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A B S T R A C T

The gully erosion susceptibility literature is largely dominated by contributions focused on model comparison.
This has led to prioritize certain aspects and leave others underdeveloped as compared to other natural hazard
applications. For instance, in gully erosion data-driven modeling most studies use different platforms when it
comes to data management, modeling and conversion into predictive maps. This in turn has limited the scope to
catchment-scales. In this manuscript, we opt to propose a tool where the whole modeling procedure is unified
within the same cloud computing system, allowing one to get rid of potential errors caused by input/output
operations but also to extend the study areas indefinitely, as cloud data-management tools easily offer access
to global data. Specifically, we present an interactive tool for susceptibility modeling in Google Earth Engine
(GEE), the Susceptibility Tool for GEE (STGEE). Our tool requires few input data and makes use of the breadth
of predictors’ information available in GEE. In this cloud computing environment, binary classifiers typical of
susceptibility models can be called and fed with information related to mapping units and any natural hazards’
distribution over the geographic space. We tested our tool to generate susceptibility estimates for gully erosion
occurrences in a study area located in Sicily (Italy). The tool we propose is equipped with a series of functions
to aggregate the predictors’ information in space and time over a mapping unit of choice. Here we chose a
Slope Unit partition but any polygonal structure can be chosen by the user. Once this information is derived,
our tool calls for a Random Forest classifier to distinguish locations prone to gully erosion from locations where
this process is not probabilistically expected to develop. This is done while providing a modeling performance
overview, accessible via a separate panel. Such performance can be calculated on the basis of a exploratory
analysis where all the information is used to fit a benchmark model as well as a spatial k-fold cross-validation
scheme. Ultimately, the predictive function can be interactively used to generate susceptibility maps in real
time, for the study area as well as any study area of interest. To promote the use of our tool, we are sharing
it in a GitHub repository accessible at this link: https://github.com/giactitti/STGEE.
1. Introduction

Planning actions aimed at reducing or mitigating disaster risk share
a common starting point irrespective of the natural hazard under con-
sideration. This starting point assumes that we can estimate where, how
frequently and how threatening a given natural process may be (Klügel,
2008; Domeneghetti et al., 2013; Lombardo et al., 2020a). Estimating
these three elements in the future constitutes an attempt to predict
natural hazard occurrences and associated characteristics, so that deci-
sions can be made to alleviate the risk. For instance, investments can be
made to stabilize a potentially unstable slope (Abramson et al., 2001) or
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flood barriers can be built to limit the water invasion of lands outside
the river bed (Srb et al., 2017), and so on for other type of hazard.
Predicting the locations where natural hazards may occur is commonly
referred to as susceptibility. The evolution of susceptibility models has
substantially evolved in the last four decades. From expert-based notes
taken on a paper (see, Brabb et al., 1972), the geoscientific community
has initially moved to knowledge-driven models (e.g., Leoni et al.,
2009) where some of the operations were carried out in a digital plat-
form but still based on the subjective judgement of the person behind
the assessment. Then the data-driven framework took over the scene,
vailable online 13 November 2022
569-8432/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.jag.2022.103089
Received 16 March 2022; Received in revised form 21 August 2022; Accepted 30 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2022

http://www.elsevier.com/locate/jag
http://www.elsevier.com/locate/jag
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
https://github.com/giactitti/STGEE
mailto:l.lombardo@utwente.nl
https://doi.org/10.1016/j.jag.2022.103089
https://doi.org/10.1016/j.jag.2022.103089
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2022.103089&domain=pdf
http://creativecommons.org/licenses/by/4.0/


