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Low-molecular-weight hydrogels are made of a small percentage of small organic

molecules dispersed in an aqueous medium, which may aggregate in several manners

using different methods. However, often the organic gelator in water has poor solu-

bility, so the addition of a solubilising agent is required. In the case of acidic gelators,

this mainly consists of the addition of a strong base, that is sodium hydroxide, that

deprotonates the acidic moiety, so the gelator molecules become more soluble and

tend to assemble into micelles, forming a dispersion. Some gelators, however, are

sensitive to the harsh pH and get hydrolysed. This is the case of some molecules pre-

senting carbamates in their features, like Fmoc-protected or oxazolidinone-

containing peptides. In this paper, we present a valid alternative to sodium hydroxide,

by dissolving a tripeptide containing an oxazolidinone moiety in a phosphate buffer

(PB) medium at pH 7.4. The results obtained with the NaOH dissolution are com-

pared with the ones with PB, as both methods present advantages and drawbacks.

The use of NaOH produces transparent but weak hydrogels, as it exposes the gelator

to harsh conditions that end up in its partial hydrolysis, which is more pronounced at

high concentrations (≥10 mM). Using PB to dissolve the gelator, this problem is

completely avoided as no hydrolysis product has been detected in the hydrogels,

which are very stiff although more opaque. By tuning the preparation conditions, we

can obtain a wide variety of hydrogels, with the properties required by the final

application.
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1 | INTRODUCTION

Low-molecular-weight (LMW) gelators are small molecules able to

form supramolecular gels.1–4 These are solid-like materials consisting

of a bundle of fibres formed through weak interactions that entrap the

solvent and that can support their own weight when subjected to

gravity. Particular attention has been paid to the functional groups

present in these gelators, such as aromatic rings, proton donors and

acceptors, and hydrophobic moieties, that are particularly able to form

these interactions.5–9 Amide bonds are involved in H-bonds, as well as

polar side chains.10–12 Aromatic moieties of protecting group or of side

chains offer stacking interactions,11,13,14 whereas apolar side chains

can contribute with weak hydrophobic interactions.15–17 Because of

their usual biocompatibility12,18,19 and the ease of rationalizing a good

gelator by varying either protecting groups or amino acids, peptides

have been thoroughly explored for their gelation abilities.

However, predicting if a certain molecule will form a gel or

not is not straightforward. Most of the gelators were discovered
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serendipitously or starting from small changes in the chemical

structure of a known gelator.20 Nonetheless, gelators with similar

structures often behave differently, some forming gels, some others

forming crystals or precipitates.15,21,22 In these last years, a large

number of compounds and gelation conditions were tested, and

the research in this field led to a remarkable improvement in

understanding of general principles behind LMW gel formation and

properties.23,24 It should also be noticed that in this field, it is of

extreme importance to work in a reproducible way, carefully con-

trolling all the parameters and steps involved in the gelation pro-

cess (solvent, concentration, time, temperature, etc.).25

The use of triggers has been widely studied by several

researchers,26–31 as a careful choice of the trigger strongly impacts

the gel's final properties. For instance, the replacement of HCl with a

hydrolysing reagent such as glucono-δ-lactone (GdL)32,33 or

1,3-propanesultone34,35 induces gelation by a slow pH change allow-

ing the formation of strong homogeneous hydrogels. The presence of

a reagent that slowly triggers the gelation is useful not only to achieve

homogeneity through the gelation process, but also to create tran-

sient systems, that is, that evolve over time.36–38 Moreover, several

studies have been devoted to the use of salts to form supramolecular

polymers by electrostatic interactions.39–42 In particular, divalent cat-

ions proved to be a valid method to obtain gels over a wide range of

pH, crosslinking the carboxylate groups derived from the dissolution

of dipeptides at high pH.43–48

In contrast, the dissolution step is often disregarded, although it

may lead to the hydrolysis of the gelator itself. For example,

carbamates-containing peptides and in particular the Fmoc-protected

ones undergo deprotection at a pH higher than 10.5.49,50 This prob-

lem can be overcome by reducing the amount of base, then filtering

out the undissolved gelator or by reducing the time of dissolution dur-

ing which the gelator is at a basic pH.51 Although the deprotection is

limited when ordered structures such as micelles are formed,52,53 care

should always be taken when using sensitive gelators.

