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Abstract: The state of health (SOH) is among the most important parameters to be monitored in
lithium-ion batteries (LIB) because it is used to know the residual functionality in any condition
of aging. The paper focuses on the application of the extended Kalman filter (EKF) for the identifi-
cation of the parameters of a cell model, which are required for the correct estimation of the SOH
of the cell. This article proposes a methodology for tuning the covariance matrices of the EKF by using
an optimization process based on genetic algorithms (GA). GAs are able to solve the minimization
problems for the non-linear functions, and they are better than other optimization algorithms such as
gradient descent to avoid the local minimum. To validate the proposed method, the cell parameters
obtained from the EKF are compared with a reference model, in which the parameters have been
determined with proven procedures. This comparison is carried out with different cells and in the
whole range of the cell’s SOH, with the aim of demonstrating that a single tuning procedure, based on
the proposed GA process, is able to guarantee good accuracy in the estimation of the cell parameters
at all stages of the cell’s life.

Keywords: lithium-ion battery; Kalman filter; equivalent circuit model; genetic algorithm (GA); state
of health (SOH); online parameters estimation

1. Introduction

In countless applications of lithium batteries, the real cycling and environmental
conditions affect cells degradation. Nowadays, there is a worldwide spreading of appli-
cations, powered by Li-Ion batteries. A non-exhaustive list includes: home appliances
such as vacuum cleaners and kitchen tools, personal mobility vehicles such as scooters
and e-bikes, and professional tools for gardening, agriculture and the industrial sector. In
most applications, the battery management system (BMS) also includes algorithms for the
battery state estimation, such as state of charge (SOC), state of health (SOH) and state of
safety (SOS) [1]. Proper SOC estimation allows power delivery optimization and improves
the user experience, while a SOH estimation gives an indication of the residual functionality
or residual value of the battery. SOH estimation should be performed regardless of the
cell’s past life and of the degradation processes that have occurred [2]. For this purpose,
the use of life models based on pre-calculated data [3] are often unreliable.

The Kalman filter (KF), in all its forms, is an excellent method for determining the
states of the cell. This method has good accuracy and reliability, even compared to other
methods [4], such as the particle filter [5]. For this reason, in the literature, there are many
examples of the application of KF algorithms for SOC estimation [6–8]. SOH cannot be
estimated directly using the KF, but it can be obtained through precise estimation of cell
parameters, such as internal cell resistance and capacitance [9–13]. In the literature, where
more filters are often used simultaneously, the most popular method is that explained by [4],
which uses the dual extended Kalman filter. A variation of this method is presented in [13],
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their proposed method is called dual fractional order extended Kalman filter. Other authors
propose different filters used together with [10] that combines the use of the H-infinite
filter for the estimation of SOC and the unscented Kalman filter (UKF) for the estimation of
cell parameters.

The KF has been proposed for the search of the model parameters’ values, and in
particular for internal cell resistance R0 by some authors such as [14]. Unfortunately, the
performance of these KFs is strictly dependent on the proper choice of coefficients of the
covariance matrices, which must be carefully chosen for each cell type and chemistry.
Often, in the literature, the methodology for determining the coefficients of the covariance
matrices are not shown, so the idea is to present an automated procedure for tuning
these matrices. The proposed method, called generically genetically optimized extended
Kalman filter (GO-EKF) is a procedure that combines an extended Kalman filter (EKF)
implementation with a genetic algorithm. The search procedure, which must be carried out
once per cell type, finds optimal and reliable coefficients for the covariance matrices that
will be used by the EKF in any aging condition of the cell. To validate the proposed method,
a reference model is used for comparing the results of the EKF. The adopted reference
model [3] is based on a “single polarization” structure and relies on a widely accepted
methodology for determining the parameters from experimental tests. The reference
model is adopted to provide true values of internal resistance under any condition of
SOC and SOH; on the other hand, real cell tests are used to evaluate the performance of
the proposed EKF in estimating the cell voltage. It is possible to estimate the SOH based
on the internal resistance, using known methods such as [11,15]. This paper proposes and
validates an optimization methodology, which is able to correctly estimate the internal
resistance of the cell R0 and its voltage. Furthermore, it makes available all the necessary
information to be used in future implementations for SOH estimation.

