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1. Introduction

Let g be a real Lie superalgebra. It is natural to ask how to define
the concept of (infinitesimal) unitarity or unitarizability for a super
module V for g and how to obtain, starting from V , a unitary module
for G a Lie supergroup with g = Lie(G), G0 simply connected. This
problem, of great interest also in physics, was studied in several papers
from a mathematical perspective, see [14, 25, 30, 11, 12, 13] and the ref-
erences therein. From the physical point of view, in [18, 10, 29] (see also
refs. therein) the realization of unitary representations as holomorphic
sections on harmonic superspace and, more generally, on superflags is
instrumental for their applications in supergravity theories.

Let γ be the representation of g in V . We say γ is unitary if V is
equipped with a hermitian product i.e. a positive definite hermitian
form in which V0 and V1 are orthogonal, and the following conditions
are met (see [2, 14] and also [25, 30]):
(U1) For all Z ∈ g0, iγ(Z) is symmetric on V .
(U2) For all X ∈ g1, ρ(X) := e−iπ/4γ(X) is symmetric on V .
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These are not enough in general to define in the completion H of
V a unitary representation of a Lie supergroup G, (see Sec. 2.3 in [2]
for its definition), with g = Lie(G), whose infinitesimal form on V is
γ. Indeed, as was remarked in Nelson [26], this is already not enough
in the classical setting, that is when g1 = 0. In general, we need an
additional condition:
(U3) There is an even unitary representation π0 of G0, the simply
connected group defined by g0, on the completion H of V such that
dπ0(Z) is defined on V for all Z ∈ g0 and coincides with γ(Z) on V ;
in the usual notation V ⊂ H and γ(Z) ≺ dπ0(Z), Z ∈ g0 (see [28] Vol.
1, Ch. 8, Sec. 1, 2, 5 for definitions and notation).
We recall here that dπ0(Z) is the unique self adjoint operator on H

such that π0(exp(tZ)) = eitdπ0(Z). Then, Proposition 3 of [2] leads to
the following theorem.

Theorem 1. Let V be a module for a real Lie superalgebra g, via the
representation γ such that conditions (U1)-(U3) are satisfied. Suppose
that V ⊂ Cω(π0). Then each ρ(X) (X ∈ g1) is essentially self-adjoint

on V with C∞(π0) ⊂ D(ρ(X)), and there is a unique unitary represen-
tation (π0, ρ,H) of the Lie supergroup (G0, g) in H such that ρ(X) is

the restriction to C∞(π0) of ρ(X) for all X ∈ g1.

The shortcoming of this theorem is that it assumes the existence
of π0. As we shall see, when g0 is reductive and the modules are
Harish-Chandra modules of (g, k)-type, then we can dispense with (U3)
entirely. As a notational convention, when we say that some module is
a Harish-Chandra module, we assume it is already of (g, k) type, i.e.,
each vector in the module lies in a direct sum of a finite number of
irreducible k-modules, with k the maximal compact subalgebra in g,
k = k0 (see [4]). We also recall that k is not always semisimple and so
not all of its finite dimensional modules are completely reducible; the
condition for complete reducibility is that each element of the center
of k acts semisimply in the representation space. We also shall use
freely the super Harish-Chandra pairs (SHCP) terminology; for all the
notation and preliminaries on supergeometry refer to [3, 32] Ch. 4 and
7, besides the classical references [1, 23, 21, 22].

We shall prove the following.

Theorem 2. Let g be a real Lie superalgebra with g0 reductive acting
via γ on a complex vector superspace V . Assume:
(U1) For all Z ∈ g0, iγ(Z) is symmetric on V .
(U2) For all X ∈ g1, ρ(X) := e−iπ/4γ(X) is symmetric on V .
Let G0 be the simply connected Lie group defined by g0 and let G be



3

the supergroup whose SHCP is (G0, g). If V is finitely generated, then
there is a unique unitary representation of the Lie supergroup G on the
completion H of V , say (π0, ρ,H) such that V ⊂ Cω(π0).

We turn then to infinitesimal unitarity, where we need to introduce
some extra hypotheses. Let gC the complexification of g, g = k⊕ p the
super Cartan decomposition (see [5, 6] for its definition). Assume gC
contragredient. This is to say, gC is sum of complex simple Lie algebras
and complex simple Lie superalgebras of type (see [19]):

A(m,n), m 6= n , B(m,n) , C(n) , D(m,n) , D(2, 1;α) , F (4) , G(3)

Assume further that g is equal rank, that is rk(k) = rk(g) and that
kC has a non trivial center (see [6, 4]). Fix hC a Cartan subalgebra
of kC and gC. Let ∆ be the root system of gC, gC = hC ⊕

∑

α∈∆ gα
the root space decomposition. The equal rank condition allows us to
decompose kC, pC into root spaces; we say that a root α is compact
(non compact) if gα ⊂ kC (gα ⊂ pC). Let β : Z(gC) → S(hC)

W denote
the Harish-Chandra homomorphism (see [24] 13.1, [20] Thm 3). We
prove the following result.

