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The C`n-Valued Robin Boundary Value Problem on

Lipschitz Domains in Rn

Loredana Lanzani ∗ (lanzani@comp.uark.edu)

1991 Mathematics Subject Classification:: 31B10, 31B20, 35C15.

1. Introduction

2. Clifford Algebras: Notation and Basic Properties

The real Clifford Algebra associated with the Euclidean space Rn, de-
noted C`n, is defined as the minimal enlargement of Rn to a unitary
algebra not generated by any proper subspace of Rn, with the property

∗ Research supported by ASTA grant No. 98-B-39 and CNR grant no. 203.01.71.
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In this note we present the solution in W 1,2of the Robin boundary value 
problem for the Laplacian on a Lipschitz domain Ω ⊂ R nwith C`n- valued
datum f ∈ L 2(bΩ) (see (R) below). This work originates from [6], where we

considered the case of scalar-valued datum f ∈ L p(bΩ), 1 < p ≤ 2. In the

present context of the Clifford algebra C`n, the direct relationship between 
the Clifford derivatives of the single layer potential and left Clifford-Cauchy 
integral operators allows for a more unified and direct approach to the 
solution of the problem. Because we are choosing the Robin coefficient b in 
the space L s(bΩ) with s greater than the critical exponent n − 1, the

solution operator for the Robin problem turns out to be a compact 
perturbation of the solution operator of the Neumann problem. In this 
respect, the situation we present here bears a close affinity with the classical 
study of the Neu- mann problem for C 1-domains (see [3]). The treatment of 
the critical exponent case (namely, b ∈ L n−1(bΩ)) requires a different

approach, which has been developed in [6]. The structure of this paper is 
as follows. In sections 2 and 3 we describe and summarize the features of 
the Clifford algebras, the function spaces and the singular integral operators 
that are involved in this work. In Section 4 we present a simple proof of 
the L 2-solution of the Robin problem with non-critical Robin coefficient, and 
we state without proof the corresponding result in L p, with critical Robin 
coefficient.
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that

x2 = − |x|2 = −
n−1∑
j=0

x2
j (1)

for any x ∈ Rn. This implies that

ejek + ekej = −2δjk, j, k ≥ 1 (2)

where {ej}n−1
j=0 denote the generating elements of C`n, which are usu-

ally identified with the standard orthonormal basis of Rn. In par-
ticular, e0 is identified with the unit of the algebra. C`n is thus a
2n−dimensional vector space over R and any element a ∈ C`n can be
uniquely represented as

a =
n−1∑
l=0

∑
|I|=l

aI eI , aI ∈ R, where (3)

eI = ei1ei2 . . . eil , 0 ≤ i1 < i2 < . . . il ≤ n− 1, I = (i1, i2, . . . il) (4)

In particular, we single out the Scalar part of a, denoted Sc(a),
defined as

Sc(a) = a0 e0 ≡ a0 (5)

Clifford conjugation in C`n is defined as the unique (real-)linear invo-
lution on C`n with

eI eI = eI eI = 1 for all I (6)

Thus

a =

n−1∑
l=0

∑
|I|=l

aI eI , and eI = (−1)
l(l+1)

2 eI , |I| = l. (7)

In particular, we have

Sc(a a) = Sc(a a) = |a|2 =

n−1∑
l=0

∑
|I|=l

(aI)2 (8)

It is customary to view Rn as embedded into C`n via the obvious
identification

x =
n−1∑
j=0

xj ej (9)

A C`n-valued function f on an open set Ω ⊂ Rn is defined via:

f(x) =
n−1∑
l=0

∑
|I|=l

fI(x) eI , with fI : Ω→ R (10)
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Any continuity, differentiability or integrability property which is as-
cribed to f has to be possessed by all components fI . In particular, the
Lebesgue and Sobolev spaces of C`n-valued functions L2(bΩ, C`n),
W 1,2(bΩ, C`n) are defined by requiring that each component fI belong

to L2(bΩ) (resp. W 1,2(bΩ)), with norm in L2 defined via: ||f ||2
2

:=

Sc(
∫
bΩ

f f dσ) (see (8)). The W 1,2-norm is defined similarly.

