exposing the WMS
features as a service, where users can submit the workflows and the system
schedules its tasks in the available VMs. In our approach, we deal with complex
workflows that combine the invocation of several computational tasks. These
computations require the integration of a variety of frameworks deployed and
configured in hybrid distributed environments which are difficult to express in
traditional workflow languages such as CWL or WDL. This is the reason why
we propose a new way to describe workflows at different levels, where TOSCA
is located in the upper level to specify the workflows deployment topology. An
alternative to indicate the workflow deployment with Kubernetes is proposed
in the EVOLVE project[57]. Despite this solution seeming to cover the same

27

deployment requirements as our proposal, this container environment is rarely
deployed in HPC clusters because it collides with the traditional HPC resource
managers and queue systems.

TOSCA and one of its orchestrators (Yorc) are also used in projects such
as LEXIS[55] and ACROSS[58] for similar functionalities. However, we pro-
pose a multi-level orchestration approach combining TOSCA with a task-based
programming model (PyCOMPSs) and the Data Logistic Pipelines that allow
developers to describe all the operations involved in a workflow. As explained
in Section 4.3, TOSCA is used for high-level deployment orchestration, the
Data Logistic Pipelines is used to describe data collection and integration, and
PyCOMPSs for the lower-level dynamic workflow execution integrating in-situ
AI/ML steps. This combined description enables the eFlows4HPC components
to perform a reusable and fully automated workflow deployment and execution
from scratch.

Regarding dynamicity in scientific workflows, this aspect has been previously
addressed with the concept of workflow steering [76]. It consists of providing
users with a kind of interactivity to perform fine-tune changes in the workflow
during its execution. These changes are done by steering actions that may sig-
nificantly improve the performance of the system reaching the same or better
resource faster or using less resources. In our case, the PyCOMPSs program-
ming model offers to developers the possibility to program these steering actions
as part of the workflow and automatically apply them during its execution. As
explained in Section 4.4, PyCOMPSs provides mechanisms for indicating fail-
ure reaction policies that inform the runtime what to do with the rest of the
workflow when a task fails. It also provides exception management in parallel
distributed workflows, which automatically cancels tasks and spawns new ones
when an exceptional event occurs during the execution. Finally, PyCOMPSs al-
lows streaming communication between different parts of a workflow that can be
used to evaluate intermediate results and enables the implementation of in-situ
optimization algorithms which can be combined with AI/ML techniques.

Regarding storage, the use of key-value and object store technologies un-
der an object-oriented Python interface facilitate programmability of workflows,
also avoiding serializations and deserializations to files in order to share data be-
tween different steps. Additionally, adding this data abstraction layer provides
the ability to transparently optimize data access thanks to new storage devices,
such as persistent memories. To add to a workflow already existing applications
that use specific libraries or interfaces to access structured data (for example,
HDF5 or NetCDF), our proposal is to integrate our storage technologies with
these interfaces. With this approach, these applications could benefit from our
software stack transparently to the programmer. However, to support applica-
tions with an access pattern that cannot benefit from our storage technologies,
we also allow the utilization of traditional POSIX file systems, so the utilization
of both types of storage systems can be combined in the same workflow.

28

6. Conclusions

In recent years HPC, along with DA and AI, has evolved providing the user
community with powerful tools to tackle their application problems. However,
the lack of programming environments for the development of workflows that
include all three aspects is limiting their convergence.

We have identified four main challenges that need to be overcome to achieve
this convergence. First, the need for tools that foster openness, transparency,
reusability, and reproducibility of the workflows and their results. Such tools are
available in cloud environments but cannot be directly used in HPC systems.
Therefore, new tools should be built, or adapted from existing ones, to offer
these functionalities to HPC users, while complying with the constraints of
HPC policies. Second, the development of complex workflows should be made
easier while keeping their capabilities and performance. New methodologies
are required to support the development of these workflows and simultaneously
bridge the gap with the current and future heterogeneous infrastructures. Third,
workflow managers must support dynamicity beyond static pipelines and simple
static graphs. The engines should accommodate dynamic shifts in the requested
computation according to changes in the input data, computation with urgency
demands, and dynamic changes in the workflow executions due to eager analysis
of results, exceptions or software faults. In addition, the engine should be able
to leverage elastic resource management to deal with changes in the instant
workload of the workflow. The fourth challenge comes from the data aspects and
their integration with the computation. Similarly to the programming model,
HPC and DA have relied on different solutions to store the data. Solutions
that integrate the alternative data practices and offer an abstraction layer are
necessary. Indeed, with the appearance of new storage devices, the solutions
should leverage and aggregate them in this single data layer.