Section 2 describes the details of the reference model, the parameter estimation method
and the accuracy of the reference model, by comparing its results with the experimental
data. Section 3 briefly describes the EKF applied to the modeling of a Li-Ion battery, giving
an overview of the results obtained by other authors, the tuning methods and the covariance
matrices coefficients they used. This section introduces the proposed EKF implementation,
giving the chosen state variables and the details of transition, measurements and covariance
matrices. At the end of section, the optimization process for the covariance matrices based
on the proposed genetic algorithm is presented. The main goal of the proposed approach is
to speed up the tuning process, with no need for performing specific tests. Section 4 hosts
the final tests results, and claims the performance of the proposed GA-optimized EKF in
the estimation of cell voltage and resistance.

2. Reference Model

For evaluating the performance of the proposed EKF, with automated covariance ma-
trix calculation, a widely used equivalent circuit model (ECM) is considered as a reference
cell model. The reference model’s tuned parameters are used as reference values, to be
compared with the EKF outputs. Among the model’s parameters, the R0 value is used as
reference parameter. The reason behind this choice is the impossibility to directly measure
the R0 during cell operation with real current profiles. The accuracy of the EKF will be
validated by comparing its output with the measured output voltage and the other ECM
parameters calculated with specific pulse tests.

2.1. Model Description

Among the ECMs, the single polarization (SP) type is commonly chosen as it provides
good accuracy despite the small amount of required parameters. In fact, only five parame-
ters, namely the open circuit voltage: OCV, the series resistance: R0, the R/C branch: R1,
τ1 and the voltage on the capacitor: Vc are required. This makes the tuning process easier.
All the mentioned parameters are SOC-dependent.
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In order to determine the model parameters, a specific discharge test called “pulse
discharge” is used. The voltage measurement performed on the actual cell during the test
allows us to compute the model parameters. This procedure is thoroughly described in [16–19].
With the pulse discharge test, only a few values are available; therefore, an interpolating
function was used to make all the parameters continuous as a function of the SOC.

vBk = OCV(SOCk)− R0(SOCk)× iBk −Vck (1)

VcK = (1− dt
τ1(SOCk)

)VcK−1+

+
dt

τ1(SOCk)
× R1(SOCk)× iBk

(2)

SOCk = SOCk−1 −
iBk × dt

Cnom
(3)

The set of interpolation functions, representing the SP model, written in discrete form
for the sample period dt, is shown above in Equations (1)–(3). Equation (2) are obtained
using the first order Taylor approximation. To calculate the state of charge, Coulomb
counting was used. All the parameters of these interpolation functions have been obtained
using the search methodology described in [16].

VErr =
1
n ∑ |v̂Bmodel − vBreal |

vnom
× 100 (4)

2.2. Model Tuning and Validation

Figure 1 shows a scheme for the tuning and validation of the reference model. In particular,
the process consists of two phases: Firstly, the cell model parameters are estimated with a pulse
discharge test. Afterwards, the model is validated with cycle A. We chose to validate the model
on this profile because it will be used later as a reference to test the algorithm. The equipment
used for both pulse discharge and cycling is shown in Figure 2 and its specifications are
briefly listed in Table 1. All the tests are performed in a controlled-temperature room in
order to minimize any effect of the temperature on the cell parameters.
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Figure 1. Model tuning and validation procedure.
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Figure 2. Test bench.

Table 1. Test bench equipment specifications.

Power Supply TDK-Lambda GEN60-40
Electronic Load BK Precision 8514
Wattmeter Yokogawa WT310EH
Cryostat Jeio Tech RW3-0525P
Controller NI cRIO-9066

As previously introduced, this research relies on a dependable reference model for
providing the accurate estimation of the R0 resistance, to be used in any condition for
evaluating the EKF performance.

2.2.1. Tuning of Model Parameters

In the tuning phase, data obtained from a pulse discharge test, performed on an
actual cell, are used for determining the cell model parameters OCV, R0, R1, and τ1, as
described in [16].

Three “21.700” cell specimens, from different manufacturers, have been used for this
research (see pictures of Figure 3). The cells have been sampled at different life cycle
conditions, ranging from new cells to aged cells. Table 2 shows the cycle number of each
tested sample. All the parameters are evaluated at correspondent cycles.

Figure 3. Cells used in this research, from left to right: LG M50T, Samsung 50E, and Molicel P42A.
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Table 2. Average output voltage error of the reference model.