Theorem 3. Let λ ∈ h∗C and let πλ be the irreducible highest weight
representation of highest weight λ. Then πλ is unitary if and only if
(−i)|a|β(a∗a)(λ) > 0 for all a ∈ U(gC). In particular it is necessary
that λ(Hα) ≥ 0 for α compact and λ(Hα) ≤ 0 for α non compact even
roots.

In the end we give an explicit example regarding gC = ospC(1|2) and
its real form ospR(1|2) ([3] Appendix A) proving the following.

Theorem 4. Let Vt be the universal (Verma) ospC(1|2) module of high-
est weight t.

(1) Then Vt is irreducible. It is a unitary module for ospR(1|2) if
and only if t is real and negative.

(2) All unitary representation of the real Lie supergroup OspR(1|2)
= (SL2(R), osp(1|2)) are given on the completion H of Vt, and

are such that Vt ⊂ Cω(π0), π0 unitary representation of S̃L2(R)
in H integrating (Vt)0.
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2. (g, k)-supermodules and their unitarity

2.1. Harish-Chandra modules for reductive Lie algebras. Let
g be a real reductive Lie algebra. Then g = g′ ⊕ c where c is the
center of g and g′ = [g, g] is semisimple. Let k ⊂ g′ be a maximal
subalgebra of compact type, which means that it is the set of fixed
points of a Cartan involution of g′. Let V be a (g′, k)-module. We
recall that this means that V is a g′-module which, as a k-module, is a
direct sum of finite dimensional irreducible k-modules. Recall also that
k is reductive in g. Note that if V is irreducible, then c acts through
an additive character on V and so V is an irreducible (g,k)-module.
This allows a reduction to the case when g is itself semisimple. One
knows from Harish-Chandra’s work (slightly modified to include the
reductive case) that if V is irreducible, or more generally, is finitely
generated as a U(g′)-module on which c acts semi simply through a
finite number of additive characters, then the k-isotypical subspaces Vθ

are all finite dimensional, where θ runs through the set k̂ of equivalence
classes of irreducible finite dimensional representations of k (k is not
in general semisimple, see [33] Ch. 5 for details on representations
of (g, k) modules). A basic question in the theory of (g, k)-modules is
whether such a module is the module of k-finite vectors of a Hilbert
space representation (not necessarily unitary) of the simply connected
group G defined by g. In his paper [16], Harish-Chandra proved this
for irreducible (g, k)-modules which satisfy a certain condition. He later
verified that this condition is satisfied for highest weight (g, k)-modules
and so all such modules can be realized as the k-finite vectors of Hilbert
space representations of G. This is actually sufficient for our purposes.
However, it is possible to remove the special condition imposed by
Harish-Chandra in his Theorem 4 in [16]. The general result is as
follows (see [34], Ch. 8).

Theorem 5. Any (g, k)-module V which is a direct sum of a finite
number of irreducible g-submodules is identifiable as the module of k-
finite vectors of a Hilbert space (not necessarily unitary) representation
π of G. Moreover V ⊂ Cω(π).

As mentioned earlier, when we deal with irreducible highest weight
Harish-Chandra modules, the above general result is not needed, and
Harish-Chandra already proves the above theorem for these modules.
The question arises if an irreducible (g, k)-module V , which is infinitesi-
mally unitary, is the module of k-finite vectors of an irreducible unitary
representation of G. In [16] Harish-Chandra proves that such a uni-
tary representation exists and is unique up to equivalence provided V
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is the module of k-finite vectors of a Banach space representation of G
(Theorem 9, [16]). In view of the above remarks and results, we can
now state the following theorem.

Theorem 6. Let V be an irreducible (g, k)-module defined by the rep-
resentation γ of U(g), which is unitary in the sense that there is a her-
mitian product (, ) on V such that iγ(X) is symmetric for all X ∈ g.
Then, there is a unitary representation of G (unique up to unitary
equivalence) in the completion H of V with respect to the norm defined
by the hermitian product, such that V is the module of k-finite vectors
in H.

2.2. Unitarity of super modules. We shall now present a proof that
for a Lie superalgebra g with g0 reductive, conditions (U1) and (U2) of
Sec. 1 are enough to guarantee the existence of a unitary representation
of the Lie supergroup. Let g be a Lie superalgebra with g0 reductive.
Write, as in Subsec. 2.1, g0 = g′0 ⊕ c0. k0 is the subalgebra of g′0 fixed
by a Cartan involution.