In this paper, we show our recent studies on the formation of

hydrogels from the self-aggregation of the protected tripeptide

Boc-L-Phe-D-Oxd-L-Phe-OH 1. The gelator contains the Oxd

moiety that is an unnatural amino acid, readily obtained from threo-

nine. The heterocyclic ring imparts a local constraint to the mole-

cule, so that it can readily adopt stable secondary structures even

with a reduced number of amino acid in the chain.54–56 Some

dipeptides and tripeptides containing the Oxd moiety act as gelator,

both for water and for organic solvents.13,57 The dissolution of the

gelator in a milder environment given by a phosphate buffer at pH

7.4 avoids the hydrolysis, allowing us to obtain materials stiffer

than the ones obtained with dissolution in NaOH. However, the

materials obtained from dissolution in harsher conditions showed

higher transparency compared with the other ones, so the two

methodologies can be used alternatively depending on the final

application of the material.

2 | MATERIALS AND METHODS

2.1 | Synthesis of the gelator

Boc-L-Phe-D-Oxd-L-Phe-OH 1 was prepared with liquid phase

synthesis, following a procedure that was previously reported by our

group.58 All the characterisation data matched the literature values.

2.2 | Gel preparation

2.2.1 | Method A

Hydrogels A–I were prepared dissolving 1 at the required concentration

(see Table 1) in distilled water and NaOH (1 equiv.), by alternating ultra-

sound sonication and vigorous shaking over a short period of 2 min.

After complete dissolution, the trigger was added. Gels with GdL were

formed by adding pure GdL (1.2 equiv.) in the solution, swirling the

resulting solution for a few seconds until complete dissolution of GdL

and leaving the gel to form overnight. Gels with CaCl2 were formed by

adding 100 mM CaCl2 aqueous solution (either 0.5 or 1.0 equiv.) to the

gelator solution, then leaving the gel to form overnight.

TABLE 1 pH values and hydrolysis
percentage of gels A–I.

Gel Gelator concentration (mM) pH0 Trigger (mM) pHf Hydrolysis (%)

A 3.71 8.5 GdL (4.45) 4.1 3

B 9.26 7.6 GdL (11.1) 4.1 5

C 18.5 7.0 GdL (22.2) 3.8 14

D 3.71 8.6 CaCl2 (1.85) 6.0 8

E 9.26 7.6 CaCl2 (4.63) 6.0 13

F 18.5 7.2 CaCl2 (9.26) 5.6 20

G 3.71 8.8 CaCl2 (3.71) 7.1 3

H 9.26 7.4 CaCl2 (9.26) 5.9 19

I 18.5 7.2 CaCl2 (18.5) 5.3 22

Note: pH0 = starting pH (before trigger addition); pHf = final pH.
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2.2.2 | Method B

Hydrogels J–O were prepared dissolving 1 at the required concentra-

tion (see Table 2) in PB at different concentrations by alternating

ultrasound sonication and vigorous shaking over a short period of

2 min. For the gels at 0.2% w/V of gelator concentration, the final

concentration of PB was 9.6 mM; for the ones at 0.5% w/V, it was

24 mM, and for the ones at 1.0% w/V, it was 48 mM, in order to

adjust the PB concentration with the gelator concentration. After

complete dissolution, the trigger was added. Gels with GdL were

formed by adding pure GdL (2.0 equiv.) in the solution, swirling the

resulting solution for a few seconds until complete dissolution of GdL

and leaving the gel to form overnight. Gels with CaCl2 were formed

by adding 100 mM CaCl2 aqueous solution (1.0 equiv.) to the gelator

solution, then leaving the gel to form overnight.