Test Cell Name Cycle Number Avg Verr [%]

1“Cycle A” LG“INR2170050T” 1 0.94
2“Cycle A” LG“INR2170050T” 100 a 0.59
3“Cycle A” LG“INR2170050T” 200 a 0.40
4“Cycle A” SAMSUNG“INR2170050E” 1 0.76
5“Cycle A” SAMSUNG“INR2170050E” 100 a 0.97
5“Cycle A” SAMSUNG“INR2170050E” 300 a 0.84
6“Cycle A” SAMSUNG“INR2170050E” 500 a 1.04
7“Cycle A” MOLICEL“INR21700P42A” 1 0.83

a Discharge CC 1 C Cut-Off 2.5 V, 25 ◦C ; charge: CC-CV at 0.5 C 4.2 V, 50 mA, 25 ◦C.

2.2.2. Model Validation

For the validation phase, an arbitrary cycle is applied on the actual cell. In more detail,
the profile used is obtained from a standardized driving cycle for passenger cars (WLTC).
As the driving cycle is defined as a speed profile, the reference power is calculated by
introducing the vehicle model [20]. In other words, the validation cycle represents the
hypothetical operation of the cell in an automotive application. The reference power profile
has been applied to the cell model as well, as it returns the modeled voltage profile to be
compared with the test results. The tests begin with fully charged cells, and stop when
the discharge cut-off voltage is reached. Using the same testing equipment of Table 2, all
the selected cells at the different aging conditions have been tested with the power profile.
The average error between the terminal voltage VBreal , measured on the actual cell, and
the modeled voltage V̂Bmodel was therefore calculated. Table 2 reports the average errors
computed with the Equation (4).

3. KF and EKF for Cell Parameter Identification

This paper focuses on the use of the Kalman filter for the estimation of Li-Ion cells
parameters. For the determination of the coefficients of the covariance matrices, a heuristic
optimization algorithm is proposed, in particular a genetic algorithm.

With this approach, it is possible to determine the best set of elements values for the
covariance matrices in order to minimize the error in the estimation of the cell voltage.

3.1. Kalman Filter

The Kalman filter [21] recursively calculates an estimated state of a linear dynamic
system as the weighted average between the predicted state and the measured state de-
termined from the available measurements. KF relies on the state-space formulation of
linear dynamic systems in the discrete time domain. Assuming discrete time sample k, the
state vector xk contains the minimal data set required to predict the future k + 1 behavior of
the system by using data taken from the past step k. Referring to state-space linear system
representation, the transition matrix Fk brings the state from instant k to the future state
k+1, and matrix Bk represents the effect of a set of input variables uk to the future state
xk+1. Assuming the vector yk as the set of output measurable quantities, the measurement
matrix Hk determines the output from the states. The straightforward matrix Dk directly
influences the output yk with the input variables uk.

If the analyzed system is non-linear, it is possible to extend the use of Kalman filtering
through a linearization procedure. The resulting filter is referred to as the extended
Kalman filter (EKF) [22]. The non-linear system is still described by the state-space model
representation, following the KF basic description. In EKF, f(xk, uk) and h(xk, uk) represent
the non-linear transition matrix and the non-linear measurement matrix, respectively.

The basic principle of the extended Kalman filter consists in linearizing the system
equations at each time instant. The linearization process requires us to calculate the partial
derivatives of the two functions f and g with respect to each of the estimated states x̂k and
x̂−k , for obtaining the new transition matrix Fk and the new measurement matrix Hk:



Energies 2022, 15, 3404 6 of 18

Both updated state x̂k and updated covariance Pk will be used in the following time
interval k + 1 for the prediction step. All the expressions used in the EKF implementation
are given in Algorithm 1, following a common notation, as introduced by [23].

Algorithm 1: Summary of non-linear extended Kalman filter equation.
Non-linear state-space model a

xk+1 = f(xk, uk) + wk E = [wnwk
T ] =

{
Qk n = k
0 n 6= k

yk = h(xk, uk) + vk E = [vnvk
T ] =

{
Rk n = k
0 n 6= k

Definitions

Fk =
∂f(xk ,uk)

∂x

∣∣∣∣
x=x̂k

Hk =
∂h(xk ,uk)

∂x

∣∣∣∣
x=x̂−k

1. Initialization
For k = 0, set

x̂0 = E[x0] , P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

2. Computation
For k = 1, 2, ... , compute
2.1 Time Update

State Estimate: x̂−k = f(xk−1, uk−1)

Error covariance:P−k = Fk−1Pk−1FT
k−1 + Q

2.2 Measurement update
Kalman gain: Gk = P−k HT

k [HkP−k HT
k + Rk]

−1

Output evaluation : ŷk = Hkx̂−k + Dkuk
State estimation : x̂k = x̂−k + Gk[yk − ŷk]

Error covariance: Pk = (I−GkHk)P
−
k

a wk and vk are independent, zero-mean Gaussian noise process of covariance
matrices Q ∈ Rn×n and R ∈ Rm×m, respectively [21]. xk ∈ Rn, yk ∈ Rm, uk ∈ Rl .
Fk ∈ Rn×n,
Bk ∈ Rn×l , Hk ∈ Rm×n, Dk ∈ Rm×l .