The Left and Right Dirac derivatives of a (differentiable) C`n−valued
function f are defined respectively as

Df :=

n−1∑
j=0

 n−1∑
l=0

∑
|I|=l

(
∂

∂xj
fI

)
ej eI

 ; (11)

f D :=
n−1∑
j=0

 n−1∑
l=0

∑
|I|=l

(
∂

∂xj
fI

)
eI ej

 (12)

Similarly, we define

Df :=

n−1∑
j=0

 n−1∑
l=0

∑
|I|=l

(
∂

∂xj
fI

)
ej eI

 ; (13)

f D :=
n−1∑
j=0

 n−1∑
l=0

∑
|I|=l

(
∂

∂xj
fI

)
eI ej

 (14)

It is immediate to check that

(Df) = f D (15)

Moreover, we have

DDf = DDf = ∆f :=

n−1∑
l=0

∑
|I|=l

(∆fI) eI . (16)

We conclude by recalling Stokes’ Formula:∫
bΩ

u(x)n(x) v(x) dσ(x) =

s

Ω

(uD)(x) v(x) dx+
s

Ω

u(x) (Dv)(x) dx,
(17)

provided the the functions above are integrable.
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3. Singular Integrals: Notations and Main Properties

The operators we will be mainly concerned with are the (non-tangential)
boundary values of the Left Cauchy Integral C, the Single Layer Poten-
tial S and its left Dirac derivative DS; here we recall their definitions
and their basic properties. The fundamental result in the context of
Lipschitz domains is the following theorem, due to A. Calderon (for
domains with small Lipschitz constant) and R. Coifman, A. McIntosh
and Y. Meyer (for arbitrary Lipschitz domains) (see [1], [2], [4], [5], [7]):

THEOREM 3.1. Let Ω ⊂ Rn denote a bounded, connected domain with
Lipschitz boundary.
Then, for any f ∈ L2(bΩ, C`n) the Left Clifford-Cauchy Integral of f :

Cf (y) :=
1

ωn

∫
bΩ

q − y
|q − y|n

n(q) f(q) dσ(q), y ∈ Ω (18)

has the following properties:

(i) The Non-Tangential Maximal Function of Cf , (Cf)∗ (see [4], [5],
[7]) is square-integrable on bΩ, and

|| (Cf)∗ ||2 ≤ C ||f ||2 (19)

(ii) Cf has Non-Tangential Limit (Cf)+(p) (see[4], [5], [7])
at almost every p ∈ bΩ and

(Cf)+ (p) =
1

2

−f(p) +
2

ωn
p.v.

∫
bΩ

q − p
|q − p|n

n(q) f(q) dσ(q)

 (20)

(Here, n denotes the Clifford-conjugate of the outer normal unit vec-
tor).

For f ∈ L2(bΩ, C`n) the Single Layer Potential of f , denoted Sf , is
defined as

Sf (y) =
−1

ωn(n− 1)

∫
bΩ

1

|y − q|n−2
f(q) dσ(q) , y ∈ Ω (21)

Since

Dy

(
−1

(n− 1)|y − q|n−2

)
=

q − y
|y − q|n

(22)

robin_clifford.tex; 6/10/2015; 11:29; p.4



Robin Problem 5

it follows that DS and C are related via

D (Sf) (y) = C(n f)(y), y ∈ Ω, f ∈ L2(bΩ, C`n) (23)

where n denotes the outer unit normal vector to bΩ. The following
corollary is thus a direct consequence of Theorem 3.1 (see [4], [7]):

COROLLARY 3.2. With the same notations and hypotheses as Theo-
rem (3.1), for any f ∈ L2(bΩ, C`n) we have:

||(DSf)∗||2 ≤ C||f ||2 and (24)

n(p) (D(Sf))+ (p) =
1

2
(−I +K∗)f(p), a.e. p ∈ bΩ (25)

where K∗ denotes the L2(bΩ, C`n)-adjoint of the Left Clifford-Hilbert
transform K (see, e.g., [4] or [7]):

Kf(p) =
2

ωn
p.v.

