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Abstract 
Background: 3D-printing has shown potential in several medical 
advances because of its ability to create patient-specific surgical 
models and instruments. In fact, this technology makes it possible to 
acquire and study physical models that accurately reproduce patient-
specific anatomy. The challenge is to apply 3D-printing to reproduce 
the porous structure of a bone tissue, consisting of compact bone, 
spongy bone and bone marrow. 
Methods: An interesting approach is presented here for reproducing 
the structure of a bone tissue of a femur by 3D-printing porous 
structure. Through the process of CT segmentation, the distribution of 
bone density was analysed. In 3D-printing, the bone density was 
compared with the density of infill. 
Results: The zone of compact bone, the zone of spongy bone and the 
zone of bone marrow can be recognized in the 3D printed model by a 
porous density additive manufacturing method. 
Conclusions: The application of 3D-printing to reproduce a porous 
structure, such as that of a bone, makes it possible to obtain physical 
anatomical models that likely represent the internal structure of a 
bone tissue. This process is low cost and easily reproduced.
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Introduction
Aging, rising obesity, and a lack of physical activity have all contributed to a significant increase in joint deterioration and
bone abnormalities.1–3 The challenge is focused on making prototypes to replace or support bone parts. It is critical that
the implant be functional and remain there without complications or performance deficits. Using traditional two-
dimensional radiologic modalities, it is difficult to understand complicated defects, and the evaluation and classification
of defects of various kinds are crucial steps to effectively manage clinical conditions. Making three-dimensional models
provides both visual and tactile reproduction of bone anatomy, with the potential for better preoperative planning, thus
helping to make complex interventions more precise and accurate.4 3D-printing and virtual surgery planning have found
significant interest in the field of orthopaedics, leading to considerable advancement in preoperative surgical planning.5–7

Indeed, it is found that 3D models allow surgeons to visualize anatomy three-dimensionally and aid in the planning and
execution of complex surgeries.8–10 3D printing of porous structure offers an attractive means to improve the fabrication
of bone models and facilitate their understanding for both academic studies and surgical planning.11–13

Herewe present the process of 3D-printed porous structure of a femoral bone composed of different infill densities. Among
the print parameters of the slicing software, it is possible to change the infill parameters and obtain a 3D print with
differentiated densities, effectively replicating the appearance of a bone tissue: a compact and very dense outer part, a
trabecular and less dense inner part, and the hollow marrow in the centre. The three-dimensional reconstruction of the
anatomical section was performed following the well-established procedure in previous studies.14–16 In brief, by
segmentation of medical images from CT scans, different internal zones of the bone are obtained, according to the
intensity of the pixels in a grey scale. The study of the distribution of different infill densities as a 3Dprinting parameter was
one of the key points of the research. In particular, the aim was to compare the infill density with the actual bone density
obtained by reprocessing medical images. The possibility of obtaining a 3D-printed object that represents a bone both
internally and from an external geometric point of view is themain goal of the research. This allows on the one hand a better
understanding of the clinical case and on the other hand improves communication in the patient-doctor relationship.17

Moreover, the object studied allows students, professors or doctors to visualise and better understand bone tissue in their
studies thanks to an object that faithfully simulates bone tissue. Biomaterials currently used for 3D printing in the medical
and orthopaedic fields18,19 include polymers, materials widely used in additive manufacturing because of their ease of
structural change due to relatively low melting points;20,21 metals and alloys, including titanium alloy, a compact,
lightweight and highly corrosive-resistant material with osteointegrative properties that make it perfect for replacing
missing parts or for support during alignment and surgical cutting.22,23 FDM is amanufacturing technology adapted for the
fabrication of porous bone tissue at lowcost, providing goodmechanical properties.24–26 In fact, the 3Dprinting parameters
are set by slicing software, which layers the imported 3Dmodel. The formal accuracy is affected by theG-code setting.27–29

The affordability and capability of reliably reproducing amodel show the value of 3D simulations in preoperative planning
and implant trajectory prediction to prevent injury and accidental harm to adjacent bone components.30

The aim of this study is to obtain a low-cost model of a 3D-printed femoral bone with a porous structure that is formally
equivalent to its real counterpart. with a view to the potential replacement of a diseased piece of bone tissue, the bone in
question must be as suitable as possible for the patient, simulating the appearance and weight of the original bone by
reproducing its internal density.