3.2. Extended Kalman Filter Applied to the Cell Parameters Estimations.

Table 3 reports a list of relevant articles focusing on the application of the Kalman
filter for the estimation of Li-Ion batteries parameters. The table shows the authors’ state
space variable selection, the values of the covariance matrices, when available, and the
performance of the method for the estimation of the cell voltage. The proposed model differs
from those reported in Table 3 for the set of state variables used for the cell representation,
which are derived from the SP model [12] shown in Figure 1 and listed hereinafter: the
voltage of the RC branch VC, the DC resistance R0, the resistance of the RC branch R1, and
the time constant of the RC branch τ1 = R1C1. These parameters have been chosen as state
variables because of their high dependency on the cell aging. In accordance with all the
implementations given in Table 3, the open circuit voltage OCV is excluded from this list
because of its limited dependency on the SOH. The OCV characteristics, if not provided,
can easily be determined as a function of the SOC through simple tests and given either as
a look-up table or a polynomial function of the SOC.

To summarize, the state variable vector x is defined as:

x =


Vc
R0
R1
τ1

 (5)

The input variable vector u is defined by the cell current iB only:

u = u = [iB] (6)
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In addition, the output variable vector y is defined by the cell voltage vB only:

y = y = [vB] (7)

The EKF estimator is implemented by using the notation and procedure introduced in
Section 3.1 and the discretization time interval ∆t.

f(xk, uk) =


Vck (1−

∆t
τ1k

) + ∆t
τ1k

R1k iBk

R0k
R1k
τ1k

 (8)

h(xk, uk) = [VOCk −Vck − R0k iBk ] (9)

Table 3. Summary of EKF literature applied to battery state estimation.

Filter Type Model Type State Variables Covariances Qk, Rk Methodology Voltage Error Reference

AKF Thevenin SOC [1] [1] adaptive
estimation

Max < 20%
Avg N/A [24]

EKF RC model [Vc1, Vc2, Vb, 1/C1] [0.5, 0.5, 0.005, 10−4]
[10]

N/A Max < 5%
Avg N/A [25]

EKF RC model [Vc1, Vc2, Vb, 1/C1] [0.005, 0.07, 0.9,
10−4] [10] N/A Max < 4%

Avg N/A [26]

EKF SP model [SOC, Vc] N/A
computed

each
iteration

Max < 5%
Avg < 2% [27]

EKF SP model [SOC, Vc] [0.25, 0.25]
[0.01] N/A Max < 10%

Avg < 5% [12]

EKF SP model [SOC, Vc] [0.005, 0.4191, 0.8143]
[2] [28] Max < 2%

Avg N/A [29]

EKF SP model [Vc, SOC] N/A N/A Max < 10%
Avg 0.17% [30]

DEKF SP model [Vc, SOC]
[R0, C, R1, C1]

[10−9, 10−15]
[10−9, 10−6, 10−9, 10−3]

[5× 10−7][0.0013]
[31] Max < 2%

Avg N/A% [4]

I EKF SP model [SOC, Vc]
[R0, R1, Cp]

[0.01,−0.01]
[0.04]
N/A

improve
method

[32]

Max < 1.4%
Avg N/A% [33]

EKF DP model [Vc1, Vc2, Vb, 1/R1,
1/C1, 1/R2, 1/C2]

N/A N/A Max < 4.8%
Avg 0.06% [34]

ACKF DP model [Vc1, Vc2, SOC] N/A adaptive
estimation

Max < 2.2%
Avg N/A% [35]

AEKF DP model [Vc1, Vc2, SOC] [10−3, 10−3, 10−3]
[N/A]

adaptive
estimation

Max < 2.2%
Avg N/A% [34]

DEKF DP model
[Vc, SOC]

[R0, C, R1, C1,
R2, C2]

[10−9, 10−15]
[10−9, 10−6, 10−9, 10−3,

10−9, 10−3]
[5× 10−7][0.0013]