Lemma 7. Let V be a (g0, k0)-module. If V admits a hermitian product
which is k0-invariant, namely, elements of k0 are skew symmetric with
respect to it, then the isotypical subspaces Vθ are mutually orthogonal.

Proof. Let V1, V2 be two irreducible k0 -stable finite dimensional sub-
spaces such that they carry inequivalent representations of k0. We want
to prove that V1 ⊥ V2. Let W = V1⊕V2. Let P be the orthogonal pro-
jection V1 −→ V2 in V . We claim that P is a k0-map. Let u ∈ V1, write
u = x+ y where x ∈ V2, y ∈ W , y ⊥ V2, or y ∈ V ⊥

2 ∩W . Then Pu = x
and for X ∈ k0, XPu = Xx. On the other hand, Xu = Xx+Xy and
we know that Xx ∈ V2, Xy ∈ W ∩ V ⊥

2 . Hence PXu = Xx = XPu,
proving the claim. This implies that P = 0, as otherwise P will be a
nonzero k0-map between V1 and V2. �

Lemma 8. Suppose that V is a unitary (g0, k0)-module such that the
Vθ are all finite dimensional. Then for any submodule W ⊂ V , W⊥ is
also a submodule, and V = W ⊕W⊥.

Proof. It is only a question of proving that V = W ⊕W⊥. The point
is that V is in general not complete. Now W = ⊕θWθ where the Wθ

are finite dimensional and mutually orthogonal, and Wθ ⊂ Vθ. Let
W ′

θ be the orthogonal complement of Wθ in Vθ. Since the isotypical
subspaces of V are mutually orthogonal, it is clear that W ′

θ is ⊥ to all
Vθ′ for θ

′ 6= θ. Thus W ′
θ ⊂ W⊥. Since this is true for all θ, we see that

W ⊕W⊥ ⊃ Wθ ⊕W ′
θ = Vθ for all θ (as the Vθ are finite dimensional).

So W ⊕W⊥ = V . �
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Lemma 9. If V is as in the previous lemma, then V is the orthogonal
direct sum of irreducible submodules.

Proof. We shall first show that if W ⊂ V is any submodule, then W
has an irreducible submodule. This is a standard argument of Harish-
Chandra. Consider pairs (W ′, θ) for submodules W ′ ⊂ W and θ such
that W ′

θ 6= 0. Among these choose one for which W ′
θ has the smallest

dimension; let (W ′, θ) be the corresponding pair. Let W ′′ be the cyclic
submodule of W ′ generated by W ′

θ. If L is a proper submodule of W ′′,
then we claim that L∩W ′

θ is either 0 or equal toW
′
θ. Otherwise dim(Lθ)

is positive and strictly less than dim(W ′
θ ), a contradiction. It cannot

equal W ′
θ, as then L = W ′′. So L ∩W ′

θ = 0, hence L ⊥ W ′
θ. In other

words all proper submodules of W ′′ are orthogonal to W ′
θ, showing that

their sum is still proper. Let Z denote this sum. Then W ′′ ∩ Z⊥ is an
irreducible submodule of W ′′.
This proves the existence of irreducible submodules of V . Let (Vi)

be a maximal family of mutually orthogonal irreducible submodules of
V . If Y := ⊕iVi 6= V , then Y ⊥ will contain an irreducible submodule,
contradicting the maximality of (Vi). Hence the lemma. �

Corollary 10. Let the notation be as above. If V is finitely gener-
ated, then V is an orthogonal direct sum of finitely many irreducible
submodules.

Proof. Each generator lies in a finite sum of the Vi. Since there are
only finitely many generators, the corollary follows. �

We are now ready to prove our main result for this section.

Proof of Theorem 2. Since g0 leaves invariant V0, V1 separately, π0

can be constructed separately on the closures of V0 and V1, by the
Theorem 5 in Subsec. 2.1, and so the full π0 is even. We know that
V ⊂ Cω(π0), again by Theorem 5. Theorem 1 of Sec. 1 now proves the
present theorem.

Remark 1. In the special case of highest weight modules, the proof
of unitarizability is simpler. In view of our corollary to Lemma 9,
it is enough to show, besides (U1) and (U2), only that the Vi are
highest weight modules for g0, because the conditions in Cor. 10 are
automatically verified (see [24] Ch. 8).