∫
bΩ

p− q
|p− q|n

n(q) f(q) dσ(q) (26)

The following result, essentially due to G. Verchota, will be of great
importance to us (see [4], [7], [8]):

THEOREM 3.3. With the same notations and hypotheses as above, we
have:

(i) S : L2(bΩ, C`n)→W 1,2(bΩ, C`n) is invertible;

(ii) −I +K∗ is invertible on L2
0(bΩ, C`n) and, moreover

IndL2 (−I +K∗) = 0 (27)

(Here, IndL2 (T ) := dim Ker(T )− dim
(
L2 \ Range(T )

)
, see [9]).

In addition, we have

||(I ±K∗)g||2 ≤

≤ C(||(I ∓K∗)g||2 + ||Sg||2)
(28)

4. The Robin Problem in Lp

We are finally ready to state and prove the main result of this note:
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THEOREM 4.1. Let Ω ⊂ Rn denote a bounded, connected domain
with Lipschitz boundary. Let b denote a given, scalar-valued function,
b ∈ Ls(bΩ,R), s > n− 1, b ≥ 0 ( b positive on some subset of bΩ with
positive measure).

With the same notations as in Section 3, for f ∈ L2(bΩ, C`n) define

T f(p) :=

(
1

2
(−I +K∗)f

)
(p) + b(p)Sf(p), a.e. p ∈ bΩ (29)

Then, we have that T is bounded and invertible in L2(bΩ, C`n).
Moreover, the Robin Problem for C`n-valued harmonic functions:

(R)

 ∆u = 0 in Ω
(Du)∗ ∈ L2(bΩ)
nDu+ b u = f on bΩ,

is uniquely solvable in L2(bΩ, C`n), and the solution u is represented
via

u(x) = S
(
T −1f

)
(x), x ∈ Ω (30)

Proof. By (i) in Theorem 3.3 and the Rellich-Kondrachev compact
embedding theorem (see [9]) it follows that the point-wise multiplica-
tion operator bS(f) (p) := b(p)Sf(p) is compact in L2(bΩ, C`n). This,
and (ii) in Theorem 3.3 imply at once that T is bounded in L2(bΩ, C`n).
The fact that (30) gives the solution of (R) (provided T is invertible in
L2(bΩ, C`n)) is an immediate consequence of (24) and (25).

We are thus left to show that T is invertible in L2(bΩ, C`n). We
begin by showing that T is one-to-one. Indeed, if we let

T f = 0 for some f ∈ L2(bΩ, C`n) (31)

and apply Stokes’ formula (17) to v := Sf and u := Dv = v D (see
(15)) we obtain (as uD = v DD = ∆v = ∆v = 0)

x

Ω

(Dv)Dv =

∫
bΩ

Dv n v =

∫
bΩ

(nDv) v = −
∫
bΩ

b v v (32)

In particular, by considering the scalar components of (32) we obtain
(see (8))

x

Ω

|Dv|2 = −
∫
bΩ

b |v|2 (33)

It follows Dv = 0 in Ω, i.e. v = const and, since b ≥ 0 (and b is positive
on a subset of bΩ with positive measure) it must be v = 0 in Ω. Since
we have set v = Sf, by (i) in Theorem 2.3 we conclude f = 0.
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Next, we show that T has dense range in L2(bΩ, C`n). Indeed, the
compactness of bS and (27) imply (see [9])

IndL2(T ) = IndL2(−I +K∗) = 0 (34)

But we just proved that T is one-to-one, thus

IndL2(T ) = dim
(
L2(bΩ, C`n) /Range (T )

)
(35)

and the dense range property is proved.
Finally, we show that T has closed range. To this end, have

(yn)n∈N ⊂ L2(bΩ, C`n), yn → y in L2(bΩ, C`n), yn = T xn (36)

We distinguish two cases: if ||xn||2 ≤ C for each n, then by the Banach-
Alaoglou theorem (see [9]) we have (modulo a subsequence)

xn ⇀ x, for some x ∈ L2(bΩ, C`n) (weak convergence) (37)

By the uniqueness of weak limits (and the boundedness of T ) we
conclude y = T x.