[31] Max < 2%
Avg N/A% [4]

DEKF DP model [Vc1, Vc2, SOC]
[R0, C] N/A N/A Max < 1%

Avg N/A% [36]

DEKF DP model [SOC, Vc1, Vc2]
[R0, C]

[0.64, 0.063, 0.063]
[1.69× 10−4, 5.67× 10−4]

[0.77][7.27× 10−4]

numerical
optimization

Max < 1%
Avg N/A% [37]
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3.3. Genetic Algorithm for EKF Covariance Matrices

The proposed EKF relies on a method for determining the coefficients of the covariance
matrices Q and R, using heuristic search based on a genetic algorithm. Q ∈ R4×4 and
R ∈ R1×1 are diagonal matrices, with all and only the elements on the main diagonal
different from zero.

All the procedures for the GA have been implemented following [38,39] . Evolutionary
search is generally better than random search and is not susceptible to the hill-climbing
behaviors of gradient-based search. No gradient information needs to be presented to the
algorithm [39,40].

The genetic algorithm is embedded in an optimization session of the EKF introduced
in Section 3.2. This session is fed by the cell measurements, obtained during the normal
operation of the cell. The learning session finds the best fitting values for the coefficients of
the two covariance matrices by minimizing the error in the output cell voltage estimated
by the EKF. Using these automated procedures for tuning the coefficients of the covariance
matrices, shown in Figure 4, a significant improvement in the accuracy of the cell param-
eter, estimated by the EKF, is expected. In the proposed genetic algorithm, a sample (or
individual) Xj,i of the population is a vector whose elements (or genes) are the unknown
coefficients to be inserted into the covariance matrices Q and R.

Figure 4. Flowchart of the covariance matrices optimization process.

Xj,i = [Q1,1j,i , Q2,2j,i , Q3,3j,i , Q4,4j,i , R1,1j,i ] (10)
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where the index j represents the sample of the population (individual) in each i iteration
(or generation). The proposed genetic algorithm selects the individual Xj,i with the best
combination of genes through the procedure that is described step by step below. In the
Table 4 are summarized all the parameters used in the algorithm.

(1) Initialization i = 0
In the initial function, the number m of individuals of the population to observe is
defined. At the initial step, the set of genes for the m individuals Xj,0 are arbitrarily
chosen, within very wide predefined domains. The initial generation is defined as:

X1,0
...

Xm,0

 =

 Q1,11,0 , Q2,21,0 , Q3,31,0 , Q4,41,0 , R1,11,0
...

Q1,1m,0 , Q2,2m,0 , Q3,3m,0 , Q4,4m,0 , R1,1m,0

 (11)

(2) Fitness j : 1→ m
For each individual j : 1→ m, the corresponding set of genes, indicated in the rows
of (11), are used as coefficients of the covariance matrices of the EKF presented in
Section 3.2. For each set of genes, during the evolution of the corresponding EKF
algorithm, the fitness function (12) for j = 0 is continuously updated. This function
is the root mean square error between the actual voltage and the estimated output
voltage of the EKF at each computation step k.

f itness(Xj,i) =
2

√
1
n ∑(vBreal − v̂BEKF )

2 (12)

This choice of the fitness function (12) is crucial for obtaining the correct results of
the optimization process. After applying the EKF to the available measured data, by
using the m sets of genes as covariance coefficients, an initial vector containing the
results of the fitness function is obtained. f itness(X1,0)

...
f itness(Xm,0)

 (13)

(3) Selection
With the selection function, the process enters in an iterative cycle, where each i cycle
represents a new generation of individuals. In this function, the two individuals
having the lowest fitness value are selected from the current population Xj,i and
defined as “parents”. To avoid the premature problem, two parents with the same
genes cannot be chosen. In this case, the following individual is taken.

[X1,i][X2,i] (14)

(4) Crossover
The crossover function generates l “children” individuals Sj,i using a linear combina-
tion of the two previously selected parents. The Crossover Function matrix QC and
the generated l children are defined as:S1,i

...
Sl,i

 = [QC] =

[
X1,i
X2,i

]
(15)

Among the several known crossover functions [39], two have been chosen: the
one-point crossover and the standard crossover. Therefore, by applying these two
crossover functions to the two selected parents, four children are generated l = 4.
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(5) Mutation
In the evolutionary process, some random mutations appear between two genera-
tions. Gene mutation of the children occurs with a predefined probability p, and in
case of mutation, the new value is randomly chosen inside a predefined domain. The
domain is in discrete form and is represented by 10s, where the s ranges from −15 to
4 and the step = 1, so the whole domain is 10−15 → 104. The domain is defined so
that all “’reasonable” points are inside. In this way, there are no points fixed by the
choice of the domain itself. This function is called: Mutation Function Qm.S1,i

...
Sl,i

 = [Qm] =

S1,i
...