2.3. Construction of Harish-Chandra modules for (g, k). Apart
from the highest weight modules we have not produced any other
Harish-Chandra modules (see [4]). In this section we do precisely this.
First notice that V0, V1 are Harish-Chandra modules for (g0, k), (k = k0).
We now need some preliminary remarks.
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LetM be a Harish-Chandra module for g0 and define V := U(g)⊗U(g0)

M .

By Poincaré-Birkhoff-Witt theorem, if X1, X2, . . . , Xr is a basis for
g1, and L is the span of all the Xi1 . . .Xim where i1 < ... < im ,
m ≤ r, then U(g) = LU(g0). Although g1 is stable under ad(g0), this
is not true of L. Let R be the linear span of all monomials Xi1 . . .Xim

where the i’s are not ordered and satisfy only 1 ≤ i1, i2, . . . , im ≤ r,
m ≤ r. Then R is finite dimensional, stable under ad(g0), graded, and
RU(g0) = U(g). Hence

U(g)⊗U(g0) M = R ⊗U(g0) M.

The action of U(g) on V is by the left on the first factor. Since R
is ad(g0)-stable, the action of g0 is the tensor product of the adjoint
action on R and the action on M . We recall a well known result. If p,
q, r are three irreducible representations of k, we write p < q ⊗ r if p
occurs in q ⊗ r. Then:

p < q ⊗ r ⇐⇒ r∗ < q ⊗ p∗

where a∗ is the dual representation of a. This follows from the fact that
p < q ⊗ r if and only if q ⊗ r ⊗ p∗ contains the trivial representation,
and hence if and only if r∗ < q ⊗ p∗.

Proposition 11. Let M be a Harish-Chandra module for g0. Then

V := U(g)⊗U(g0) M

is a Harish-Chandra module for (g, k).

Proof. Wemust show that for any irreducible class p of k, dim(Vp) < ∞.
Let r1, . . . rt be the irreducible classes in R. M is the direct sum of
the Mq for the various irreducible classes q of k, and we know that
dim(Mq) < ∞ for all q. Now, by our remark above, p occurs in r ⊗ q
if and only if q∗ < r⊗ p∗. Taking r = r1, . . . , rt and fixing p, this gives
only finitely many choices for q. Let Q be the finite set of q such that
q∗ < rj ⊗ p∗ for some j = 1, 2, . . . , t. Hence

Vp ⊂ R⊗⊕q∈QMq

showing that dim(Vp) < ∞. �

Remark 2. By a slight variation of the argument in the Lemma 9 we
can show that V has subquotients which are irreducible. Starting with
a module M for which the weight spaces are not all finite dimensional,
one of the subquotients of a finite composition series for V will have this
property and so will not be a highest weight module. These modules
were studied in [7, 8] for ordinary Lie algebras and the above theory
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allows us to build non highest weight Harish-Chandra modules for Lie
superalgebras. We plan to explore this further in a forthcoming paper.

3. Infinitesimal unitarity

3.1. Harish-Chandra homomorphism. Let gC be a contragredient
complex Lie superalgebra, hC a Cartan subalgebra of gC (see [19]). The
Harish-Chandra homomorphism

(1) β : Z(gC) → S(hC)
W

identifies the center Z(gC) of the universal enveloping algebra with the
subalgebra I(hC) of S(hC)

W (see [20]):

I(hC) = {φ ∈ S(hC)
W | φ(λ+tα) = φ(λ), ∀λ ∈ 〈α〉⊥, α isotropic, ∀ t ∈ C}

For any µ ∈ h∗C, let U [µ] be the subspace of U(gC) given by

U [µ] = {a ∈ U(gC) | [H, a] = µ(H)a ∀H ∈ hC}.

Then U [0] is a subalgebra, Z(gC) ⊂ U [0], and (U [µ]) is a grading of
U(gC); moreover U [µ] 6= 0 if and only if µ is in the Z-span of the roots.
If γ1, . . . , γt is an enumeration of the positive roots, ∆+ = {γ1, . . . , γt}
and (Hi) is a basis for hC, then elements of U [0] are linear combinations
of monomials:

(2) Xp1
−γ1 . . .H

c1
1 . . .Xn1

γ1

with (p1 − n1)γ1 + · · · = 0. It is then clear that every term occurring
in such a linear combination must necessarily have some pi > 0 except
those that are just monomials in the Hi alone. So for any u ∈ U [0] we
have an element β(u) ∈ U(hC) such that

(3) u ∼= β(u)(modP), P =
∑

γ>0

U(gC)gγ, γ ∈ ∆+

Let λ ∈ h∗C. The action of u on the Verma module Vλ must leave the
weight spaces stable since it commutes with hC, and so applying it to
the highest weight vector vλ we see that uvλ = β(u)(λ)vλ where we are
identifying U(hC) with the algebra of all polynomials on h∗C, so that
β(u)(λ) makes sense. It follows from this that if u ∈ U(hC) ∩ P then
u(λ) = 0 for all λ and so u = 0, i.e., U(hC) ∩ P = 0. Hence β(u) is
uniquely determined by the equation (3).