If, instead, (xn)n∈N contains an unbounded subsequence, we consider

zn :=
xn
||xn||2

(38)

In this case it is not difficult to show that (modulo a subsequence)

zn ⇀ 0 (weak), ||T zn||2 → 0, ||bSzn||2 → 0 and ||Szn||2 → 0 (39)

By combining (28) with the triangle inequality we obtain:

||(I +K∗ + bS)zn||2 ≤

≤ C (||T zn||2 + ||Szn||2 + 2||bSzn||2) → 0
(40)

This leads to the following contradiction:

1 = ||zn||2 ≤ ||T zn||2 + ||(I +K∗ + bS)zn||2 → 0 (41)

The proof of Theorem 4.1 is concluded. 2

Even though Corollary 3.2 and Theorem 3.3 extend to the case
f ∈ Lp(bΩ), 1 < p ≤ 2, the solution of the Robin problem in the
general case: b ∈ Ln−1(bΩ), f ∈ Lp(bΩ) requires a more sophisticated
approach than Theorem 4.1 because the operator bS now fails to be
compact in Lp(bΩ) (even though it still bounded, by the Sobolev em-
bedding theorem). Moreover, Stokes’ formula can no longer be applied
to show uniqueness since, in this case, the functions involved may not
be integrable. Nevertheless, the result is maintained. We have:
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THEOREM 4.2. Let Ω ⊂ Rn denote a bounded, connected domain
with Lipschitz boundary. Let b denote a given, scalar-valued function,
b ∈ Ln−1(bΩ), b ≥ 0 (b positive on some subset of bΩ with positive
measure). With the same notations as in Section 3, for f ∈ Lp(bΩ),
1 < p ≤ 2, define

T f(p) :=

(
1

2
(−I +K∗)f

)
(p) + b(p)Sf(p), a.e. p ∈ bΩ (42)

Then, we have that T is bounded and invertible in Lp(bΩ).
Moreover, the Robin Problem for C`n-valued harmonic functions:

(R)

 ∆u = 0 in Ω
(Du)∗ ∈ Lp(bΩ)
nDu+ b u = f on bΩ,

is uniquely solvable in Lp(bΩ), and the solution u is represented via

u(x) = S
(
T −1f

)
(x), x ∈ Ω (43)

The proof of Theorem 4.2 in the case of scalar-valued coefficients will
appear in [6].
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3. E. Fabes, M. Jodeit, N. Riviére Potential Techniques for Boundary Value
Problems on C1 Domains, Acta Math.,141 (1978), 165-186.

4. J.E. Gilbert, M.A.M. Murray, Clifford Algebras and Dirac Operators in Har-
monic Analysis, Cambridge Studies in Advanced Mathematics 26 (1991).

5. C.E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary
Value Problems, AMS-CBMS 83 (1994).

6. L. Lanzani, Z. Shen, On the Robin Problem for the Laplace Equation in Lipschitz
Domains, preprint.

7. M. Mitrea, Clifford Wavelets, Singular Integrals, and Hardy Spaces, Lecture
Notes in Mathematics 1575 (1991).

8. G. C. Verchota, Layer Potentials and Boundary value Problems for Laplace’s
Equation in Lipschitz Domains, J. Funct. Anal., 59 (1984), 572-611.

9. A.E. Taylor, D.C. Lay Introduction to Functional Analysis, John Wiley & Sons
(1980).

Address for Offprints:
Department of Mathematics

robin_clifford.tex; 6/10/2015; 11:29; p.8



Robin Problem 9

University of Arkansas
Fayetteville, AR 72701
USA

robin_clifford.tex; 6/10/2015; 11:29; p.9



robin_clifford.tex; 6/10/2015; 11:29; p.10


	Copertina_postprint_IRIS_UNIBO(2)
	robin_clifford