International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103089G. Titti et al.
initially in a bivariate context (e.g., Nandi and Shakoor, 2010), quickly
superseded by its multivariate counterpart (e.g., Lombardo and Mai,
2018; Titti et al., 2021). Even more recently, machine learning tools
have provided equally valid alternatives to the multivariate statistical
tools, bringing more in terms of performance, losing though in terms of
interpretation (Goetz et al., 2011). Despite this rapid evolution, some-
thing has never changed. Irrespective of the user’s technical ability, the
most common analytical protocol includes an initial phase where data
is collected from many different cartographic sources. This information
is then locally managed in a GIS platform where it is exported to be
used in a computing environment such as Matlab (e.g., Lagomarsino
et al., 2017), R (e.g., Brenning, 2008) or Python (Gerzsenyi, 2021).
These computing environments allow for different models to be run,
for the susceptibility to be estimated and to export the results back
into a GIS where the results are ultimately converted in map form. Very
few cases exist where these long series of cross-platform input/output
operations are kept within the same environment, e.g., Bragagnolo
et al. (2020) within GRASS GIS and Naghibi et al. (2021) within ArcGIS.
But, even in these cases, the computing phase of the research takes
place on local machines and the potential of cloud computing resources
has yet to be tapped in. In fact, the very recent birth and evolution of
cloud-based systems have enabled scientists and end users in general
to perform data management and computing procedures all within the
same environment. This mostly constitutes an uncharted territory also
for the natural hazard community, although cloud solution hold a great
potential for scientist to unify their data access and modeling protocols
within the same remote environment. In this sense, a very small number
of articles proposes to use a web-based platform such as Google Earth
Engine (GEE, hereafter). Najafi et al. (2020) uses GEE to extract the
predictor set for land subsidence assessment in a Iranian study site, but
then the authors perform the modeling operations in their local ma-
chine. Scheip and Wegmann (2021) exploit GEE to automatically map
multiple hazards on the basis of time series of normalized difference
vegetation index (NDVI) data. Ilmy et al. (2021) manage the predictor
set in their local machine, built a landslide susceptibility into GEE only
to export the data back to their computers where they then translated
the output into maps. This research takes inspiration from these articles
but largely improve on their implementation side by providing a unique
environment for data handling, predictor’s extraction, model building
and susceptibility mapping. The only pre-requirement, is the definition
of a spatial partition and the assignment of a presence/absence label to
each of the mapping units.

The aim of this research is to test whether it is possible to unify
modeling practices (data acquisition, preprocessing, modeling, and map
making) that have been traditionally conducted in a separate manner.
And, to unify this protocol in a cloud computing environment where
model transferability becomes an easy task due to data availability.
Therefore, we present the Susceptibility Tool for Google Earth Engine
(STGEE).

The following sections are meant to elucidate the tool we propose,
by describing its sub-routines while taking the generation of gully
erosion susceptibility as an example. More specifically, Section 2.1
introduces the study area and the gullies we mapped. Section 2.2
describes the spatial partition we opted for. Then Section 2.3 dives into
GEE for the extraction of the predictor set and Section 3 expands on
that to illustrate the use of a binary classifier directly within GEE. As
a result, the tool will perform the model building phase, calculation
of performance metrics and cross-validation routines. The interactive
visualization will also be explained. The results are then presented in
Section 4, and the strengths of the tool we propose are then discussed
in Section 5. We conclude the paper in Section 6 where we share with
the readers our vision for the next directions to take when aiming at
2

estimating natural hazard occurrences in a cloud-based environment.
2. Data overview

2.1. Study area and gully inventory

The study area is part of the Belice catchment, located in the
western part of Sicily facing the Mediterranean Sea to the South-
West (see Fig. 1Zoom1). The area where we test our tool is shown in
Fig. 1Zoom2 and extends for approximately 77 km2 with a maximum
length of around 17 km. Hydrologically, it consists of a tributary of
the Belice catchment. As for the climate conditions the area is exposed
to, a typical Mediterranean climate regime controls hot and almost dry
summers, alternated to wet and warm autumn–winters (more details
provided in Conoscenti et al. (2015)).

For what concerns the precipitation trends, a mean annual discharge
of around 50 mm is associated with a mean annual temperature of
30 C◦. According to WorldClim database (Hijmans et al., 2005), most
rainfall is discharged in the months of October (77 mm), November
(75 mm) and December (75 mm). During these months, the area
is affected by a wide range of water erosion and land degradation
phenomena due to the widespread presence of fine-grained deposits
and intensive agriculture. Specifically, field evidence has shown sat-
uration of these deposits during heavy rain, initially resulting in loss
of cohesion and then in surface deformation and formation of gul-
lies Conoscenti et al. (2015). Most of the gullies occur on cultivated
fields and can be classified as ephemeral. The gully channels indeed are
usually erased by tillage operations a few months after their formation.
Fig. 1Zoom3 shows instead a nearby catchment we chose to purely
demonstrate the spatial transferability of our modeling framework.