We extend the homomorphism β : U [0] −→ U(hC) to a linear map
U(gC) −→ U(hC) by making it 0 on U [µ] for µ 6= 0.
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3.2. Hermitian forms. Let V be a complex super vector space. A
hermitian form on V is a complex valued sesquilinear form (, ) (linear
in the first, antilinear in the second argument) such that:

(4) (u, v) = (−1)|u||v|(v, u), ∀u, v ∈ V

and (u, v) = 0 for |u| 6= |v|, where |u| denotes the parity of an homo-
geneous element u ∈ V (see [32] pg 111 and [9] Sec. 4). If X is an
endomorphism of V , we define its adjoint X∗ as

(5) (Xu, v) = (−1)|u||X|(u,X∗v),

One can immediately verify that (see [32] pg 110):

(6) 〈u, v〉 =

{

i(u, v) |u| = |v| = 1
(u, v) otherwise

is an ordinary hermitian form. If X† is the adjoint with respect to this
ordinary hermitian form, we have that X∗ = i|X|X†. In fact, taking
|u| = |X| = 1, |v| = 0, we have (Xu, v) = −(u,X∗v) and

(7) (Xu, v) = −i〈Xu, v〉 = −i〈u,X†v〉

A similar calculation is done if |u| = 0, and |X| = |v| = 1.
(, ) is a hermitian product on V if (, ) and i(, ) are positive definite on

V0 and V1 respectively, i.e. if the ordinary form 〈 , 〉 is positive definite
on V .
Let V be a g module, g a real Lie algebra, via the representation π.

V (or π) is said to be unitary if there is a hermitian product (, ) for V
such that

(8) (π(X)u, v) = −(−1)|u||X|(u, π(X)v) (u, v ∈ V,X ∈ g),

(see [32] pg 111). This implies:
(9)

π(X)∗ =

{

−π(X), |X| = 0
+π(X), |X| = 1

π(X)† =

{

−π(X), |X| = 0
−iπ(X), |X| = 1

As one can readily check, this is equivalent to (U1), (U2) in Sec. 1,
with (6) as hermitian product there. In fact, while condition (U1)
regards the ordinary case, condition (U2) is expressed for |X| = |u| = 1
(similarly for |X| = |v| = 1) as:

〈e−iπ/4π(X)u, v〉 = 〈u, e−iπ/4π(X)v〉

that is:
〈π(X)u, v〉 = i〈u, π(X)v〉

This implies the condition of unitarity to be π(X)† = −iπ(X), in
agreement with (9).
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Let g be a real form of the contragredient complex superalgebra gC
and g = k ⊕ p its Cartan decomposition. We assume gC to satisfy the
equal rank condition:

hC ⊂ kC ⊂ gC

for a fixed Cartan subalgebra hC = (hC)0. Assume also that kC has a
non trivial center. Then kC and pC decompose into the sum of root
spaces and the root system of gC has admissible positive systems and
we fix P one of such (see [6]). We can extend the antiautomorphism
X −→ −(−1)|X|X on g to an antiautomorphism of U(g). Then, this
antiautomorphism can be furtherly extended to a conjugate linear an-
tiautomorphism of U(gC), that we denote by a −→ a⋆ and call the
adjoint. It has the following properties:

(1) a⋆⋆ = a
(2) (ab)⋆ = (−1)|a||b|b⋆a⋆

(3) a⋆ is conjugate linear in a
(4) X⋆ = −(−1)|X|X forall X ∈ g.

It is uniquely determined by these requirements. We then can extend
the unitary condition for a representation expressed in (8):

(π(X)u, v) = (u, π(X)⋆v) X ∈ U(gC)

3.3. Unitary highest weight representations. We now wish to
give a criterion for an highest weight representation of gC to be unitary.
We shall follow closely [15].

Lemma 12. Let πλ be a unitary highest weight representation of gC of
highest weight λ. Then (−i)|a|β(a∗a)(λ) > 0 for all a ∈ U(gC).

Proof. Let v be the highest weight vector. It is not restrictive to assume
v to be even. By definition of β we have:

(av, v) = β(a)(λ)(v, v), a ∈ U(gC)

Hence:

0 < i|a|(av, av) = i|a|(−1)|a|(a∗av, v) = (−i)|a|β(a∗a)(λ)(v, v)

which gives our claim, since (v, v) = 〈v, v〉 > 0. �

To ease the notation let βλ(a) := β(a)(λ), a ∈ U(gC).