Gels used for the study of the critical gelation concentration

(CGC) were prepared by diluting a 0.2% w/V solution of gelator in

either water containing NaOH (1.0 equiv.) or PBS (9.6 mM, at pH 7.4)

with MilliQ water, then the trigger was added.

Gels used for photographs and rheology were prepared on a total

volume of 2 mL in a Sterilin Cup®.

Gels used for spectrophotometric analysis were prepared on a

total volume of 1 mL into disposable cuvettes with 10 mm

optical path.

Xerogels used for microscopy were prepared by transferring a

small amount of the gel prepared in Sterilin cups onto a microscope

glass slide. The samples were left to dry over a period of 16 h at room

temperature in a box to avoid the deposition of dust.

Gels used for HPLC-MS analysis were prepared on a total volume

of 1 mL in glass vials for HPLC. The gels were then transferred in a

larger vial and dissolved with 3 mL of fresh CH3CN, then 0.1 mL of

the resulting solution was diluted with 0.9 mL of fresh CH3CN. These

samples were injected.

2.3 | Rheology

The rheological measurements were performed using an Anton Paar

(Graz, Austria) MCR102 rheometer with a vane and cup measuring

system, setting a gap of 2.1 mm. The gels were prepared as described

and tested directly in the Sterilin Cup®, which fits in the rheometer.

Oscillatory amplitude sweep experiments (γ: 0.01%–100%) were per-

formed at 23�C using a constant angular frequency of 10 rad/s.

2.4 | Spectrophotometric analysis

The spectrophotometric analyses were performed using a Cary

300 UV-vis double beam spectrophotometer, using a cuvette with

water as reference.

2.5 | HPLC-MS

HPLC-MS analysis was carried out with an Agilent 1260 Infinity II liq-

uid chromatography coupled to an electrospray ionization mass spec-

trometer (LC-ESI-MS), using a Phenomenex Gemini C18-3 μ - 110 Å

column, H2O/CH3CN with 0.2% formic acid as acid solvent at 40�C

(positive ion mode, m/z = 50–2000, fragmentor 70 V).

2.6 | Optical microscopy

The images of the xerogels deposited on glass slides were recorded

using a Nikon (Minato, Japan) 13 ECLIPSE Ti2 Inverted Research

Microscope with a 40� magnifier.

3 | RESULTS AND DISCUSSION

The protected tripeptide Boc-L-Phe-D-Oxd-L-Phe-OH 1 is a cheap

molecule that may be readily obtained by the liquid-phase synthesis

on the multi-gram scale. The synthesis and characterisation of this

product were previously reported by our group, as well as some pre-

liminary studies of its gelling ability using the solvent switch method,

mixing water with alcohols.58

Now we report here our recent results for the preparation of

hydrogels, avoiding the use of organic solvents and using two differ-

ent techniques as trigger: the pH variation method and the addition of

cations, able to form electrostatic interactions with the gelator. To

prepare the hydrogels, we used two methods (method A and method

B) that differ for the crucial step of the gelator dissolution in water.

TABLE 2 pH values and hydrolysis percentage of gels J–O.

Gel Gelator concentration (mM) PB concentration (mM) pH0 Trigger (mM) pHf Hydrolysis (%)

J 3.71 9.6 6.9 GdL (7.41) 4.8 N.D.

K 9.26 24.0 6.9 GdL (18.5) 4.8 N.D.

L 18.5 48.0 6.8 GdL (37.1) 4.7 N.D.

M 3.71 9.6 6.9 CaCl2 (3.71) 6.4 N.D.

N 9.26 24.0 6.9 CaCl2 (9.26) 6.6 N.D.

O 18.5 48.0 6.8 CaCl2 (18.5) 6.3 N.D.

Note: pH0 = starting pH (before trigger addition); pHf = final pH; N.D. = not detected.