2.2. Mapping unit

Our tool works irrespective of the mapping unit one would like
to use. As the choice of the mapping unit is strictly connected to
the hazard one needs to model, our choice to test our tool for gully
erosion susceptibility implies that the specific mapping unit would
have respected the hydro-morphological behavior of this type of hazard
or that at least, it would have been justified from past literature.
The literature on gully erosion susceptibility reports a large number
of contributions where a regular grid is preferred (e.g., Cama et al.,
2020), followed by fewer examples on Unique Condition Units (e.g.,
Conoscenti et al., 2013) and Slope Units (e.g., Lombardo et al., 2020b).
Here we opted for the latter case, having generated our Slope Unit
(SU) partition through r.watershed in GRASS GIS (Neteler and Mitasova,
2013). As a result, our study area has been divided into 1000 SU, with
a mean planimetric area of 0.066 km2 and a standard deviation of their
extent equal to 0.042 km2.

2.3. Predictors

Our predictor choice exploits the breadth of information contained
in GEE. There, terrain, climatic, vegetation characteristics can be easily
accessed. However, the resolution at which this information is ex-
pressed may significantly differ from the resolution of the mapping unit
one may want to use. The most common situation for natural hazards is
that the scale at which these processes act and develop is larger than the
dimension at which most remote sensing data is collected. For instance,
elevation data can be globally found at a 30 m resolution and yet
landslides may be much wider or longer than a single 30 × 30 grid cell.
The same is evident for floods and wildfires, two process that may affect
large portions of a territory. As a result, the choice of an appropriate
mapping unit should reflect the dimensionality of the process under
consideration. For geomorphological processes this usually results in
medium resolution objects such as slope units (Carrara, 1988; Bryce
et al., 2022) or catchments (Wang et al., 2021, 2022).

As a result of the considerations above, one may find that a large
number of grid-cells falls within a single mapping unit. And, for the
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Fig. 1. Left to right: Geographic overview; Location of the test site (Zoom2) and the prediction target (Zoom3, see at the end of Section 3); Zoom2 shows the gullies we inventoried
to test our tool together with the underlying topography.
Table 1
Predisposing and triggering factors (see Titti et al., 2022, for an example).

Data type Data source Layer Acronym

1

Morphology SRTM (Farr et al., 2007)

Slope degree mean S_mean
2 Slope degree std S_std
3 Plan curvature mean HCv_mean
4 Plan curvature std HCv_std
5 Profile curvature mean VCv_mean
6 Profile curvature std VCv_std

7 Precipitation CHIRPS (Funk et al., 2015) Annual precipitation mean Prec_mean
8 Annual precipitation std Prec_std

9

NDVI/NDWI Copernicus Sentinel data 2015–2020

NDVI mean NDVI_mean
10 NDVI std NDVI_std
11 NDWI mean NDWI_mean
12 NDWI std NDWI_std
specific example of SUs, even thousand if not millions of grid-cells may
be contained in a single polygon. Therefore, the resulting distribution
per SU needs to be summarized according to fewer statistical moments
such as the mean and standard deviation (Guzzetti et al., 2005) or
according to a richer quantile description (Castro Camilo et al., 2017).
Here we have chosen to use the mean and standard deviation values,
having prepared another set of function in GEE to complete this task.
These functions are part of another GEE tool we have previously built,
called Spatial Reduction Tool (SRT, Titti and Lombardo, 2022) and
accessible at this link. More specifically, SRT allows one to compute
terrain attributes from globally available DEMs directly within GEE,
as well as other upscaling operations for climatic, temperature and
vegetation data, which are commonly expressed both in space and time.
In Table 1 we report the predictors we extracted for this study.