Taking into account these challenges, we have proposed an architecture for a
workflows software stack that offers tools to simplify the development, deploy-
ment, and execution of the type of complex workflows that we have described.
In addition to the software stack, the HPC Workflows-as-a-Service (HPCWaaS)
paradigm has been proposed as a mechanism to enable reuse, easy deployment,
execution and reproduction of the workflow. The paradigm has been thought
as a mechanism to lower the barrier toward the adoption of HPC systems and
widen the access to a larger community of users. These ideas are under devel-
opment in the EuroHPC eFlows4HPC project.

Acknowledgements

This work has received funding from the European High-Performance Com-
puting Joint Undertaking (JU) under grant agreement No 955558. The JU re-
ceives support from the European Union’s Horizon 2020 research and innovation
programme and Spain, Germany, France, Italy, Poland, Switzerland and Nor-
way. In Spain, it has received complementary funding from MCIN/AEI/10.13039/501100011033,

29

Spain and the European Union NextGenerationEU/PRTR (contracts PCI2021-
121957, PCI2021-121931, PCI2021-121944, and PCI2021-121927). In Germany,
it has received complementary funding from the German Federal Ministry of
Education and Research (contracts 16HPC016K, 6GPC016K, 16HPC017 and
16HPC018). In France, it has received financial support from Caisse des dépôts
et consignations (CDC) under the action PIA ADEIP (project Calculateurs). In
Italy, it has been preliminary approved for complimentary funding by Ministero
dello Sviluppo Economico (MiSE) (ref. project prop. 2659). In Norway, it has
received complementary funding from the Norwegian Research Council, Norway
under project number 323825. In Switzerland, it has been preliminary approved
for complimentary funding by the State Secretariat for Education, Research,
and Innovation (SERI), Norway. In Poland, it is partially supported by the
National Centre for Research and Development under decision DWM/EuroH-
PCJU/4/2021. The authors also acknowledge financial support by MCIN/AEI
/10.13039/501100011033 through the “Severo Ochoa Programme for Centres of
Excellence in R&D” (CEX2018-000797-S), the Spanish Government (contract
PID2019-107255 GB) and by Generalitat de Catalunya (contract 2017-SGR-
01414). Anna Queralt is a Serra Húnter Fellow.

References

[1] M. Asch, T. Moore, R. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin,
F. Cappello, A. Choudhary, B. de Supinski, et al., Big data and extreme-
scale computing: Pathways to convergence-toward a shaping strategy for a
future software and data ecosystem for scientific inquiry, The International
Journal of High Performance Computing Applications 32 (4) (2018) 435–
479.

[2] Big Data and Extreme-scale Computing web site [cited August, 2021].
URL https://www.exascale.org/bdec/

[3] P. Dadvand, R. Rossi, E. Oñate, An object-oriented environment for de-
veloping finite element codes for multi-disciplinary applications, Archives
of Computational Methods in Engineering 17 (3) (2010). doi:10.1007/
s11831-010-9045-2.

[4] P. Dadvand, R. Rossi, M. Gil, X. Martorell, J. Cotela, E. Juanpere,
S. R. Idelsohn, E. Oñate, Migration of a generic multi-physics framework
to HPC environments, Computers & Fluids 80 (1) (2013) 301–309.
doi:10.1016/j.compfluid.2012.02.004.
URL http://www.sciencedirect.com/science/article/pii/
S0045793012000485http://linkinghub.elsevier.com/retrieve/pii/
S0045793012000485

[5] D. Demidov, Amgcl: An efficient, flexible, and extensible algebraic multi-
grid implementation, Lobachevskii Journal of Mathematics 40 (5) (2019)
535–546. doi:10.1134/S1995080219050056.
URL https://doi.org/10.1134/S1995080219050056