Sl,i

 (16)

Once the new vector of children individuals Sj,i (with j : 1 → l) is obtained, a
sequence of l EKF elaborations is performed. Each EKF elaboration uses the new
covariance coefficients given by the children’s genes and by using the same reference
measured cell quantities. During the evolution of each EKF, the new fitness values
for the children are calculated by using the same fitness function introduced in (12). f itness(S1,i)

...
f itness(Sl,i)

 (17)

(6) Population Update
The next generation of the population i + 1 is composed by a combination of parents
and children, where the l worse parents are substituted by the children. In this way,
the maximum amount of elements is always m. In this case, the number of parents m
are 20, as the number of children l are 4 and the retained parents are 16.

(X1,i+1)
...

(Xm−l,i+1)
(Xm−l+1,i+1)

...
(Xm,i+1)


=



(X1,i)
...

(Xm−l,i)
(S1,i)

...
(Sl,i)


(18)

The resulting fitness functions of the new population are simply obtained by merging
the corresponding fitness functions of selected parents and children.
The fitness vector is used at the next iteration i + 1 for the selection step, which
selects the two parents of the new generation. It is worth noting that, with this
genetic algorithm, at each new generation, the EKF elaboration is limited to the new
l individuals (children only) of the population. The genetic algorithm continues to
evolve, generation after generation, until a satisfactory result is achieved. This is
represented by a target for the fitness value.

Table 4. Parameters for setting the genetic algorithm.

Population m 20
Children l 4
Mutation Probability p 50%
Mutation Range 104 → 10−15

Fitness Target 10−8

Last Generation 1000
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4. Experimental Tests

In this section, numerical details and results of the genetic algorithm optimization
procedure are given. The performance of the resulting genetically optimized extended
Kalman filter for the estimation of the cell parameters is also reported. In the result analysis,
particular attention is paid to the accuracy of R0, because of its relevance in the SOH
estimation processes.

4.1. Execution of the Optimization Procedure

The optimization procedure described in Section 3.3 is implemented by using the
testing cycle “A” shown in Figure 1, which discharges the cell from from 100% to 0% SOC.
This testing cycle is applied to seven combinations of cell models and aging given in Table 2.
The genes selected by the genetic optimization, representing the coefficients of the EKF
covariance matrix, are given in Table 5.

Table 5. Coefficients of the covariance matrices found by the genetic algorithm.

Cell Cycles Q1,1 Q2,2 Q3,3 Q4,4 R1,1

LG 1-A 10−2 10−6 10−3 104 10−2

SAMSUNG 1-A 10−9 10−12 10−9 10−2 10−9

MOLICEL 1-A 10−5 10−8 10−6 101 10−5

Figure 5 shows the score of the four best elements in the population at each iteration of
the optimization procedure. After about 100 generations, the fitness tends to an asymptote,
therefore, there is no reason to extend the number of iterations far beyond this value, and
so the maximum number of iteration is fixed at 1000.

100 101 102 103

Step

0.25

0.3

0.35

0.4

0.45

0.5

0.55

F
it
n

e
s
s

Figure 5. Fitness value of the best 4 elements in the population at each step of LG cell with cycle A.

For demonstrating the algorithm power, all the possible combinations are considered.
There are 5 genes, and each of them can assume 20 different values from 10−15 to 104,
so all the possible combinations are: 205 = 3, 200, 000. With the proposed algorithm,
only four children of each generation are selected and, after 1000 iterations, the score no
longer decreases. With this approach, the tested solutions are only: 4× 1000 = 4000; that is
800 times less than the total number of combinations. The accuracy reached is independent
on the selection of the starting point, so it can be arbitrarily chosen. The accuracy is not
related to the starting point because of the genetic algorithm itself, as in, if the number of
iterations and individuals is high, the founded minimum is not a function of the particular
starting point.