In Section 4, additional details will be provided to explain how to
select the predictor set through our tool and how to create the data
matrix required model. Here we conclude mentioning that we label
each slope unit according to the presence or absence of gullies by
checking the intersection between the two. All the slope units that
intersect gullies are assigned with a presence label whereas the opposite
situation defines the absence case.
3

3. Model building strategy

We have chosen a Random Forest (RF; see Biau and Scornet, 2016,
for modeling details) classifier among the available ones in GEE. We
have done so because the general family of decision trees has a long
history of successful applications in the susceptibility literature (e.g.,
Lombardo et al., 2015; Hong et al., 2020) and specifically RF has
proven to be a valid modeling framework when modeling different
types of natural hazards, from wildfires (Tonini et al., 2020) to land-
slides (Taalab et al., 2018) and specifically in the context of gully
erosion (Avand et al., 2019).

A RF is undoubtedly a powerful tool for any binary classification
tasks, but still requires its modeling performance to be estimated and
summarized across a series of tests. We chose to assess the classification
performance via Receiver Operating Characteristic curves and their
Area Under the Curve (Rahmati et al., 2019). Our tool integrates a
ROC function into the whole modeling protocol and graphically returns
ROC curve, AUC and best probability cutoff as part of the GEE plotting
space. Our tool supports the use of performance estimations in two
steps. The first step computes the goodness-of-fit performance, testing
the agreement between observed and fitted presence/absence data. As

for the actual predictive performance, being the data we used purely

https://github.com/giactitti/SRT
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Fig. 2. Flow-chart of the main steps and functions used by the STGEE.
spatial, we adopted a spatial cross-validation scheme (SCV; see Steger
et al., 2016). We could have opted for a purely random cross-validation
but these operations tend to keep the modeling performance quite close
to the actual calibration because they retain the spatial structure in the
data and an elegant explanation on the topic can be found in Schratz
et al. (2019). For this reason, we opted to implement a SCV, as it
ensures that any residual spatial structure in the data is disentangled
from the performance assessment. In our tool, we offer to the user the
chance to select the dimension of a squared lattice, whose structure
is used for the SCV. This implies that every mapping unit falling
within a grid of the lattice will be iteratively kept aside for testing
and the complementary mapping units will be used for calibration. This
operation is looped until all the mapping units constituting the whole
study area are fully predicted.

Ultimately, we also implemented a separate tool that allows one
to export the predictive function in any other area. This operation is
commonly known as model transferability (Lombardo et al., 2014) and
here we ensure its application within the same GEE environment as
long as the user uploads the same type of spatial partition used for
calibration and as long as the transferability makes sense in terms of
geographic settings.

The entire workflow of the STGEE functions is shown in Fig. 2. The
red squares represent the maps visible into the tool map.

Every outcome of the modeling procedure described in the previous
section can be interactively visualized in GEE. We offered a series of
visualization techniques to quickly explore the results. Specifically, one
can plot:

• Fitted susceptibility map;
• Confusion matrix map (TP, TN, FP and FN), where the cutoff

is set to the best probability cutoff computed during the ROC
calculation;

• Spatially cross-validated susceptibility map;
• Spatially transferred susceptibility map.
4

4. Tool overview through example results

The STGEE tool is available in GitHub. The repository is composed
by 5 scripts: ROC, SCV, STGEE, display, run.

The STGEE tool can be ran using the ‘‘STGEE’’ script available
at this link. This code allows the user to select the input variables
to be used in the susceptibility model. Four inputs are necessary to
launch all the functions of the STGEE: ‘‘predictors_shp’’ a vector file
containing the presence/absence status and the mean and standard
deviation of the predictors per mapping units; ‘‘binomial_event’’ the
name of the attribute which reports the binomial labels of the event;
‘‘predictors_column_name’’ the name of the predictor attributes; and
‘‘prediction_area_shp’’ a vector file containing the predictors per map-
ping units of the predicting area. The ‘‘predictors_shp’’, the ‘‘bino-
mial_event’’ and the ‘‘predictors_column_name’’ are mandatory, the
‘‘prediction_area_shp’’ is only required to apply the model transferabil-
ity function.