30

https://www.exascale.org/bdec/
https://www.exascale.org/bdec/
https://doi.org/10.1007/s11831-010-9045-2
https://doi.org/10.1007/s11831-010-9045-2
http://www.sciencedirect.com/science/article/pii/S0045793012000485 http://linkinghub.elsevier.com/retrieve/pii/S0045793012000485
http://www.sciencedirect.com/science/article/pii/S0045793012000485 http://linkinghub.elsevier.com/retrieve/pii/S0045793012000485
https://doi.org/10.1016/j.compfluid.2012.02.004
http://www.sciencedirect.com/science/article/pii/S0045793012000485 http://linkinghub.elsevier.com/retrieve/pii/S0045793012000485
http://www.sciencedirect.com/science/article/pii/S0045793012000485 http://linkinghub.elsevier.com/retrieve/pii/S0045793012000485
http://www.sciencedirect.com/science/article/pii/S0045793012000485 http://linkinghub.elsevier.com/retrieve/pii/S0045793012000485
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056
https://doi.org/10.1134/S1995080219050056

[6] D. Demidov, Amgcl – a c++ library for efficient solution of large
sparse linear systems, Software Impacts 6 (2020) 100037. doi:10.1016/
j.simpa.2020.100037.
URL https://doi.org/10.1016/j.simpa.2020.100037

[7] T. C. Schulthess, P. Bauer, N. Wedi, O. Fuhrer, T. Hoefler, C. Schär, Re-
flecting on the goal and baseline for exascale computing: A roadmap based
on weather and climate simulations, Computing in Science Engineering
21 (1) (2019) 30–41. doi:10.1109/MCSE.2018.2888788.

[8] D. Elia, S. Fiore, G. Aloisio, Towards hpc and big data analytics con-
vergence: Design and experimental evaluation of a hpda framework for
escience at scale, IEEE Access 9 (2021) 73307–73326. doi:10.1109/
ACCESS.2021.3079139.

[9] E. Scoccimarro, S. Gualdi, A. Bellucci, A. Sanna, P. G. Fogli, E. Manzini,
M. Vichi, P. Oddo, A. Navarra, Effects of tropical cyclones on ocean heat
transport in a high-resolution coupled general circulation model, Journal
of Climate 24 (16) (2011) 4368 – 4384. doi:10.1175/2011JCLI4104.1.
URL https://journals.ametsoc.org/view/journals/clim/24/16/
2011jcli4104.1.xml

[10] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
K. E. Taylor, Overview of the coupled model intercomparison project phase
6 (CMIP6) experimental design and organization, Geoscientific Model De-
velopment 9 (5) (2016) 1937–1958. doi:10.5194/gmd-9-1937-2016.

[11] M. Horn, K. Walsh, M. Zhao, S. J. Camargo, E. Scoccimarro, H. Murakami,
H. Wang, A. Ballinger, A. Kumar, D. A. Shaevitz, J. A. Jonas, K. Oouchi,
Tracking scheme dependence of simulated tropical cyclone response to ide-
alized climate simulations, Journal of Climate 27 (24) (2014) 9197 – 9213.
doi:10.1175/JCLI-D-14-00200.1.

[12] ARISTOTLE-eENHSP project web site [cited August, 2021].
URL http://aristotle.ingv.it

[13] J. Selva, S. Lorito, V. Manuela, F. Romano, R. Tonini, P. Perfetti,
F. Bernardi, M. Taroni, A. Scala, A. Babeyko, F. Løvholt, S. J. Gib-
bons, J. Maćıas, M. J. Castro, J. M. González-Vida, C. Sánchez-Linares,
H. Bayraktar, R. Basili, F. Maesano, M. M. Tiberti, F. Mele, A. Piatanesi,
A. Amato, Probabilistic tsunami forecasting for early warning, Nature
Communications 12 (2021). doi:10.1038/s41467-021-25815-w.

[14] F. Lovholt, S. Lorito, J. Maćıas, M. Volpe, J. Selva, S. Gibbons, Ur-
gent Tsunami Computing, in: 2019 IEEE/ACM HPC for Urgent De-
cision Making (UrgentHPC), IEEE, 2019, pp. 45–50. doi:10.1109/
UrgentHPC49580.2019.00011.