4.2. EKF Testing

The resulting EKF with genetic optimized covariance matrices are tested using the
reference scheme of Figure 6. According to this scheme, the same current profile is applied
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to the actual cell, to the reference model and to the proposed genetically optimized extended
Kalman filter. With this approach, the output of the EKF can be compared with the real
voltage obtained from the experimental data and with the R0 value given by the reference
model considered as the true value of the resistance. For analyzing the results obtained by
the proposed EKF in the various tests, both instantaneous and average errors on the output
voltage and on the DC resistance R0 were calculated.

Figure 6. Integration among data, reference model and EKF.

The voltage error is calculated between the real voltage and the filter estimated one.
The value is normalized by the nominal voltage of each cell, as in (19), (21) and (23), due to
the small error value on RMSE and ME, the value are expressed in parts per million(ppm).
The error is calculated as a comparison between the value estimated by the EKF and the
true value of the model presented in Section 2. This value is normalized by the resistance
value at SOC = 50%, as in (20), (22) and (24), where there is a plateau of the resistance
value. This choice allows us to compare the accuracy of the method with different cells.

VRMS =

2
√

1
n ∑(vBreal − v̂BEKF )

2

vnom

(19)

RRMS =

2
√

1
n ∑(R0model − R̂0EKF )

2

R0model |SOC=50%

(20)

VMean =
1
n ∑(vBreal − v̂BEKF )

vnom
(21)

RMean =
1
n ∑(R0model − R̂0EKF )

R0model |SOC=50%
(22)

VMax =
MAX|vBreal − v̂BEKF |

vnom
(23)

RMax =
MAX|R0model − R̂0EKF |

R0model |SOC=50%
(24)

The performance of the EKF with the covariance coefficients, obtained from the
optimization process and listed in Table 5, are verified on cycle “A” , the same used in
the optimization process, and on two different current profiles called cycle “B” (Figure 7
top) and cycle “C” (Figure 7 bottom). For the LG and Samsung cells, the EKF with the
optimized coefficients was also tested on aged samples with cycle “A”.
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Figure 7. Validation power profile: Power Cycle B, top and Power Cycle C, bottom.

Figure 8 shows the performance of the EKF, with the proposed genetically optimized
covariance matrix, in estimating the cell voltage, performed on a new LG cell using cycle
“A”. Figure 9 shows the result obtained on a different cell at the end of its life, performed
on cycle “C”.
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Figure 8. LG 1-A. Comparison between the output voltage estimated by the GO-EKF and
real measurement.
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Figure 9. Samsung 500 cycle, type “C”. Comparison between the output voltage estimated by the
GO-EKF and real measurement.

Figure 10 shows the performance of the EKF, with the proposed genetically optimized
covariance matrix, in the estimation of the internal resistance, carried out on a new LG cell,
using cycle “A”. These tests prove that the estimation error is far below 5% for most of the
SOC values. It is also possible to appreciate the response time of the filter, which takes a
few seconds from the start up to converge to the correct value.
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Figure 10. LG 1-A. Comparison between the internal resistance R0 estimated by the GO-EKF and the
resistance used in the reference model.

Tables 6–9 give an overview of the estimation accuracy of the output voltage and inter-
nal resistance of the proposed method for the considered cell models and aging conditions.
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For both output voltage and internal resistance, the results are given in terms of root mean
square error (RMSE), mean error (ME) and maximum absolute error (MAE) and are used
for evaluating the proposed models.

Table 6. Error comparison obtained with the new cell. Voltage VB error estimation.

Manufacturer Cycles Number RMSE (19) (ppm) ME (21) (ppm) MAE (23) (%)

LG 1-A 80.41 3.52 0.19
LG 1-B 65.17 1.94 0.07
LG 1-C 78.53 0.77 0.09

Molicell 1-A 58.18 −1.73 0.29
Molicell 1-B 61.12 −2.39 0.06
Molicell 1-C 54.69 −0.25 0.05
Samsung 1-A 57.72 −3.30 0.17

Table 7. Error comparison obtained with the new cell. Resistance R0 error estimation.

Manufacturer Cycles Number RMSE (19) (ppm) ME (21) (ppm) MAE (23) (%)

LG 1-A 4.80 1.80 41.11
LG 1-B 5.61 1.84 41.70
LG 1-C 21.28 −3.17 82.50

Molicell 1-A 12.80 −1.17 58.38
Molicell 1-B 8.02 −1.34 89.50
Molicell 1-C 19.13 −10.55 61.74
Samsung 1-A 4.14 2.18 51.35

Table 8. Error comparison obtained with the aged cell. Voltage VB error estimation.