In this example, we chose a SU partition, whose gully erosion binary
label corresponds to 1 for SUs containing at least one gully, and a
label of 0 for gully-free SUs. The predisposing factors we used, have
been collected with the SRT tool. The loading example is illustrated in
Fig. 3. There, the top right drop-down panel highlighted in red allows to
interactively visualize the Slope Unit partition (denominated as Study
area). And, the button highlighted in blue at the center of the screen
allows one to run the whole script.

Once the user clicks on the ‘‘Run analysis’’ button, our tools auto-
matically selects the required predictors listed in Section 2.3 and it calls
the random forest function to calibrate our initial susceptibility model.
The relative output can also be interactively visualized, which we show
here in Fig. 4. The figure highlights few elements in our tool that will
be clarified below. First of all, in red we have highlighted again the
visualization drop-down list, where we have selected the calibrated RF
model. By flagging the ‘‘Calibrated map’’, the susceptibility is plotted at

https://github.com/giactitti/STGEE
https://code.earthengine.google.com/b76fb3cea835fadbe2482a49919aedd8


International Journal of Applied Earth Observation and Geoinformation 115 (2022) 103089G. Titti et al.
Fig. 3. Mapping unit partition overview by Google Earth Engine platform. This corresponds to the mapping unit where the model will be calibrated and validated.
Fig. 4. Calibrated susceptibility map overview. Performance metrics are visible in the right side of the webpage. Notably, using a best probability cutoff at 0.551, the confusion
matrix lists 451 True Negatives, 17 False Positives, 18 False Negatives, 514 True Positives.
the center of the screen. We have chosen a color scheme from green to
red passing through white visible in the left side of the screen. Here we
are showing the probabilistic results in a continuous spectrum from 0 to
1. Conversely, the second colorbar within the purple box corresponds
to a visualization tool that will be described later.

The tool also offers two options: ‘‘Run calibration ROC analysis’’
and ‘‘Run validation ROC analysis’’, shown in the panel highlighted in
blue in Fig. 4. There, we have used the first option, whose performance
results are summarized in the panel highlighted in green. The ROC
curve related to the calibration analysis is plotted and four particularly
relevant metrics are reported: the confusion matrix, accuracy, AUC and
the best susceptibility cutoff to convert the continuous spectrum of
probability values into discrete instances of expected gully presences
and absences. The same applies to the second button ‘‘Run validation
ROC analysis’’, but in the case of the validation map.

In fact, a calibrated RF is a good general reference of susceptibility
but it only provides goodness-of-fit performance indications, unsuited
to support decision making processes. This is because the model knows
all the data that it tries to estimate and thus the result cannot be
considered from a predictive standpoint. Therefore, we have equipped
our tool with an automated cross-validation scheme. Specifically, the
cross-validation we pursue corresponds to a spatially-constrained cross-
validation. This is quite known in the literature and it is well described
5

in articles such as (Goetz et al., 2015; Lin et al., 2021). The application
of such validation routines is considered a must, especially when the
mapping unit is defined at high resolution and therefore, a purely
random cross-validation may reflect some auto-correlation issue from
a replicate to another. Conversely, a spatial cross-validation ensures
that any spatial structure in the data is disaggregated and thus would
not influence the predictive performance. To allow our tool to be as
generalizable as possible (in the context of small or large mapping
units), we have therefore opted to implement and offer a spatial cross-
validation to the user. Specifically, the way this operates in our tool
is for the user to initially define a large lattice, such as the one
shown in Fig. 5. This is the only operation where the user is asked to
parameterize our tool. In fact, it is up to the user whether to choose for
a fine or coarse lattice, although we suggest the coarse choice. Then
our tool will intersect all the mapping unit falling in one of the lattice
grid cells and preserve this data purely for validation purposes. In other
words, the RF model will be calibrated on the remaining grids and it
will iteratively move from a grid to another, exclusively storing the
predicted probabilities for the mapping units under examination during
the corresponding step of the loop.