31

https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1016/j.simpa.2020.100037
https://doi.org/10.1109/MCSE.2018.2888788
https://doi.org/10.1109/ACCESS.2021.3079139
https://doi.org/10.1109/ACCESS.2021.3079139
https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli4104.1.xml
https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli4104.1.xml
https://doi.org/10.1175/2011JCLI4104.1
https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli4104.1.xml
https://journals.ametsoc.org/view/journals/clim/24/16/2011jcli4104.1.xml
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/JCLI-D-14-00200.1
http://aristotle.ingv.it
http://aristotle.ingv.it
https://doi.org/10.1038/s41467-021-25815-w
https://doi.org/10.1109/UrgentHPC49580.2019.00011
https://doi.org/10.1109/UrgentHPC49580.2019.00011

[15] T. Goubier, N. Rakowsky, S. Harig, Fast tsunami simulations for a real-time
emergency response flow, in: 2020 IEEE/ACM HPC for Urgent Decision
Making (UrgentHPC), IEEE, 2020, pp. 21–26.

[16] D. Giles, D. Gopinathan, S. Guillas, F. Dias, Faster than real time tsunami
warning with associated hazard uncertainties, Frontiers in Earth Science 8
(2021) 560. doi:10.3389/feart.2020.597865.

[17] J. Selva, A. Amato, A. Armigliato, R. Basili, F. Bernardi, B. Brizuela,
M. Cerminara, M. de Micheli Vitturi, D. Di Bucci, P. Di Manna, T. Es-
posti Ongoro, G. Lacanna, S. Lorito, F. Lovholt, D. Mangione, E. Panunzi,
A. Piatanesi, A. Ricciardi, M. Ripepe, F. Romano, M. Santini, A. Scalzo,
R. Tonini, M. Volpe, F. Zaniboni, Tsunami risk management for crustal
earthquakes and non-seismic sources in italy, La Rivista del Nuovo Cimento
44 (2021). doi:10.1007/s40766-021-00016-9.

[18] D. Salmanidou, S. Guillas, A. Georgiopoulou, F. Dias, Statistical emula-
tion of landslide-induced tsunamis at the Rockall Bank, NE Atlantic, Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 473 (2200) (2017).

[19] I. E. Mulia, A. R. Gusman, K. Satake, Applying a deep learning algo-
rithm to tsunami inundation database of megathrust earthquakes, Journal
of Geophysical Research: Solid Earth 125 (9) (2020).

[20] F. Makinoshima, Y. Oishi, T. Yamazaki, T. Furumura, F. Imamura, Early
forecasting of tsunami inundation from tsunami and geodetic observation
data with convolutional neural networks, Nature Communications 12 (1)
(2021) 1–10.

[21] J. de la Puente, J. E. Rodriguez, M. Monterrubio-Velasco, O. Rojas,
A. Folch, Urgent supercomputing of earthquakes, in: Proceedings of the
Platform for Advanced Scientific Computing Conference, ACM, 2020, pp.
1–8. doi:10.1145/3394277.3401853.

[22] D. Talia, Workflow systems for science: Concepts and tools, ISRN Software
Engineering 2013 (2013) 1–15.

[23] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, S. Mock, Kepler:
an extensible system for design and execution of scientific workflows, in:
Scientific and Statistical Database Management, 2004. Proceedings. 16th
International Conference on, IEEE, 2004, pp. 423–424.

[24] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., The taverna
workflow suite: designing and executing workflows of web services on the
desktop, web or in the cloud, Nucleic acids research 41 (W1) (2013) W557–
W561.

32

https://doi.org/10.3389/feart.2020.597865
https://doi.org/10.1007/s40766-021-00016-9
https://doi.org/10.1145/3394277.3401853

[25] E. Afgan, D. Baker, M. van den Beek, D. Blankenberg, D. Bouvier,
M. Čech, J. Chilton, D. Clements, N. Coraor, C. Eberhard, B. Grüning,
A. Guerler, J. Hillman-Jackson, G. Von Kuster, E. Rasche, N. Soranzo,
N. Turaga, J. Taylor, A. Nekrutenko, J. Goecks, The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2016 up-
date, Nucleic Acids Res. 44 (W1) (2016) W3–W10.

[26] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, G. B. Berriman, J. Good, et al., Pegasus: A framework for map-
ping complex scientific workflows onto distributed systems, Scientific Pro-
gramming 13 (3) (2005) 219–237.

[27] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Sid-
diqui, H.-L. Truong, A. Villazon, M. Wieczorek, Askalon: A grid applica-
tion development and computing environment, in: Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing, IEEE Computer
Society, 2005, pp. 122–131.

[28] D. Manubens-Gila, J. Vegas-Regidora, M. C. Acostaa, C. Prodhommea,
O. Mula-Vallsa, K. Serradell-Marondaa, F. J. Doblas-Reyes, Autosubmit: a
versatile tool for managing Earth system models on HPC platforms, Future
Generation Computer Systems submited (2016).