Methods
The study describes a methodological process by which 3D-printed bone tissue can be obtained with a porous structure
infill.

Manual reconstruction
Medical images of a right femur of a 30-year-old manwere downloaded from an online database. The procedure involves
3D digital reconstruction of the medical images using 3D Slicer v4.11 software,31 which allows a reading based on the
Hounsfield scale, indicating the level of radiation absorption by the bone based on its density32–35 (Figure 1).

According to the Hounsfield scale, intervals are defined for each area of bone:

• compact bone: 484 Hu to 1814 Hu;

• spongy bone: 333 Hu to 484 Hu;

• marrow: 230 Hu to 333 Hu.

Selecting all the pixels in the region of interest (ROI) produces the three-dimensional anatomical model in which the three
zones are placed inside each other. In order to select each of these areas separately, selection masks were defined
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(Figure 2). Each of this selection masks is identified with a distinct colour. This allows better visualization of the various
parts of the 3D model that composed the bone. Once the different areas are identified, only those related to the bone are
considered. They can then be exported to an .stl format file.

Automated reconstruction
To automate the ROI selection process, a script in the Python language was developed that can reprocess a.jpg image of a
CT and automatically identify varied selection masks.

Figure 3 shows the flowchart of the script. By introducing an image packet from CT scan, the script converts and reads
each image in grayscale, that is, in pixels in a colour scale of 0 to 256 shades of grey ranging from black to white,
respectively. Image manipulation from code is possible through dedicated libraries such as OpenCV.36 The script
analyses every single pixel in the images starting from the first pixel in the upper left corner and continuing to the right.

Figure 1. 3D Slicer’s interface.

Figure 2. Selectionmasks: the greenmask for compact bone tissue, the yellowmask for spongy tissue and the
brown mask for marrow.
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Once the first row of an image is finished, it starts again by going down one row of pixels and so on. The script assigns
each pixel one of 256 values depending on the gradation in the grayscale. Finally, it converts with a proportion the
numbers from 0 to 256 into values from 0 to 100 by sending out a text with all the values. Defined three groups, values are
assigned for each selection mask:

• from 0 to 76 in the green mask (white pixel);

• from 77 to 178 in the yellow selection mask (grey pixel);

• from 179 to 255 in the brown selection mask (black pixel).

By processing the script, the image is outlined as shown in Figure 4. These three groups identify the three parts that make
up the bone. Post-processing was required to exclude areas that are not of interest for selection.

In any case, this automatedmethod needs to be further improved in terms of the pixel selection and categorization process.
So, the methodology was carried forward with the manual reconstruction method.

Modeling for 3D printing
3D printing has been the technology used for making the physical anatomical model. However, a model preparation stage
is required for additive technology. First, three meshes in .stl format were exported from 3D Slicer. In the digital
environment of Blender v3.3.0,37 a series of simple Boolean operations were performed in order to obtain three distinct
final models of compact bone, spongy bone and bone marrow, respectively. In order for the models to maintain their
relative positions in space in the slicing environment, they were exported in the .3mf format.

Figure 3. Flowchart.

Page 5 of 11

F1000Research 2023, 12:17 Last updated: 07 JAN 2023



The printer used for this study is a Fused Deposition Modeling (FDM) 3D printer, AnyCubic Predator. FDM technology
involves the extrusion of thermoplastic materials using a heated nozzle that melts the material and deposits it, layer by
layer, on a printing platform until the part is completed.38 PLA was chosen as the printing material because it is
inexpensive, dense, versatile and easy to process.39 To obtain the diversity of the densities of the parts to be printed, a
conversion comparing the density of bone with that of PLA filler was performed. Specifically, the density value of
compact bone (equal to 2 g/cm3) and that of spongy bone (equal to 0.6 g/cm3)40 were compared with the density of PLA
(equal to 1.3 g/cm3) (Figure 5).

Figure 4. Output.