RAVARINO ET AL. 3 of 9
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Following method A, the gelator was dissolved in basic water,

adding the NaOH that is required to promote the gelator dissolution,

as at neutral pH, the molecule is not water-soluble. After the dissolu-

tion, we tested the gelation ability of 1, adding the trigger to increase

concentrations of the gelator (0.2, 0.5 and 1.0% w/V) and with differ-

ent triggers (Table 1), obtaining a gel in any tested condition, as shown

in Figure 1.

We probed the critical gelation concentration (CGC) of this gela-

tor in the presence of GdL and calcium and found that a concentration

of gelator lower than 0.2% w/V produces only clear solutions; there-

fore, the CGC is 0.2% w/V (Table S1 and Figure S1).

As in previous work, we observed that a similar scaffold contain-

ing the Oxd moiety coupled with 3,4-diflurophenylalanine underwent

hydrolysis when dissolved in the presence of NaOH,59,60 we checked

the stability of the gelator under these conditions by means of HPLC-

MS (Table 1). Even though the major component of the final material

was 1, we could detect a significative percentage of the Boc-L-Phe-

OH, ranging between 3% and 22%, which increases with the gelator

concentration, in line with the kinetics parameters of the reaction.

When the gelator is dissolved in NaOH, the imide bond is hydrolysed,

producing two acids, Boc-Phe-OH and H-Oxd-Phe-OH (Figures 2 and

S2). As the hydrolysis rate increases with the reagent concentration,

the more concentrated gels contain a higher amount of acids (Boc-

Phe-OH and H-Oxd-Phe-OH), thus reducing the final pH of the gel.

For this reason, we studied the possibility to obtain stable gels,

avoiding the initial harsh basic pH that favours the gelator hydroly-

sis.59 Following method B, we dissolved the gelator in a phosphate

buffer (PB) solution with a concentration adjusted with the gelator

concentration to obtain a final pH ranging between 6.8 and 6.9 (see

Section 2 for details), then we added the same triggers previously

reported in Table 1. Unfortunately, the interference of phosphate ions

with either the pH variation or the Ca2+ activity required higher

amounts of both triggers (Table 2).

F IGURE 1 Photographs of the gels A–I obtained with method A,
varying both the gelator concentration and the trigger, as reported in
Table 1.

F IGURE 2 Schematic representation of the
hydrolysis of the gelator Boc-L-Phe-D-Oxd-L-
Phe-OH 1.

F IGURE 3 Photographs of the gels J–O obtained with method B,
varying both the gelator concentration and the trigger, as reported in
Table 2.

4 of 9 RAVARINO ET AL.
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Thus, hydrogels J–L were prepared by adding 2.0 equiv. of GdL,

which led to the formation of stable gels with a final pH around 4.8

(Figure 3, up), as 1.2 equiv. led to the formation of weak hydrogels,

with final pH ranging between 5.8 and 6.0 (Figure S3). Likewise, we

formed hydrogels M–O with 1.0 equiv. of calcium ions (Figure 3,

down), as with the addition of 0.5 equiv. of calcium ions, only partial

gels (0.2% and 0.5% w/V concentration) or weak gels (1.0% w/V con-

centration) are obtained (Figure S4).

With this methodology, the CGC is reduced, as gels are formed

with concentrations lower than 0.2% w/V. Indeed, the gel triggered

with GdL has a CGC of 0.05% w/V, whereas the one triggered with

CaCl2 has a CGC of 0.1% w/V (Table S2 and Figures S5 and S6).

The HPLC-MS analysis demonstrates that the PB methodology

(method B) allowed us to avoid the problem of the hydrolysis

(Figure S7 and Table 3). This methodology may be adopted for gela-

tors with pKa lower than 7.4 for the formation of hydrogels, as PB is a

solution widely used in biological and biomedical applications, repre-

senting a valid alternative to the harsh basic environment (about pH

10) obtained with NaOH. Indeed the dissolution at a high pH can

cause the hydrolysis of many other gelators, for example, those pos-

sessing a carbamate group or interfering with basic sensitive protect-

ing groups, as reported, for instance, in the case of the widespread

Fmoc-protected gelators.49

The mechanical and optical properties of hydrogels A–O were

characterised, to outline the stiffness and transparency of these

media, compare the properties of the hydrogels, and understand if the

partial hydrolysis of the gelator has an impact on them (Table 3).