Lemma 13. Assume (−i)|a|βλ(a
⋆a) ≥ 0 for all a ∈ U(gC). Then:

(10) (w, z) = (−i)|z||w|βλ(z
⋆w), w, z ∈ U(gC)

defines a semipositive definite supersymmetric sesquilinear form on
U(gC), whose radical R is a left ideal.
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Proof. By (10) and by the definition of β and ⋆ we immediately have
that (, ) is sequilinear: linear in the first and antilinear in the second
argument. Notice that (w, z) = 0 if |z| 6= |w|. In fact, if |z| 6= |w|,
|z⋆w| = 1, hence z⋆w 6∈ U [0], which consists of even elements only and
βλ is zero on U [µ], for µ 6= 0. Moreover since (−i)|a|β(a⋆a)(λ) ≥ 0,
we have that 〈a, a〉 ≥ 0, by (6). By a standard argument in ordinary

linear algebra (see [27]), this implies that 〈a, b〉 = 〈b, a〉, |a| = |b| and
this concludes the first part of the proof.

Let R be the set of z ∈ U(gC) with ‖z‖ :=
√

〈z, z〉 = 0. If z, z′ ∈ R,
that is ‖z‖ = ‖z′‖ = 0, by ‖z + z′‖ ≤ ‖z‖+ ‖z′‖, we immediately have
that R is a subspace. Furthermore if b⋆ = b′, for b, b′ ∈ U(gC), we have:

(w, bz) = (−i)|w||bz|βλ((bz)
⋆w) = ±(−i)|w||b||z|βλ(z

⋆b⋆w) = ±(b′w, z)

Hence ‖(w, bz)‖ ≤ ‖b′w‖‖z‖. If z ∈ R, i.e. ‖z‖ = 0 and w = bz, we
get ‖bz‖ = 0, hence R is a left ideal. �

Lemma 14. Let the notation be as above. Assume (−i)|a|βλ(a
⋆a) ≥ 0

for all a ∈ U(gC). Then U(gC)/R is a unitary representation of gC
with highest weight λ.

Proof. One can check right away that (, ) is well defined on U(gC)/R.
To prove our claim, we need to show R = Mλ the (unique) maxi-
mal (left) ideal containing Pλ =

∑

γ∈P U(gC)gCγ+
∑

γ∈P U(gC)(Hγ −

λ(Hγ)1). We have Pλ ⊂ R. They are both left ideals, so it is enough
to show Xα ∈ R for α > 0 and Hγ − λ(Hγ)1 ∈ R, the latter being
an ordinary statement, so true for the ordinary theory. Notice that:
(Xα, v) = βλ(v

∗Xα) = 0 because of (3), hence Xα ∈ R.

Now let M′ be a proper maximal ideal containing R. We want to
show M′ = R. We first notice that it is stable under the hC action, in
fact:

[H,m] = Hm−m(H −λ(H))−λ(H)m ∈ M′, H ∈ hC, m ∈ M′

By a standard fact, then also m0, the U [0] component of m is in M′.
Then by (3) m0 ≡ h mod (P) and h ≡ βλ(h) mod(Pλ), so that m0 ≡
βλ(h) mod(Pλ) for some h ∈ U(hC) (P ⊂ Pλ). Since Pλ ⊂ R ⊂ M′,
we have βλ(h) ∈ M′, and being a complex number, this tells that
βλ(h) = 0, otherwise M′ would not be a proper ideal. Hence, also
βλ(m0) = βλ(h) = 0. Now, let z ∈ M′. Since X⋆

α = cαX−α for any
root vector Xα, α a root of gC (see [9] Sec. 4), we have z⋆z ∈ U [0].
Takingm0 = z⋆z, for any z ∈ M′, this gives (−i)|z|βλ(z

⋆z) = 〈z, z〉 = 0,
so M′ = R. �
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We are ready for the main result of this section.

Proof of Theorem 3. The first statement is immediate from the pre-
vious lemmas. The second statement comes from the ordinary result
in [15] and easy calculations.

4. Irreducible representations of ospR(1|2)

4.1. Introductory remarks. We present here some calculations on
highest weight Harish-Chandra modules for gC = ospC(1|2) and the
unitary ones of g = ospR(1|2).
Let N = {0, 1, 2, ...}. We assume that t 6∈ N.
The Lie superalgebra gC consists of matrices





0 ξ η
η a b
−ξ c −a





where ξ, η are complex odd variables, a, b, c complex even variables.
The real form g consists of the real Lie superalgebra of matrices





0 ξ −iξ
−iξ ia b
−ξ −b −ia





where the variables ξ, b are still complex, a is real, and bar denotes
complex conjugation (see [3] Appendix A for notation).
The complex basis of (gC)0 = sl(2) is the standard oneH = E22−E33,

X = E23, Y = E32, Eij denoting the elementary matrices (see [31] for
notation). The complex basis for the odd part (gC)1 is {x, y} where

x = E13 + E21, y = E12 −E31.