[29] F. Lordan, R. M. Badia, et al., ServiceSs: an interoperable programming
framework for the Cloud, Journal of Grid Computing 12 (1) (2014) 67–91.

[30] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, I. Foster,
Swift: A language for distributed parallel scripting, Parallel Computing
37 (9) (2011) 633–652. doi:10.1016/j.parco.2011.05.005.

[31] J. Goecks, A. Nekrutenko, J. Taylor, Galaxy: A comprehensive approach
for supporting accessible, reproducible, and transparent computational re-
search in the life sciences, Genome biology 11 (8) (2010) 1–13.

[32] H. J. Oliver, M. Shin, O. Sanders, Cylc: A workflow engine for cycling
systems, Journal of Open Source Software 3 (27) (2018) 737.

[33] W. Gropp, W. D. Gropp, E. Lusk, A. Skjellum, A. Lusk, Using MPI:
portable parallel programming with the message-passing interface, Vol. 1,
MIT Press, 1999.

[34] L. Dagum, R. Menon, Openmp: an industry standard api for shared-
memory programming, IEEE computational science and engineering 5 (1)
(1998).

[35] Nvidia, CUDA: Compute unified device architecture [cited August,2021].
URL https://docs.nvidia.com/cuda/

33

https://doi.org/10.1016/j.parco.2011.05.005
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/

[36] F. Marozzo, D. Talia, P. Trunfio, A Workflow Management System for Scal-
able Data Mining on Clouds, IEEE Transactions on Services Computing
11 (3) (2018) 480–492. doi:10.1109/TSC.2016.2589243.

[37] G. Da Costa, T. Fahringer, J.-A. Rico-Gallego, I. Grasso, A. Hristov, H. D.
Karatza, A. Lastovetsky, F. Marozzo, D. Petcu, G. L. Stavrinides, D. Talia,
P. Trunfio, H. Astsatryan, Exascale machines require new programming
paradigms and runtimes, Supercomputing Frontiers and Innovations 2 (2)
(2015) 6–27. doi:10.14529/jsfi150201.

[38] S. Jha, G. Fox, Understanding ML-driven HPC: Applications and infras-
tructure, in: 2019 15th International Conference on eScience (eScience),
2019, pp. 421–427. doi:10.1109/eScience.2019.00054.

[39] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
De Supinski, S. Futral, The spack package manager: bringing order to hpc
software chaos, in: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015, pp. 1–
12.

[40] K. Hoste, J. Timmerman, A. Georges, S. De Weirdt, Easybuild: Building
software with ease, in: 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, IEEE, 2012, pp. 572–582.

[41] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, kvm: the linux virtual
machine monitor, in: Proceedings of the Linux symposium, Vol. 1, Dttawa,
Dntorio, Canada, 2007, pp. 225–230.

[42] D. Merkel, et al., Docker: lightweight linux containers for consistent devel-
opment and deployment, Linux journal 2014 (239) (2014) 2.

[43] G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers
for mobility of compute, PloS one 12 (5) (2017).

[44] Apache OpenWhisk web site [cited August, 2021].
URL https://openwhisk.apache.org/

[45] OpenFaaS web site [cited August, 2021].
URL https://www.openfaas.com/

[46] J. Lüttgau, M. Kuhn, K. Duwe, Y. Alforov, E. Betke, J. Kunkel, T. Lud-
wig, Survey of storage systems for high-performance computing, Super-
computing Frontiers and Innovations 5 (1) (2018) 31–58. doi:10.14529/
jsfi180103.

[47] H. L. Jenter, R. P. Signell, Netcdf: A freely-available software-solution
to data-access problems for numerical modelers, in: Proceedings of the
American Society of Civil Engineers Conference on Estuarine and Coastal
Modeling, 1992.

34

https://doi.org/10.1109/TSC.2016.2589243
https://doi.org/10.14529/jsfi150201
https://doi.org/10.1109/eScience.2019.00054
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.openfaas.com/
https://www.openfaas.com/
https://doi.org/10.14529/jsfi180103
https://doi.org/10.14529/jsfi180103

[48] M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview
of the hdf5 technology suite and its applications, in: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, AD ’11, Association
for Computing Machinery, New York, NY, USA, 2011, pp. 36–47. doi:

10.1145/1966895.1966900.