The result of the spatial cross-validation can then be visualized
using the same interactive structure shown in the previous figures.
This is visible in Fig. 6a. But, in addition to a standard visualization,
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Fig. 5. Lattice generated directly in GEE to support spatial cross-validation routines.
Fig. 6. Panel a: Spatially cross-validated map overview; panel b: Calibrated (left) VS spatially cross-validated (right) comparison tool. The discrete colorbar does not apply to these
figures. Notably, using a best probability cutoff at 0.571, the confusion matrix lists 451 True Negatives, 17 False Positives, 18 False Negatives, 514 True Positives.
our tool supports even more interpretative considerations for the user.
Specifically, we have equipped our tool with a split screen where cross-
validation results can be visualized to the right and the corresponding
calibrated results (same as those reported in Fig. 4) are anchored
to the left side of the screen (Fig. 6b). Even in this case, one can
6

run performance assessment analyses and print the results on the
screen for the ROC curve related metrics, including the best probability
cutoff.

The aforementioned cutoff can be used to create a confusion map,
i.e., the spatial distribution of TP, TN, FP and FN. Our tool also allows
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Fig. 7. Confusion map showing the spatial distribution of TP, TN, FP and FN. The colorbar that applies to this figures is the second one with four discrete classes.
one to visualize the confusion map as shown in Fig. 7. This is a particu-
larly useful tool for potential users because it enables considerations on
locations where the model hits or misses. In other words, if the FP and
FN are clusters in certain regions, then there may be some unaccounted
effects that need to be further explored before considering the results
satisfying. Or at least, one can accept the model output as is, knowing
that the estimation in certain locations is less reliable.

But, although the spatial-cross validation allows one to depict the
predictive results in areas not strictly part of the calibration phase, the
overall procedure is meant for validation. In other words, the predicted
susceptibilities are estimated within the same area where we have
information of the natural hazard at hand. In our vision of our tool,
we thought of giving the user additional capabilities. In fact, once the
model has been deemed suitable to estimate the susceptibility of the
natural hazard one may want to study, the user can opt to extrapolate
the prediction in other areas. This procedure is commonly referred to
as model transferability (see, Chung and Fabbri, 2003; Lombardo et al.,
2014; Cama et al., 2017) and GEE is a platform where transferability is
made simple because the predictors are omni-present across the whole
globe. Thus, our tool also allows to load the spatial partition of a
target area and instantly transfer the predictive function there. It is
important to note that not all models are transferable. For instance,
one should not be able to train a landslide susceptibility model for
rockfalls (Copons and Vilaplana, 2008) in mid-latitude contexts and
then transfer the predictive function for thermo-karst landslides in the
arctic (Nicu et al., 2021). Not only this, the appropriate spatial partition
needs to be carefully considered. One cannot calibrate a model over a
SU partition and then transfer it in another area on the basis of a grid
cell. Therefore, it is entirely up to the user making the right choices on
the validity domain of the given model transferability. This being said,
in a similar manner to the initial step, the user can load the mapping
unit partition of a target study area. This is shown in Fig. 8, where we
have computed another SU partition (referred to as ‘‘Prediction area’’)
for an catchment closely located to the initial study area.

The results are shown in Fig. 9, where the estimated probability
can be interactively plotted and queried, enabling considerations on
master planing in areas different from those where we have collected
the natural hazard inventory.

5. Discussion

Our tool makes it possible to run a RF-based classifier for sus-
ceptibility mapping directly within GEE in short time, even for rela-
tively large datasets. Such feat is accomplished by exploiting the large
computing capacity of GEE but also the functions available within GEE.
7

Our tool is a collection of these functions and some additional
processing steps we have written using the Java Script console.

The tool is equipped with a fully functional analytical protocol
that encompasses: (i) I/O functions; (ii) preprocess with the SRT for
the predictors’ extraction and aggregation at the scale of the chosen
mapping unit; (iii) RF classification split into calibration and spa-
tial cross-validation; (iv) performance metric estimators; (v) spatial
transferability and (vi) interactive visualization.