Figure 5. Conversion between the bone density and the PLA density.
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Assuming the maximum compact bone density, that is 100% infill, the density of spongy bone will be 46.2%, according
to the following proportion:

1:3 : 100¼ 0:6¼ x

x¼ 100 ∗ 0:6
1:3

¼ 46:2

Ultimaker Cura v5.0.041 is the slicing software used that allows you to manage printing parameters and export a G-code
file. Among the various parameters, including layer height, printing temperature, printing speed, are those related to infill
of the various layers. An infill density is set as a single, constant value throughout the object. By importing the three
patterns in .3mf format to Ultimaker Cura, different densities can be set for each pattern. Gyroid infill was used since it
appears to be the one most like the typical trabecular structure of bone. Applying the parameters shown in Table 1, a
preview of the compact bone and the spongy bone is visualized (Figure 6). The 3D print for each zone of different density
was made without external walls to achieve a more uniform 3D print object with visibly gradual infill.

Results
The reconstruction and processing steps resulted in the three distinct three-dimensional parts of the areas of the bone.
The areas of the obtained 3D digital models present smooth and compact surfaces in their entirety, maintaining a true-
to-life appearance. Figure 7 shows the three obtained digital models of the bone and Figure 8 shows the final 3D
printed models.

Table 1. Main printing parameters.

Layer height 0.15 mm

Line width 0.30 mm

Wall line count 0

Top layers 0

Bottom layers 0

Infill density 100% (compact bone)
46.2% (spongy bone)
0% (bone marrow)

Infill pattern Gyroid

Printing temperature 200 °C

Flow 100%

Print speed 60 mm/s

Fan speed 100%

Figure 6. Gyroid pattern with different infill density on Ultimaker Cura.
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Discussion
Nowadays, polymeric materials do not reach a density equal to that of compact bone, but it is possible to study which
among them can achieve the same mechanical and structural properties with the right printing settings. An interesting
example is the use of PEEK or similar materials that can easily reproduce the structure of bone, but their use involves a
complicated and expensive process.42–44 An interesting possibility is offered by bone tissue printing for the fabrication of
fractured parts that should be removed or low in bone density through 3D Bioprinting.45,46 Another improvement
concerns the use of an optimized infill for printing bone that is more accurate than the one used andmore like a trabecular

Figure 8. 3D printed models.

Figure 7. 3D digital models of the bone: A) compact bone, B) spongy bone and C) bone marrow.
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structure so that it is visually increasingly accurate and close to reality. For the future, it also desired to achieve the
possibility ofmaking a print that has not only three different zones but that the variation in density is continuous following
the bone matrix and not differentiated by n zones.47 Another future development concerns the improvement of
automation for the reconstruction phase to have an increasingly accurate as well as fast method.48

Conclusion
By focusing on patient specifics, 3D printing technology in orthopaedics can improve the understanding of clinical cases
by creating patient-specific anatomical models. One interestingmethod to improve the creation of bonemodels andmake
them easier to understand for both academic research and surgical planning is variable density 3D printing. 3D printing
porous structure allows to obtain an anatomical model that better represents its realistic counterpart in terms of shape,
surface area, and weight. By three-dimensional reconstruction of a CT image of a femoral bone, interpreting zones of
different densities, it is possible to obtain three zones corresponding to compact bone, spongy bone, and bone marrow,
respectively. This process can be done in manual or semi-automatic mode, with a strong potential for automation. This
involves writing an articulated computer language code to select and distinguish the different pixels constituting a CT
image and categorize them automatically according to their intensity. Finally, through slicing software it is possible to
customize the printing parameters, applying different infill densities per part, resulting in a 3D printed object with porous
structure. The most interesting application of this process is precisely in making more lifelike bone structures, ensuring
eventual comparable replacement. This study is a first approach to obtain a first 3D printmodelwith porous structure. As a
future development, it is important to achievemechanical characteristics comparable to those of real bone tissue. It is first
necessary to identify a material with suitable characteristics both structurally and biocompatibility for this application.
Finally, it is good to optimize the internal infill geometry that ensures on the one hand the maintenance of mechanical
characteristics and on the other hand a good surgical integration.

Data availability
Underlying data
Medical images used in this study can be downloaded from Embodi3d®, https://www.embodi3d.com/.

Software availability
Source code available from: https://github.com/DING-15/TC_py.git

Archived source code at time of publication: https://doi.org/10.5281/zenodo.746459449

License: GNU General Public License version 3.
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