The hydrogels obtained with method A (A–I) have a G0 modulus

higher than the G00 and a significant elasticity, confirmed by the long

linear viscoelastic range, LVER (Table 3 and Figure S8). The

hydrogels D, E, G, and H, prepared with Ca2+ ions as trigger, are even

more elastic since they do not present a crossover point (breaking

point of the gel network) in the range of shear strain studied, having

the G0 always higher than the G00. In addition, hydrogels A, D, and G

show high transparency, taken as the value of transmittance at

630 nm,60 ranging between 58.8% and 77.8%, in contrast with their

modest strength, which ranges between 0.26 and 1.64 kPa. Reason-

ably, as the gelator concentration increases, the stiffness of the gel

TABLE 3 Storage modulus (G0), loss modulus (G00), linear viscoelastic region (LVER), crossover point and transparency of hydrogels A–O.

Gel G0 (kPa) G00 (kPa) LVER (γ %) Crossover point (γ %) Transparency at 630 nm (%)

A 1.64 ± 0.76 0.12 ± 0.05 1.0 100 70.2

B 5.48 ± 1.14 0.62 ± 0.27 1.5 21.0 46.3

C 24.8 ± 7.97 3.42 ± 0.98 1.5 55.1 26.4

D 0.26 ± 0.12 0.04 ± 0.01 0.5 N.D. 77.8

E 4.80 ± 0.90 0.62 ± 0.11 1.0 N.D. 18.2

F 16.9 ± 10.3 2.33 ± 1.80 1.0 85.1 5.3

G 0.35 ± 0.08 0.04 ± 0.02 2.2 N.D. 58.8

H 6.09 ± 3.82 0.66 ± 0.16 0.5 N.D. 14.1

I 21.8 ± 1.25 3.36 ± 0.26 2.2 60.2 1.9

J 4.55 ± 2.87 0.41 ± 0.25 1.5 37.7 46.0

K 28.2 ± 11.6 3.47 ± 1.26 2.2 19.1 0.7

L 90.2 ± 34.1 6.87 ± 0.28 0.7 N.D. 0.6

M 1.03 ± 0.29 0.20 ± 0.09 2.2 N.D. 30.7

N 31.2 ± 13.9 6.93 ± 2.98 0.7 33.9 2.5

O 76.4 ± 40.3 9.94 ± 4.09 0.5 14.7 1.2

Note: G0 and G00 are taken at γ = 0.046% as at that strain none of the gel has inflections in the trend of their moduli; N.D. = not detected.

F IGURE 4 FT-IR spectra of 1%
solution (sol-d) and gels C-d and I-d,
replacing water with D2O and NaOH
with NaOD.

RAVARINO ET AL. 5 of 9
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increases accordingly, while the transparency drops (Figure S9).

Indeed, hydrogels at the concentration of 0.2% w/V are the least stiff

and the most transparent, whereas the ones at the concentration of

1.0% w/V are the stiffest and the least transparent.

Coming to hydrogels J–O, obtained with method B, we notice an

increase in mechanical properties (Table 3 and Figure S10) coupled

with reduced transparency (Table 3 and Figure S11). In particular,

hydrogels L and O, which contain the gelator in 1.0% w/V concentra-

tion, are extremely strong (G0 = 90.2 kPa and 76.4 kPa, respectively)

but not transparent (transparency = 0.6% and 1.2%, respectively).