For the real form, the even part has real basis {iH,X + Y, i(X − Y )}
and the odd part has real basis

x∼ = −ix+ y, y∼ = −x+ iy.

4.2. Verma modules for (gC)0 with highest weight t 6∈ N. We
recall here the ordinary theory. Let Wt be the Verma module for (gC)0
of highest weight t. Then Wt has basis {vt, vt−2, . . . } where vt 6= 0,
Xvt = 0, vt−2r = Yrvt. One knows that all the vt−2r are non zero,
because of the identity:

XY r+1 = Y r+1X + (r + 1)Y r(H − r)

in U((gC)0), established easily by induction on r. This shows that

(11) Xvt−2(r+1) = (r + 1)(t− r)vt−2r.
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Since t 6∈ N, the factor (r + 1)(t − r) is not zero for any integer r ≥
0, it follows that if some vt−2(r+1) = 0, then vt−2r = 0, so that we
eventually get vt = 0. That this is irreducible already is seen because
of (11). Indeed (11) shows that starting with any vt−2r, we can reach
vt by applying X repeatedly. Thus the Verma modules Wt are already
irreducible. We now want to determine when the Wt are unitary. By
unitary we mean the existence of a hermitian product such that

(Zu, v) = −(u, Zv)

for all Z in the real form of sl(2), and u, v ∈ Wt, i.e., for Z = iH , X+Y ,
i(X − Y ). The main idea is to transfer the condition for unitarity to
the complex Lie algebra sl(2). For the Verma modules Wt, unitarity
is equivalent to assuming that the vt−2r are mutually orthogonal and
X∗ = −Y or Y ∗ = −X or both. In fact, the condition is that H∗ = H ,
(X + Y )∗ = −(X + Y ), (X − Y )∗ = X − Y .

Proposition 15. Wt is unitary if and only if t is real and t < 0.

Proof. Recall that t 6∈ N. Let Wt be unitary. Then (vt−2, vt−2) =
(Y vt, vt−2) = −(vt, Xvt−2). But:

Xvt−2 = XY vt = Y Xvt +Hvt = tvt.

Hence (vt−2, vt−2) = −t > 0 if we normalize (vt, vt) = 1 (possible).
Hence −t > 0. For the converse we must, when t < 0, define a unique
hermitian product such that (vt, vt) = 1 and X∗ = −Y . The vt−2r are
to be mutually orthogonal and so we need to determine the N(r) :=
(vt−2r, vt−2r) inductively so that X∗ = −Y and all the N(r) > 0. The
requirement X∗ = −Y forces the relation (by (11)):

(vt−2r, vt−2r) = (Y vt−2(r−1), vt−2r) = −r(t− r + 1)(vt−2(r−1), vt−2(r−1))

or

N(r) = −r(t− r + 1)N(r − 1), N(1) = 1

the second being the normalization (vt, vt) = 1. We define N(r) in-
ductively by this and note that for t < 0 we have N(r) > 0 for all r,
since the factor −r(t − r + 1) is always > 0 for r ≥ 1, as t < 0. The
hermitian product is now well defined and positive definite. It is now
only a question of verifying that X∗ = −Y . For this we need only check
(Y vt−2(r−1), vt−2r) = −(vt−2(r−1), Xvt−2r) as all other hermitian prod-
ucts needed are zero. But the left hand side isN(r) while the right hand
side is −r(t−r+1)(vt−2(r−1), vt−2(r−1)), which is −r(t−r+1)N(r−1),
and these are equal by definition of N(r). �
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4.3. Super Verma modules for gC. We report here for completeness
some preliminary results. Let t 6∈ N where N = {0, 1, 2, ..., } and let Vt

be the gC module with highest weight t and highest weight vector vt.

Lemma 16. Let t 6∈ N where N = {0, 1, 2, ..., }. Then the super Verma
module Vt with highest weight t is irreducible. Let Wt = U((gC)0)vt
and Wt−1 = U((gC)0)vt−1, vt−1 := yvt. Then Wt, Wt−1 are irreducible
Verma modules for (gC)0 and Vt = Wt ⊕Wt−1.

Proof. By the Poincaré-Birkhoff-Witt theorem, U(gC) = U((gC)0){1, x, y, yx}.
Hence

Vt = U((gC)0)vt + U((gC)0)vt−1.