Manufacturer Cycles Number RMSE (19) (ppm) ME (21) (ppm) MAE (23) (%)

LG 100-B 65.15 −3.86 0.23
LG 200-B 61.49 −4.33 0.09

Samsung 100-A 66.69 −4.86 0.21
Samsung 300-A 69.68 −5.43 0.24
Samsung 500-A 60.29 −2.61 0.16
Samsung 500-B 58.83 −1.79 0.10
Samsung 500-C 56.94 −2.84 0.09

Table 9. Error comparison obtained with the aged cell. Resistance R0 error estimation.

Manufacturer Cycles Number RMSE (19) (ppm) ME (21) (ppm) MAE (23) (%)

LG 100-B 2.83 −1.62 56.51
LG 200-B 3.60 −0.91 60.78

Samsung 100-A 3.00 0.53 46.85
Samsung 300-A 3.19 1.68 53.27
Samsung 500-A 5.40 1.95 57.08
Samsung 500-B 5.32 4.20 57.08
Samsung 500-C 3.50 2.63 57.08

The result obtained for voltage estimation, with optimized covariance matrix coeffi-
cients, can be compared with the value in Table 3 where the literature results are given.
This method can achieve good accuracy on the internal resistance R0 estimation.

The maximum error is high due to the initial value of R0, but the filter quickly con-
verges to the true value as shown in Figures 10 and 11. This error can be reduced by
initializing if the initial conditions are known, or if the measurement in the previous cycle
is available. With such a low error value, it is interesting to estimate the internal resistance
in order to evaluate the SOH of the cell, which would not be possible with higher errors.
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Therefore, the proposed genetically optimized selection of the covariance matrix coeffi-
cients, implemented only once per cell model, guarantees a correct estimation even when
the cell parameters are different from the initial ones, and it is possible to determine the
coefficients of the matrices by carrying out tests with a new cell and then using these values
throughout its life. Based on the definition of the SOH Equation (25) proposed by many
authors [9,41], it is possible to obtain the SOH where the Ract and Rnew are the actual and
the new value of the resistance, respectively.

SOH(t) =
Ract − Rnew

Rnew
× 100 (25)

The value of the internal resistance R0 increases by 20% after 200 cycles for the LG
sample and 40% after 500 cycles for the Samsung sample. The average error on the estimate
of R0 is less than 4%, therefore it is possible to achieve a high level of accuracy on the
SOH estimation.
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Figure 11. Samsung 500 cycle, type “C”. Comparison between the internal resistance R0 estimated by
the GO-EKF and the resistance used in the reference model.

5. Conclusions

This paper introduces a new procedure to determine the covariance matrix coefficients
used in the extended Kalman filter by means of an optimization procedure based on a
genetic algorithm. A form of the EKF, with carefully chosen state variables, the genetic
algorithm and the implementation of the optimization procedure are described in detail in
the paper. The performance of the proposed approach has been validated against new and
aged Li-Ion cells of different models. For measuring the accuracy of the proposed GO-EKF,
a reference model, derived from a cell testing procedure, is required. It is demonstrated
that both cell output voltage and cell internal resistance can be estimated with significantly
high accuracy, at any aging condition of the cell. These results are obtained by means of an
optimization procedure, which is carried out only once per cell. In this way, it is possible to
demonstrate that only one optimization is needed to estimate the SOH during the whole
cell life. The optimization procedure can be performed at any aging condition and does not
require any specific current profile and, therefore, it can be implemented during the normal
operation of the cells. Additional optimizations were carried out with different initial values
in order to verify whether the found value is a local or a global minimum. Since each found
value is near to the others, this point can be considered as a global minimum. This feature
is considered of particular interest for the correct modeling of an aged cell, with unknown
history. The proposed methodology allows us to obtain a very accurate estimation of the
internal series resistance, representing a remarkable starting point for the development of
algorithms for the cell’s SOH estimation. The procedure has been developed to be suitable
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for embedding within a BMS, allowing for the real-time estimation of the parameters during
normal operation of the battery, without specific tests. The method requires a small amount
of memory because it stores a fixed number of elements in each iteration. The accuracy
obtained and the portability of the optimization method to unknown and aged cells, allow us to
avoid the empirical tuning of the covariance matrix coefficients, placing the proposed GO-EKF
far beyond the other estimation methods currently available in the literature. Future work on
this subject will require verification of the method performance if the optimization is performed
at any cell age, and will assess the method performance at different cells temperatures.
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