To have a better understanding of the formation of entangled

fibres that form the final gel, we analysed the gels by IR spectros-

copy. By comparing the differences in the FT-IR spectra of solution

and gel and analysing what bonds have appeared and disappeared,

it becomes possible to infer the driving forces of hydrogelation.61–63

First, we recorded the FT-IR spectra of the two solutions (in NaOH

and in PB) and of the corresponding gels C, I, L, and O, all at 1%

w/v concentration. As all the samples are in water solution, we

could not get any information on the NH region. In the region

between 1800 and 1500 cm�1, we noticed that the peak positions

show very small variations between the solution and the gels

(Figure S12). This effect is probably due to the presence of water

molecules that efficiently form hydrogen bonds with the carbonyls

of 1, mimicking what happens in fibre formation. Indeed the car-

bonyl peaks have all wavenumber lower than the previously

reported peaks of Boc-L-Phe-D-Oxd-L-Phe-OBn, recorded in 3 mM

concentration in dichloromethane solution, where hydrogen bonds

are not possible (Table S3).58 The FT-IR spectra of the correspond-

ing xerogels show a similar behaviour (Figure S13). Here, the NH

bonds are clearly visible and range between 3351 and 3322 cm�1,

F IGURE 5 Images of xerogels A–
O of 1 obtained with the different
conditions tested. The scale bar is
50 μm.

6 of 9 RAVARINO ET AL.
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thus showing that NH groups are involved in hydrogen bonds, typi-

cal of solids. In Table S3, we summarize these results, and we show

the comparison of the main NH (when visible) and CO peaks under

different conditions.

To check the behaviour of the NH groups in solution, we pre-

pared a 1% solution and gels C and I, replacing water with D2O and

NaOH with NaOD (for this reason, named sol-d, C-d, and I-d).64,65

Comparing the spectra in the NH region, the signal of sol-d is

centred at 3403 cm�1, which is typical of non-bonded NH

groups,66,67 whereas the formation of supramolecular interactions

may be confirmed by its disappearance in gels (Figure 4). In the CO

region, no peak seems to have undergone a pronounced shift from

solution to gel. In contrast, a shift variation among the peaks at

1584 (CaCl2), 1597 (solution) or 1604 (GdL) cm�1 was recorded,

and it is attributed to the C–O stretching of carboxylic acid, where

the shift variation may be due to the different ions coordinating the

carboxylate group.

To complete the analysis of these materials, we prepared the xer-

ogels of all the samples of hydrogels A–O and analysed them with an

optical microscope (Figure 5). The analysis revealed that they gener-

ally have a fibrous structure. Morphologically, the gels sharing the

same trigger obtained both from NaOH and PB are similar. Differ-

ences arise varying the trigger, where bundles of long fibres are found

in GdL triggered gels and branched fibres are present in calcium-

triggered gels.

4 | CONCLUSIONS

In this work, we studied the ability of the tripeptide Boc-L-Phe-D-

Oxd-L-Phe-OH to form hydrogels under controlled conditions. We

prepared 15 hydrogels, having different properties, including gelator

concentration, stiffness, pH and transparency.

A particular attention has been devoted both to the technique

needed for the gelator dissolution and for the hydrogel formation. So,

we compared two methods for solubilisation, employing either NaOH

or PB, which both present advantages and drawbacks. The use of

NaOH exposes the gelator to harsh conditions during the dissolution

that ends up in its partial hydrolysis, which is more pronounced with

high concentrations (≥10 mM). Using PB to dissolve the gelator, this

problem is completely avoided, as no hydrolysis product has been

detected in the hydrogels. Unfortunately, the use of PB salts requires

a higher concentration of both triggers and produces more opaque

hydrogels. Thus, if the preparation of transparent gels is required,

NaOH aqueous solutions may be employed to dissolve gelators in low

concentrations such as 1–5 mM, as the reduced concentration cuts

down the hydrolysis rate.

This study could help researchers avoiding the preparation of

unstable, irreproducible, and not reliable materials. We think that a

careful study of the dissolution conditions of the gelator coupled

with the analysis of the gelator stability in gels should become a

general approach for the preparation of supramolecular gel

materials.
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