If vt−1 = 0 then xvt = yvt = 0, hence, as H = xy + yx, we have Hvt =
tvt = 0 showing that t = 0. Also if Xvt−1 6= 0, then it has weight t+ 1
which is impossible. The modules U(gC)vt, U(gC)vt−1 are then highest
weight non zero modules, of highest weights t, t − 1. Hence, by our
assumption that t 6∈ N, they are Verma modules and irreducible. Note
the sum is direct since H has disjoint spectra in the two pieces. Hence
the result. �

Corollary 17. Let the notation be as above. Vt has basis {vt, vt−1, . . . }
where vt−r = yrvt.

Proof. Recall that y2 = −Y . Given t 6∈ N there is only one structure
of a super gC module for Wt ⊕ Wt−1, namely the super Verma with
highest weight weight t. �

Lemma 18. Let the notation be as above. In U(gC) we have

xy2m = y2mx−my2m−1, xy2m+1 = −y2m+1x+ y2m(H −m)

In particular, in Vt,

xvt−m = cmvt−m+1, c2m = −m, c2m+1 = t−m.

Proof. Since xy = −yx + H in U(gC), we have, by direct calculation,
xy2 = y2x− y and xy3 = −y3x+ y2(H − 1). Hence the results are true
for m = 1. We use induction on m. We have

xy2m+2 = xyy2m+1 = (−yx+H)y2m+1 = y2m+2x− (m+ 1)y2m+1

and

xy2m+3 = xyy2m+2 = (−yx+H)y2m+2 = −y2m+3x+ y2m+2(H−m− 1)

by direct calculation. The induction is complete. The formulae for Vt

are immediate consequences by applying them to vt−m = yt−mvt. �
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4.4. Unitary Super Verma modules for gC. The main idea now is
to transform the condition for unitarity to the complex setting. For the
ordinary Verma modules Wt, unitarity is equivalent to X∗ = −Y or
Y ∗ = −X or both. In fact, the condition is that H∗ = H , (X + Y )∗ =
−(X+Y ), (X−Y )∗ = X−Y . For supermodules we impose, following
[2] and (U2) as in Sec. 1, the condition ζZ is symmetric in the hermitian
product where ζ = e−iπ/4 (see [2]). As in the Verma case, we must
convert this definition into a condition on the complex basis for gC.
The condition is that ζx∼, ζy∼ are symmetric (acting on the module)
where x∼ = −ix+ y, y∼ = −x+ iy. This is the same as (see (9)):

x∼† = −ix∼, y∼† = −iy∼

or
ix† + y† = −x− iy, −x† − iy† = ix+ y.

These are the same as

x† = −y, y† = −x

or even just one of these relations, as the other follows by taking ad-
joints. Notice that for u, v even u† = u∗ and (u, v) = 〈u, v〉, see Sec.
3.2 for the notation.

Theorem 19. Vt is unitary if and only if t is real and t < 0.

Proof. Recall that t 6∈ N and Prop. 15. Let Vt be unitary. Then

xvt−1 = xyvt = −yxvt +Hvt = tvt

So
〈vt−1, vt−1〉 = 〈yvt, vt−1〉 = −〈vt, xvt−1〉 = −t〈vt, vt〉

We can normalize 〈vt, vt〉 = 1 so that we get 〈vt−1, vt−1〉 = −t. Thus
we must have t < 0. We now prove the converse. If t < 0 we must
define a hermitian product on Vt such that x† = −y.
The definition of the hermitian product goes as in the Verma case.

The formulae for cm of Lemma 18 show that for m ≥ 1, we see that
cm < 0 always. Let N(r) = 〈vt−r, vt−r〉. The relation x† = −y forces
the relation

〈vt−r, vt−r〉 = 〈yvt−r+1, vt−r〉 = −cr〈vt−r+1, vt−r+1〉

or
N(r) = −crN(r − 1).

We define N(r) inductively with N(0) = 1. Then, as −cr > 0, the
N(r) are defined and > 0 for all r. With the orthogonality of the
vt−r this defines a hermitian product for vt. To prove that x† = −y
in this hermitian product we need only check that 〈xyvt−r+1, vt−r〉 =
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−〈vt−r+1, xvt−r〉. The left side in N(r) while the right side is −crN(r−
1) and so we are done. �

Remark 3. We observe that the necessary conditions of Theorem 3 for
V , chosen as in Theorem 19, to be unitary is satisfied, since we have
only a non compact even root α and λ(Hα) = λ(H) = t < 0.

Proof of Theorem 4. The first statement is Theorem 19. The sec-
ond statement is an immediate consequence of the first statement and
Theorem 2.
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