[49] M. Breitenfeld, N. Fortner, J. Henderson, J. Soumagne, M. Chaarawi,
J. Lombardi, Q. Koziol, Daos for extreme-scale systems in scientific ap-
plications, ArXiv abs/1712.00423 (2017).

[50] Intel Optane Persistent Memory Workload Solutions [cited August, 2021].
URL https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-persistent-memory-solutions.html

[51] J. Nider, C. Mustard, A. Zoltan, A. Fedorova, Processing in storage class
memory, in: A. Badam, V. Chidambaram (Eds.), 12th USENIX Workshop
on Hot Topics in Storage and File Systems, 2020.

[52] Google Tensor Flow Processing Unit [cited August, 2021].
URL https://cloud.google.com/blog/big-data/2017/05/an-in-
depth-look-at-googles-first-tensor-processing-unit-tpu

[53] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, J. Gray, M. Haselman, S. Hauck,
S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, E. Peterson, A. Smith, J. Thong,
P. Y. Xiao, D. Burger, J. Larus, G. P. Gopal, S. Pope, A reconfigurable
fabric for accelerating large-scale datacenter services, in: Proceeding of the
41st Annual International Symposium on Computer Architecuture (ISCA),
IEEE Press, 2014, pp. 13–24.

[54] LEXIS project web site [cited August, 2021].
URL https://lexis-project.eu

[55] M. Levrier, L. Ganne, F. Exertier, A. Scionti, G. Vitali, O. Terzo, J. Mar-
tinovic, M. Golasowski, J. Krenek, F. Donnat, Workflow orchestration on
tightly federated computing resources: the LEXIS approach (2020) [cited
August , 2021].
URL https://indico.egi.eu/event/5000/

[56] A. Parodi, E. Danovaro, J. Hawkes, T. Quintino, M. Lagasio, F. De-
logu, M. D’Andrea, A. Parodi, B. M. Sardo, A. Ajmar, P. Mazzoglio,
F. Brocheton, L. Ganne, R. J. Garćıa-Hernández, S. Hachinger, M. Hayek,
O. Terzo, J. Krenek, J. Martinovic, LEXIS weather and climate large-scale
pilot, in: L. Barolli, A. Poniszewska-Maranda, T. Enokido (Eds.), Com-
plex, Intelligent and Software Intensive Systems, Springer International
Publishing, 2021, pp. 267–277.

[57] LEXIS project web site [cited August, 2021].
URL https://www.evolve-h2020.eu

35

https://doi.org/10.1145/1966895.1966900
https://doi.org/10.1145/1966895.1966900
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-persistent-memory-solutions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-persistent-memory-solutions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-persistent-memory-solutions.html
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://lexis-project.eu
https://lexis-project.eu
https://indico.egi.eu/event/5000/
https://indico.egi.eu/event/5000/
https://indico.egi.eu/event/5000/
https://www.evolve-h2020.eu
https://www.evolve-h2020.eu

[58] ACCROSS project web site [cited August, 2021].
URL https://www.acrossproject.eu

[59] ADMIRE project web site [cited August, 2021].
URL https://www.admire-eurohpc.eu/

[60] OASIS, Topology and orchestration specification for cloud applications
(2013) [cited August, 2021].
URL http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-
os.html

[61] E. Tejedor, R. M. Badia, J. Labarta, et al., PyCOMPSs: Parallel
computational workflows in Python, The International Journal of High
Performance Computing Applications 31 (2017) 66–82. doi:10.1177/
1094342015594678.

[62] L. Richardson, S. Ruby, RESTful web services, ” O’Reilly Media, Inc.”,
2008.

[63] Hashicorp Vault [cited August, 2021].
URL https://www.vaultproject.io

[64] D. W. Erwin, D. F. Snelling, Unicore: A grid computing environment, in:
European Conference on Parallel Processing, Springer, 2001, pp. 825–834.

[65] R. M. Badia, et al., COMP superscalar, an interoperable programming
framework, SoftwareX 3 (2015) 32–36. doi:10.1016/j.softx.2015.10.004.

[66] J. Ejarque, M. Bertran, J. Á. Cid-Fuentes, J. Conejero, R. M. Badia, Man-
aging failures in task-based parallel workflows in distributed computing
environments, in: European Conference on Parallel Processing, Springer,
2020, pp. 411–425.