Our tool makes it possible for any user to quickly generate proba-
bilistic estimates across the globe and for any spatial process that can
be expressed with a dichotomous label. This is an uncharted territory
so far, because almost five decades of scientific development has never
offered a unique platform for susceptibility modeling. So far, each sci-
entific contribution has had to jump from a computing environment to
another, with all the issues that this protocol may bring. One that comes
to mind is the data formatted in different ways. Let us think about how
different GIS environments encode Not-a-Number for raster data, most
of the time this is encoded as −99999, but often one can find −9999
or other extremely large negative values. Therefore, when handling
different predictors collected from different sources, the additional
issue is to also standardize the information they carry. These problems
are inherently removed when working within the same environment
and our tool allows exactly for this. Another common issue is the
memory management. As data has become richer and richer, datasets
have become proportionally larger. The same has happened from the
modeling side. As methods have become more and more complex, the
computing requirements have followed the trend, making it so that
the combination of big data and complex modeling routines requires
dedicated computing facilities, well beyond the capacity of personal
computers or laptop. This adds another level of I/O tedious practices,
which our tool completely disregard. With the exception of the initial
spatial partition, everything is handled within GEE. There, the specifics
are obviously suitable for any model to be run, thus covering the com-
putational aspects. As GEE capabilities and products will improve with
time, we also envision a lesser need to externally manage the initial
mapping units. For instance, for a catchment partition and a model
built for large geographic sectors, one may use available watersheds
within GEE, thus removing the need to generate the catchment vector
files elsewhere. The same development may cover the aspects related
to the hazard at hand. For instance, wildfire inventories can already be
generated within GEE (e.g., Seydi et al., 2021). Automated landslides
mapping have just started a similar journey (Scheip and Wegmann,
2021) and automated flood mapping (James et al., 2021) will soon
follow. So, soon most of the operations could actually take place within

cloud systems and within GEE specifically. This will guarantee an
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Fig. 8. Target area for model transferability, shown with the corresponding spatial partition.
Fig. 9. Example of a transferred predictive function to another study area. We recall that the colorbar that applies to this figure is the one reporting the continuous probability
values.
unprecedented level of operational capabilities, where the scientific
community will get closer and closer to a unified system for natural
hazard probabilistic assessment.

6. Concluding remarks

The versatility of GEE in data handling constitutes the main strength
of the tool we propose. We already envision three future extensions of
our tool. One is to implement different classifiers. Each model brings
some level of bias in the output because of its algorithmic architecture.
Conversely, different classifiers would enable ensemble modeling rou-
tines, where the combination of different approaches would average
out the biases and strengthen the actual predictive signal.

The second direction we envision for our tool in the next develop-
ment phase is to offer the chance to leave the binary context we have
tested here, and enrich our tool with estimators for different types of
data. For instance, a susceptibility framework merely inform the user
of locations where a given process is more likely to occur. However,
this leave unresolved the question on how many hazardous processes
are expected at a given location (Lombardo et al., 2018) and how large
these processes may be (Lombardo et al., 2021). In such a way, our
tool could offer a full probabilistic description of natural hazards, from
8

their genesis to their development and help decision makers found their
decisions on maps that can be essentially generated in real time. This is
the third venue we are planning to pursue. In fact, the orbital frequency
of modern satellites has become so frequent that the information gets
streamlined on GEE almost in near-real-time or at least with such a
small delay that some of the provided information can still be useful
right after a major disaster. Our tool could feature static predictors
(time-invariant) as well as dynamic (time-variant) ones, making it
possible to generate predictive maps that change as a function of new
layers uploaded within GEE.

These are research elements that are yet to be delved into within
the natural hazard community, yet their importance becomes even
more significant for the implementation of forecasting or early warning
systems. Notably, at this stage the model we present addresses a static
purely confined to the spatial case. However, we already envision a
next phase in which, upon accessing gully erosion data or any other
natural hazard data with a temporal connotation (date and time, in
addition to the occurrence location), our tool will also be extended to
solve spatio-temporal data analytic tasks, enabling early warnings to
communities under potential threat.

Overall, we believe this to be just the beginning of a scientific
journey where complex models can become readily available and even
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easily generated by a large part of the scientific community if not to the
public as a whole, thus helping the knowledge transfer and the decision
making process in disaster risk management.

We shared our tool through GitHub in the hope to promote its
use. The repository can be accessed at this link: https://github.com/
giactitti/STGEE.
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