[67] C. Ramon-Cortes, F. Lordan, J. Ejarque, R. M. Badia, A programming
model for hybrid workflows: combining task-based workflows and dataflows
all-in-one, Future Generation Computer Systems 113 (2020) 281–297.

[68] J. Mart́ı, A. Queralt, D. Gasull, A. Barceló, J. J. Costa, T. Cortes,
Dataclay: A distributed data store for effective inter-player data shar-
ing, Journal of Systems and Software 131 (2017) 129–145. doi:10.1016/
j.jss.2017.05.080.

[69] European Processor Intiative web site [cited August, 2021].
URL https://www.european-processor-initiative.eu/

[70] A. Fell, D. J. Mazure, T. C. Garcia, B. Perez, X. Teruel, P. Wilson, J. D.
Davis, The marenostrum experimental exascale platform (meep), Super-
computing Frontiers and Innovations 8 (1) (2021) 62–81.

36

https://www.acrossproject.eu
https://www.acrossproject.eu
https://www.admire-eurohpc.eu/
https://www.admire-eurohpc.eu/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://doi.org/10.1177/1094342015594678
https://doi.org/10.1177/1094342015594678
https://www.vaultproject.io
https://www.vaultproject.io
https://doi.org/10.1016/j.softx.2015.10.004
https://doi.org/10.1016/j.jss.2017.05.080
https://doi.org/10.1016/j.jss.2017.05.080
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/

[71] W. Tan, K. Chard, D. Sulakhe, R. Madduri, I. Foster, S. Soiland-Reyes,
C. Goble, Scientific workflows as services in cagrid: a taverna and gravi
approach, in: 2009 IEEE International Conference on Web Services, IEEE,
2009, pp. 413–420.

[72] R. Cushing, S. Koulouzis, A. Belloum, M. Bubak, Applying workflow as a
service paradigm to application farming, Concurrency and Computation:
Practice and Experience 26 (6) (2014) 1297–1312.

[73] A. C. Zhou, B. He, C. Liu, Monetary cost optimizations for hosting
workflow-as-a-service in iaas clouds, IEEE transactions on cloud computing
4 (1) (2015) 34–48.

[74] S. Esteves, L. Veiga, Waas: Workflow-as-a-service for the cloud with
scheduling of continuous and data-intensive workflows, The Computer
Journal 59 (3) (2016) 371–383.

[75] M. A. Rodriguez, R. Buyya, Scheduling dynamic workloads in multi-tenant
scientific workflow as a service platforms, Future Generation Computer
Systems 79 (2018) 739–750.

[76] M. Mattoso, J. Dias, K. A. Ocana, E. Ogasawara, F. Costa, F. Horta,
V. Silva, D. De Oliveira, Dynamic steering of hpc scientific workflows: A
survey, Future Generation Computer Systems 46 (2015) 100–113.

37

(a) Credentials Management.

(b) Workflow deployment.

(c) Workflow execution.

Figure 9: Workflows invocation phase. Dark blue arrows represent eFlows4HPC component
interactions; light blue ones represent data flows; and orange arrows represent component
deployments.

38

	1 Introduction
	2 Use Cases
	2.1 Digital twins in manufacturing
	2.2 Climate modelling
	2.3 Urgent computing for natural hazards
	2.3.1 Probabilistic tsunami forecasting and faster than real time tsunami simulations
	2.3.2 UCIS4EQ

	3 Background and challenges
	3.1 Background and related work
	3.1.1 Workflows development and HPC
	3.1.2 Data analysis workflows
	3.1.3 AI workflows
	3.1.4 Deployment in large infrastructure systems
	3.1.5 Data management/storage aspects
	3.1.6 Computer architecture perspective
	3.1.7 Other related projects

	3.2 Challenges
	3.2.1 Challenge 1: Enable the openness, reusability, reproducibility and accessibility of the workflows and their results
	3.2.2 Challenge 2: Simplify the development of complex workflows while keeping their capabilities and performance
	3.2.3 Challenge 3: Support for workflow dynamicity
	3.2.4 Challenge 4: Enable data management and computation integration

	4 eFlows4HPC solution
	4.1 eFlows4HPC software stack
	4.2 HPC Workflows-as-a-Service (HPCWaaS)
	4.3 Workflow development phase
	4.4 Workflow invocation phase
	4.5 Architectural Optimizations within eFlows4HPC

	5 Discussion
	6 Conclusions

